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Theoretical description of two- and three-particle interactions in single ionization of helium
by ion impact
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In this work we calculate doubly differential cross sections (DDCS) for single ionization of helium by highly
charged ion impact. We study the importance of two-particle interactions in these processes by considering the
cross sections as a function of all two-particle subsystems momenta. Experimental DDCSs were obtained
recently from kinematically complete experiments on single ionization of He by 100 MeV/amu C®* and
3.6 MeV/amu Au?*** impact. Furthermore, we evaluated the importance of three-particle interactions by
plotting the squared momenta of all three collision fragments simultaneously in a Dalitz plot. Using the first
Born and distorted-wave approximations for fully differential cross sections, together with Monte Carlo inte-
gration techniques, we were able to reproduce the main features observed in experimental data and to assess
the quality of the models implied by the different employed approximations.

DOI: 10.1103/PhysRevA.74.042702

I. INTRODUCTION

Kinematically complete experiments on single ionization
of atoms by fast heavy-ion impact have in the past decade
become feasible using the cold-target recoil-ion-momentum
spectroscopy (COLTRIMS) technique [2]. In these experi-
ments momenta of all particles interacting in a single ioniza-
tion process can be recorded. Since the introduction of this
technique, fully differential cross sections (FDCS) have been
studied, both experimentally and theoretically [3,4], and
even three-dimensional images of the FDCS have been re-
ported [5].

Experimental FDCSs show the usual structures for ioniza-
tion processes: a large binary peak close to the momentum
transfer q direction, which correspond to “binary” collisions
between the active electron and the projectile, and a smaller
recoil peak in the vicinity of —q direction, originated by a
double-scattering mechanism, i.e., the electron first collides
with the projectile and afterward it is scattered off the target
nucleus.

A large number of theoretical approaches have been de-
veloped to calculate single ionization FDCSs. They can be
classified into two big groups: perturbatives and nonpertur-
batives. The simplest perturbative approach is the first Born
approximation (FBA) in which the transition amplitude is
expanded in powers of the interaction potential retaining
only the first-order term [6]. The usually employed FBA can
be considered as a two-body theory since the ionization pro-
cess is described in terms of a single interaction between the
incident projectile and the electron, i.e., the target nucleus
remains passive. This approximation has shown successful
results as long as the projectile charge-to-velocity ratio is
smaller than 1 [7], although some discrepancies still remain
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unexplained [5]. Higher-order contributions of the Born se-
ries become more important when the velocity of the projec-
tiles is slow or when highly charged ions are used in the
experiment. However, the Born series has well-known con-
vergence problems for long-range potentials, and the numeri-
cal implementation of even a second-order approach is quite
difficult. Accordingly, the quality of the approximation is
hard to assess and for this reason calculations beyond second
order have not been performed [8-10].

An alternative perturbative approach is the continuum-
distorted-wave (CDW) model proposed by Belki¢ [11] based
on the work of electronic capture made by Cheshire [12].
Here the interaction potentials are essentially split into a
long-range distortion and a short-range perturbation. Dis-
torted wave functions (both initial and final) are built in such
a way that they contain additional information about the par-
ticle interactions, being a solution of the Hamiltonian that
includes the distortion potentials. In this way, Born series-
convergence problems can be, at least formally, removed
since the perturbation has a short range. The price to be paid
is that these potentials become differential operators.

The CDW approach has the advantage of giving very
good results by considering just the first order of the under-
lying perturbative series. After a promising beginning, some
problems were found in the asymptotic conditions of the
pure CDW ionization theory [13]. Crothers and McCann cir-
cumvented these problems with the development of the so-
called continuum-distorted-wave-eikonal initial state (CDW-—
EIS) model [14]. This theory has become one of the most
successful theories in the field of atomic ionization for high
and intermediate impact energy [15,16] and further improve-
ments of this theory have been reported (e.g., [17,18]). A
particularly important refinement was the incorporation of all

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.74.042702

CIAPPINA et al.

two-body pair interactions, including the interaction between
the projectile and the target nucleus (N-N interaction)
[19,20]. The early computational attempts employed semi-
classical approaches for the inclusion of such N-N interaction
[21]. Nowadays other groups implement more sophisticated
approaches, but with marginal results [22,23]. Nonperturba-
tive approaches for ion-atom collisions include close-
coupling theories and the classical trajectories Monte Carlo
method (CTMC); this last one has been widely used for the
calculation of ionization cross sections at intermediate im-
pact energies [24,25]. We will not further consider these non-
perturbative approximations in this work.

On the experimental side, a large amount of FDCSs data
have become available and can be used to sensitively test the
different theoretical models (see, e.g., Ref. [26] and refer-
ences therein). Theoretical calculations for FDCSs for elec-
trons ejected into the scattering plane (defined by the initial
and final projectile momenta) have reproduced the main fea-
tures in the experiments reasonably well in the case of light
projectiles, but in the case of highly charged ion impact,
relatively poor agreement was obtained.

One disadvantage of the FDCS is that it is very difficult to
represent the data as a function of all three particle param-
eters simultaneously in a single spectrum. As a consequence
it is not easy to understand from the usual representation of
data the relative importance of two-particle interactions and
to disentangle relative motion correlations among all three
particles.

It has been recently proposed that Dalitz plots could be
used as a representation tool to improve our qualitative un-
derstanding of three-particle collision dynamics [1]. Earlier,
these graphs were used to study electronic correlations in
triple ionization [27]. It is not particularly difficult to gener-
ate such plots using experimental data because they merely
amount to a statistical rearrangement of the momentum dis-
tributions routinely measured in COLTRIMS experiments.
However, theoretical Dalitz plots are considerably more dif-
ficult to produce due to the complicated transformations and
integration procedures involved. Only recently, theoretical
Dalitz plots have been presented for CTMC calculations for
FDCSs [28].

In this work we report a theoretical study on the DDCS
for single ionization of He by highly charged ion impact. The
DDCS will be presented both in the form of Dalitz plots and
in a more conventional way, namely, as a function of the
momenta of the various particle pairs. In Sec. II we briefly
describe the theories used to deal with the ionization process.
The numerical calculations and its comparison with the ex-
perimental data available are presented in Sec. III. Finally,
Sec. IV contains our conclusions.

II. THEORY

We treat helium single ionization as a single-electron pro-
cess. We assume that in the final state the “active” electron
moves in the combined Coulomb field of the impinging pro-
jectile and the residual target core. Electron residual-target
ion interaction is modeled by a given effective charge, which
takes into account the partial screening due to the passive
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electron, as is usually considered in the CDW-EIS approach
[29]. Within this model, the long-range electron-projectile
interaction is accounted for by a pure Coulomb distortion in
the final state, and by asymptotic eikonal phase in the en-
trance channel [14]. The N-N interaction is treated as a pure
Coulomb interaction between a projectile with charge Zp and
the target core charge, assumed to be Z;=1. Further, the N-N
interaction is then included in the transition amplitude,
through its multiplication by a semiclassical phase factor
[21].

In the center-of-mass (c.m.) frame, the FDCS in energy
and ejection angle of the electron, and the direction of the
outgoing projectile are given by [30-32]

Po

K
—— — N,Q@)*uk=L|T, PSE,~E), 1
dEdedeK e( 7T) M Kl| 1f| 5( f z) ( )

where N, is the number of electrons in the atomic shell, u is
the reduced mass of the projectile-target subsystem, and
K,(K/) is the magnitude of the incident particle initial (final)
momentum. The ejected electron’s energy and momentum
are given by E, and k, respectively. The solid angles d{) and
dQ), represent the direction of scattering of the projectile and
the ejected electron, respectively. We use nonorthogonal Ja-
cobi coordinates (rp,ry) to describe the collision process.
These coordinates represent the position of the active elec-
tron with respect to the projectile (rp) and the target ion (r;),
respectively. Ry is also needed, representing the position of
the incoming projectile with respect to the c.m. of the sub-
system e-T. If we neglect terms of order 1/M; and 1/Mp,
where M is the mass of the target ion nucleus and M is the
mass of the incident heavy ion, we can write Ry=rzy—rp.

Within the prior form of CDW-EIS, the transition ampli-
tude can be computed as

T[CDW—EIS, Gy XCDW, (_)|Wi| Xl_EIS. )y, (2)

where the initial- (final-) state distorted wave XE[S )

(X; EOW- )y is an approximation to the initial (final) state,
Wthh satisfies the outgoing-wave (+) [incoming-wave (—)]
conditions. For the initial state the asymptotic form of the
Coulomb distortion (eikonal phase) is used in the electron-
projectile interaction, together with a semianalytical
Rothaan-Hartree-Fock (RHF) description for the initial
bound-state wave function

X5 = 2m) 2 expiK; - Rp) Yrpr(rp)ENrp),  (3)
where & (rp) is

& (rp) = exp(— i% In(vrp—v- I’P)) “4)
and
/2A
wRHF(rT) E 1/2 eXP( Z}\VT) (5)

The effective charges Z, and the weights A, can be obtained
from Ref. [33].

On the other hand, the final-state wave function is cast
into the form [14,34,35]
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X2 = 2m) 2 exp(iK, - R xp(r) Cplrp),  (6)

where C, represents the Coulomb distortion of the ejected
electron wave function due to the projectile, i.e.,

Cplrp) = N(vp),F (= ivp, 1, ikprp—ikp-1p), (7)

Zp . . .
where vp= k—: is the Sommerfeld parameter, kp is the relative
momentum of the e-P subsystem, and N(vp) is the usual
Coulomb factor

N(vp) =T'(1 —ivp)exp(mvp/2). (8)

Furthermore, x7(r7) is the wave function for the ejected elec-
tron in the field of the residual target ion

X7(rp) =Q2m - exp(ik - rp)N(vp) F (= ivy, 1,
- ikrT— ik - I'T) (9)
with vT:Z;T and where k is the relative momentum of the e-

T subsystem.
The perturbation potential W; in Eq. (2) is defined by

(H; = E)xf™> = Wiy, (10)

where H, is the full electronic initial Hamiltonian (neglecting
the total c.m. motion) and E; is the total initial energy of the
system in the c.m. frame, respectively. W; is composed of
two differential operators that can be written [36]

1
==V2 -V, .V, . (11)

A. Doubly-differential cross sections
Equation (1) can be written alternatively,
&Po K
————— =N, @) =L T, 2 S(E, - E; 12
hd,d0y 2m)w Kl-' A E~E)  (12)

using that dE,=kdk. Integrating Eq. (12) successively over
ionized electron’s angles d(),=sin 6,d6,d¢, and projectile
angle ¢y results

d? K
— d = f Ne(277)4M2k2_I|Tif|2
dk sin Oxd Oy K;
X&(Ef—Ei)Sin 0kd6kd¢kd¢’(' (13)
For small projectile angles sin 6x= 6x and consequently,
q . =M pv0x=K,0k. Rewriting Eq. (13), finally we obtain
d*c
dkdq |

K
P

><5(Ef—E,-)Sin ekdé’kd¢kd¢,<. (14)

From energy conservation we know that g,,;,=¢.=A€/v, be-
ing Ae=k?/2+|€| with ¢ the electron binding energy. Con-
sequently, DDCS from Eq. (14) can be considered a function
of k and ¢, since g= \s"q2L+q§. The usual method to calculate
DDCS(q,k), as defined by Eq. (14), is to use quadratures in
spherical polar coordinates. However, there are alternative
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approaches, such as Monte Carlo methods, to deal with inte-
grations of the type of Eq. (14). These methods can be par-
ticularly convenient if we are interested in differential cross
sections in terms of recoil-ion parameters, i.e., DDCS(p,,k)
and DDCS(q,p,) where p, is the recoil-ion momentum.

B. Dalitz plots

When we analyze the experimental data available for
DDCSs [ 1] we observe that the larger correlation emerges for
binary interactions. This could be taken as strong support for
the formulation of a final state as a product of two-body
subsystems, as it is made in CDW and distorted-wave Born
theories.

However, it is interesting to analyze to what extent the
motion of all three collision fragments are correlated with
each other. To do this, we will investigate the role of ioniza-
tion events in which all three collision fragments undergo a
significant change in momentum. Schulz et al. [1] have plot-
ted their experimental data using Dalitz plots. In this way, the
momenta of all three particles are embedded simultaneously
in a single picture. When the dominant two-particle correla-
tion is subtracted, their plots show significant contribution
from events where strong interaction among the three par-
ticles takes place [1].

In the domain of particle physics, Dalitz plots have
proved to be a very qualified tool to understand the decay
modes of some three-body experiments [37]. Here, our aim
is to obtain qualitative information regarding how well cor-
relation is taken into account in theories used to calculate
FDCSs. In a Dalitz plot for three particles of equal mass, the
relative energy (e;, with i=1,2,3) of each particle (normal-
ized to the energy sum for all three particles) is plotted in an
equilateral triangle. For a given experimental or theoretical
point, the energy &; for each particle is given by the perpen-
dicular distance of that data point to the corresponding tri-
angle side.

For ionization by ion impact we have three particles with
different mass; consequently, this approach has to be slightly
modified. Here, since the energy of the ion projectile is sev-
eral orders of magnitude larger than for both the recoil ion
and the ionized electron, the data would just concentrate in
one point at the corner of the triangle opposite to the projec-
tile side. To avoid this problem we follow Ref. [1] and plot
the relative squared momenta instead of the relative energies.
Consequently, our variables will be

k2
T =

Tl

T, = d
q k2+p3+q2’
2
ﬂ._# (15)

TR+ +p

where we have chosen the momentum transfer q for the pro-
jectile Dalitz plot’s variable. It will be useful to plot the
results to define a set of Cartesian coordinates x,, and y,, (see
Fig. 1 for details),
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FIG. 1. Definition of the Dalitz plot for the ion-impact ioniza-
tion case. See the text for details.

; (16)

. (17)

W | =

yD=7Tq_

To some extent Dalitz plots define a type of DDCS, which is
expressed as a function of 7,, 7, and =, (note that 7+,
+m,=1, thus only two of the three variables are indepen-
dent). The experimental and theoretical data must fall within
the internal circle of the triangle because the areas outside
that circle do not satisfy the kinematic condition k+p,=q
[1].

Starting from Eq. (15) and using momentum conserva-
tion, i.e., q=K+p,, we can write 7, and m, as a function of
k and q,

k2
S, S 18
e+ -k-q) (18)
2
1 (19)

T v —k-q)

Accordingly, FDCS, i.e., Eq. (1), can be written in terms of
the variables 7, and 7, as

do _ 1 o
3 = 3 ’
d’kdq,dq, d’kdm dm,

(20)

where |J| represents the Jacobian of the transformation and
we have written d°q |, =dq,dq,. Explicitly, we obtain for |J

)

47

|J| = ‘ k4e (quy - qykx)

, (21)

where k,=k sin 6, cos ¢ and k,=k sin 6 sin ¢.
Using Eq. (21), the FDCS from Eq. (20) can be written
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Lo
&Pkd*q

k4
47T3 (quy - ('kax)
Now we need the transformation between (g,.g,) [or, in po-
lar coordinates, (g, ,¢,)] and (m,,,). These transforma-

tions have been included in the Appendix .
Finally, we obtain for the DDCS in terms of (7, 7'rq),

Po B
d’kdmdm,

(22)

o a f K
dmdm, ] |4m(q, cos ph,—q, sin k)
d5
X —dk, (23)
&Pkd’q

using that g,=¢ | cos ¢, and g,=q , sin ¢,. As can be seen in
the Appendix A, it is quite complicated to find the transfor-
mations ¢ , (,,m,) and ¢,(m,,m,) due to their nonlinear na-
ture. In order to avoid the explicit use of these transforma-
tions, we employed Monte Carlo integration techniques
taking the advantage of the simple relationship between kK, q,
and p, in Cartesian coordinates.

III. RESULTS AND DISCUSSION

We can obtain information regarding the role of the two-
particle correlations within each collision subsystem analyz-
ing the DDCSs as a function of the different particles mo-
menta. We will then discuss the importance of three-particle
interactions with the aid of theoretical Dalitz plots for ion-
impact ionization of helium.

Following Ref. [1], in Fig. 2(a) we reproduce the experi-
mental DDCS as a function of the projectile-momentum
transfer (¢) and the magnitude of the electron momentum
(k), i.e., DDCS(gq,k), for 100 MeV/amu C% +He. In Figs.
2(b) and 2(c) the corresponding DDCSs are shown as a func-
tion of the recoil ion and electron momenta DDCS(p,,k) and
as a function of the projectile-momentum transfer and recoil-
ion momentum DDCS(q,p,), respectively. We have used a
logarithmic scale based in the “counts” that appear in the
experimental results (see Ref. [1] for details). Note that if the
momentum of one particle is null, the momenta of the other
two particles must have equal magnitude and opposite direc-
tion following momentum conservation. Therefore, ioniza-
tion events, which are dominated by momentum exchange
between any two particles would accumulate near the diag-
onal in the corresponding DDCS, forming a kind of “ridge.”

Our first theoretical results for 100 MeV/amu C%"+He
are depicted in Fig. 3. Here we calculate and plot, using FBA
approximation, DDCS(q, k) [panel (a)], DDCS(p,,k) (b), and
DDCS(q,p,) (c). It can be seen from Fig. 2(b) that the stron-
gest two-particle momentum exchange seems to occur within
the recoil-ion-electron subsystem and our theoretical ap-
proach reproduces this feature reasonably well [Fig. 3(b)]. As
we are interested in showing qualitatively the properties of
our theories, we also use a logarithmic scale, but its magni-
tude can differ substantially from the experimental data
scale. Take into account that the experimental plots were
obtained directly from the “crude” data and consequently,
they are not normalized.
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k(a.u.)

(a)

k (au.)

(b)

p.(au)

(©)

FIG. 2. Experimental doubly differential cross sections (DDCS)
for 100 MeV/amu C®*+He, extracted from Ref. [1]. (a) DDCS as a
function of the magnitudes of the electron momentum (k) and of the
projectile momentum transfer (¢), (b) DDCS as a function of the
magnitudes of the electron (k) and recoil-ion (p,) momenta, and (c)
DDCS as a function of the magnitudes of the recoil-ion momentum
(p,) and of the projectile momentum transfer (g).

From the experimental results that were published in Ref.
[1] we have chosen two of the most representative ones to
test our theories. Accordingly, in Fig. 4(a) we replicate the
experimental DDCS(g,k) for 3.6 MeV/amu Au>**+He.
Moreover, the panels (b) and (c) represent the DDCS(p,,k)
and DDCS(q,p,), for the same process, respectively. The
theoretical approach is shown in Figs. 5(a)-5(c) using a
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4.5

3.5

2.5

1.5

0.5

%

3.5

2.5

1.5

0.5

1 2
(c) q(au.)

FIG. 3. Theoretical DDCSs for 100 MeV/amu C%" +He using
FBA (see the text for details). (a) DDCS(g,k), (b) DDCS(p,,k), and
(c) DDCS(q,p,).

CDW-EIS theory without taking into account the N-N inter-
action (see the discussion above).

For the case of 100 MeV/amu C® +He our theoretical
DDCSs in terms of the electron and projectile momenta, i.e.,
DDCS(q,k) [Fig. 3(a)], and projectile-recoil-ion variables,
i.e., DDCS(q,p,) [Fig. 3(c)], respectively, again reproduce
the main features found in experimental data [Figs. 2(a) and
2(c)]. Here, the DDCS(q,k) is dominated by a stripe-shaped
maximum for nearly constant, small ¢, and the DDCS(q,p,)
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k (au)

(b)

pr(au)

(c) q(au)
FIG. 4. Idem Fig. 2 for 3.6 MeV/amu Au>**+He.

is also governed by a stripe-shaped maximum, which is
aligned roughly parallel to the ¢ axis . Additionally, it is
possible to see other structures parallel to the p, axis. On the
other hand, for Au projectiles the theoretical approach pre-
dicts an enhanced intensity near the diagonal, i.e., strong
momentum exchange between ejected electron and projectile
and between recoil ion and projectile, Figs. 5(a) and 5(c),
respectively, which is not observed in the experimental data
[Figs. 4(a) and 4(c)]. Here, this shows that the main under-
lying ionization mechanisms appear to be different in theory
and experiment for the highly charged ion-impact case. Ex-
periments show momentum exchange between the ejected
electron and the residual target ion (consistent with a strong
field-ionization picture), while theory suggests a stronger ex-

PHYSICAL REVIEW A 74, 042702 (2006)

k (a.u.)

(b)

k (a.u)

p; (au.)

q(a.u.)

FIG. 5. Theoretical DDCSs for 3.6 MeV/amu Au>**+He using
CDW-EIS without taking into account N-N interaction (see the text
for details). (a) DDCS(q, k), (b) DDCS(p,,k), and (c) DDCS(q,p,).

change between the electron and the projectile (a “strong
potential Born™ picture). The comparison suggests that, for
highly charged ion impact, binary-collision mechanisms be-
tween the projectile and the electron (or recoil ion), are over-
estimated by theory. Internuclear interaction is formally
taken into account through an eikonal approximation, but it
vanishes for these kind of DDCSs. However, little momen-
tum transfer to the electron-recoil-ion subsystem, as ob-
served in the experiments, would require a more symmetric
interaction of the projectile with both electron and target
nucleus, which is not guaranteed in a standard impact param-
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FIG. 6. Experimental Dalitz plots for (a) 100 MeV/amu C®
+He and (b) for 3.6 MeV/amu Au’>*+He.

eter treatment. These results are consistent with the idea that
usual distorted-wave theories such as CDW-EIS fail to accu-
rately describe soft electron emission produced by highly
charged ions. The picture that emerges from the experiments
is that of a strong-field ionization where there is little net
momentum transferred to the whole target atom.

We begin the study of three-particle interactions reproduc-
ing in Fig. 6 the experimental Dalitz plot for (a)
100 MeV/amu C® +He and (b) 3.6 MeV/amu Au’>*+He.
To do a direct comparison with the theories we use the ex-
perimental “uncorrelated” graphs (see Ref. [1] for a detailed
discussion about correlated and uncorrelated collision
events).

In Fig. 7 we show our theoretical results for
100 MeV/amu C® +He in a Dalitz plot, using (a) first Born
approximation and (b) CDW-EIS, without taking into ac-
count the internuclear interaction. As discussed in the above
paragraphs, the use of a FBA theory is, in principle, justified
since for these projectiles the charge-to-velocity ratio is
roughly 0.1 (although for certain kinematic conditions sig-
nificant discrepancies between the FBA and experimental
data have been found [5]). We also want to show to what
extent a FBA-type theory is able to qualitatively reproduce
the features that appear in the experimental data. The large
peak at the contact point of the internal circle with the pro-
jectile triangle side, which corresponds to q =0, shows again
that the strongest two-particle interaction occurs within the

PHYSICAL REVIEW A 74, 042702 (2006)

- 0
projectile

projectile

FIG. 7. Theoretical Dalitz plots for 100 MeV/amu C®*+He us-
ing (a) FBA and (b) CDW-EIS theory without taking into account
the N-N interaction (see text).

subsystem formed by the electron and the recoil ion. Further,
a peak at 7,=0 is to be expected since it corresponds to
low-energy electron emission. The CDW-EIS results indi-
cate, at 7,=0, a stronger peak than experiments show but,
overall, at least for 100 MeV/amu C"+He, both FBA and
CDW-EIS theory are able to reproduce qualitatively the main
characteristics that the experimental results exhibit.

As Schulz et al. [1] have pointed out, an important feature
in the experimental Dalitz plots is a ring close to the rim of
the internal circle for the case of C projectiles. For ionization
events falling on this rim, two of the three momentum vec-
tors must be pointing opposite to each other while the third
momentum vector is either 0 (at the contact points with the
triangle sides) or parallel to the momentum vector of the
slower of the two former particles. On the other hand, con-
tributions to the inner part of the circle, where all three mo-
menta are similar, were small in the experiment, at least for
the uncorrelated data. This shows that three-particle interac-
tions are only significant if they lead to a fragmentation pat-
tern where all three momentum vectors fall on a common
line. It should be noted that in the case of the projectiles it is
the transferred momentum that is used in the calculation of
,. This behavior is qualitatively reproduced by our calcula-
tions, although the contributions from the inner part of the
circle are somewhat larger than in the data. The accumula-
tion of events close to the rim can be understood if the ion-
ization is dominated by electric-dipole transitions. The elec-
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FIG. 8. Theoretical Dalitz plots for 3.6 MeV/amu Au>**+He
using (a) CDW-EIS theory without take into account the N-N inter-
action and (b) CDW-EIS theory including the N-N interaction (see
text).

tron angular distribution is then aligned along an axis going
through the momentum-transfer vector (i.e., k is parallel or
antiparallel to ¢g). Because of momentum conservation, the
recoil-ion angular distribution must then be aligned along the
same axis. This behavior is indeed observed in FDCSs (e.g.,
Ref. [5]).

As low-energy electron emission is dominant, the part of
the rim to be populated is that between the 7,=0 and m,
=0 peaks. For a classical head-on binary collision between
the electron and the projectile that ends with an electron
ejected in the forward direction with k=2vp, we have k=gq,
and the binary peak would correspond to a p,=0 peak, which
is almost absent here, since we are not looking at high-
velocity electrons.

Figure 8 shows theoretical Dalitz plots for 3.6 MeV/amu
Au>*+He, using a prior CDW-EIS theory without taking
into account the N-N interaction (a) and including the N-N
interaction in the semiclassical picture as described in Sec. II
[panel (b)]. These last results represented a challenge for our
numerical calculations, since the theory with N-N were made
using 10% sample points and each plot takes about a week
using parallel programming techniques in a cluster formed
by several hundred computers. The results show that the
theory with the inclusion of N-N interaction qualitatively re-
produces the experimental data. More specifically, part of the
events near ’7Tq=O, which were removed in the CDW-EIS
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calculation without the N-N interaction, is restored by the
calculation including that interaction. Discrepancies remain;
nevertheless, the peak in 7,=0 is observed for the two col-
lision systems studied. However, experiments for
3.6 MeV/amu Au***+He and 3.6 MeV/amu Au’**+He
show a much weaker peak, indicating that the primary
mechanism for ionization involves large-momentum ex-
change between the ejected electron and the residual target,
but little momentum exchange with the projectile. We think a
better treatment of internuclear interaction, beyond a semi-
classical approximation, might be necessary to account for
that effect.

Theoretical calculations populate the interior of the circle,
which is not observed in the experiments, meaning that large
momentum exchange among the three particles appears to be
overestimated by theory. This behavior suggests that the de-
scription of a three-body wave function in terms of three
independent two-body subsystems might suffice for the de-
scription of highly charged ion-impact ionization, as Schulz
et al. [1] have already suggested.

IV. CONCLUSIONS

We have presented calculations for ionization DDCSs for
highly charged ion impact. We have plotted these DDCSs in
terms of ejected-electron momentum, recoil-ion momentum,
and projectile-transferred momentum, thus the role of two-
particle interactions is emphasized. In particular, it is shown
that for high-projectile charge, an ionization mechanism in
which momentum is exchanged mainly between the ejected
electron and the recoil ion is underestimated by the standard
CDW-EIS theory, probably due to a poor description of the
internuclear interaction.

To assess the role of three-particle interactions we calcu-
lated theoretical Dalitz plots for 100 MeV/amu C%*+He and
3.6 MeV/amu Au’**+He, following the experimental data
available. We observe that CDW-EIS is able to reproduce the
global features of experimental data plotted in the same way.
The enhanced importance of the binary projectile-electron
and projectile-recoil-ion interactions provides further justifi-
cation for representing the three-body final state as three in-
dependent two-body subsystems, as usually done in
distorted-wave theories. In particular, we see that two-
particle interactions seem to dominate the ionization process,
suggesting that such a representation of the three-body final
state as three independent two-body subsystems may be ad-
equate even for highly charged projectiles. Even with its sim-
plicity, this type of formulation allows for events in which
there is significant momentum exchange among the three
particles.
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APPENDIX

The aim of this section is to show the variable transfor-
mations between (q,,¢,) and (7,,7,) and to emphasize
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their nonlinear nature. We begin rewriting Egs. (18) and (19),

k2
S — 24
T+ -k-q) (24)
2
: (25)

TR+ —k-q)

and from these two equations directly we can accomplish g |
as a function of (7Te,7Tq), ie.,

T,
q. = k-4 (26)
ar,

e

Note that g, is a function of k, since ¢,=(k*/2+|¢;|)/v.
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To obtain ¢, as a function of (,,,) we begin rearrang-
ing Eq. (24) as
k-q= k—2< + l) (27)
q - 7Te 7T€ 7Tq 2
and defining k, =k sin 6 and k,=k cos 6, Eq. (27) yields
k* 1
QLkL COS(¢k - ¢q) = \7.t 7 qZkZ' (28)
™, 2
Finally, we obtain
2

k 1
cos(¢y.— ¢,) = fukf{;(m +T, = 5) - qzkz} . (29)

e

From this last equation we can obtain ¢, as a function of the
other variables.
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