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Missile longitudinal autopilot design using a new
suboptimal nonlinear control method

M. Xin and S.N. Balakrishnan

Abstract: A missile longitudinal autopilot is designed using a new nonlinear control synthesis
technique called the u–D approximation. The particular u–D methodology used is referred to as
the u–D H2 design. The technique can achieve suboptimal closed-form solutions to a class of
nonlinear optimal control problems in the sense that it solves the Hamilton–Jacobi–Bellman
equation approximately by adding perturbations to the cost function. An interesting feature of this
method is that the expansion terms in the expression for suboptimal control are nothing but
solutions to the state-dependent Riccati equations associated with this class of problems. The u–D
H2 design has the same structure as that of the linear H2 formulation except that the two Riccati
equations are state dependent. Numerical simulations are presented that demonstrate the potential
of this technique for use in an autopilot design. These results are compared with the recently
popular SDRE H2 method.

1 Introduction

Modern aircraft or missiles often operate in flight regimes
where nonlinearities significantly affect dynamic response.
For example, a high-performance missile must be quickly
responsive to and follow accurately any guidance com-
mands, so that it can intercept fast moving and agile targets.
Many nonlinear control methods have been proposed for the
missile autopilot design. One popular method of formulation
has been the optimal control of nonlinear dynamics with
respect to a mathematical index of performance [1]. A major
difficulty in this line of approach is finding solutions to the
resulting Hamilton–Jacobi–Bellman (HJB) equation.

Suboptimal solutions are found by power series expan-
sion methods. Wernli and Cook [2] developed an approach
by bringing the original system into an apparent linear form.
Their suboptimal control involves finding the Taylor
expansion of the solution to a state-dependent Riccati
equation. But the convergence of this series is not
guaranteed and the resulting control law leads to large
control efforts when the initial states are large. Garrard [3, 4]
formulated another approach that expanded both the optimal
cost and the nonlinear dynamics as power series of the states
and employed it in the high-angle-of-attack maneuverable
aircraft. However, this method has to assume the structure
of the optimal cost as a scalar polynomial with undeter-
mined coefficients which contains all possible combinations
of products of the elements of the state vector. As the system
order increases, the complexity of determining these
coefficients increases dramatically. The common problem
with these methods is that they do not offer a way to ensure
that the system is asymptotically stable in the large.

Beard et al. [5] adopted the Galerkin approximation to
solve the HJB equation. It was used to synthesise a
nonlinear optimal control for a missile autopilot system
[6]. The control laws are given as a series of basis functions.
To find an admissible control to satisfy all the ten conditions
proposed in that paper is not an easy task.

Another recently emerging technique that systematically
solves the nonlinear regulator problem is the state-
dependent Riccati equation (SDRE) method [7]. By turning
the equations of motion into a linear-like structure, this
approach permits the designer to employ linear optimal
control methods such as the LQR methodology and the H1
design technique for the synthesis of nonlinear control
systems. The SDRE method however, needs online
computations of the algebraic Riccati equation at each
sample time.

A new suboptimal nonlinear controller synthesis (�–D
approximation) technique based on approximate solution to
the Hamilton–Jacobi–Bellman equation is proposed in this
paper. By introducing an artificial variable �; the costate l
can be expanded as a power series in terms of �: This
technique can overcome the problem of large-control-for-
large-initial-states encountered by using the control law in
[2]. By adjusting some perturbation parameters in the cost
function, we are also able to modulate the transient
performance of the system.

We extend the standard linear H2 optimal control method
to nonlinear problems using the �–D technique. The linear
H2 control problem has been studied and implemented since
1960s [8]. It is used to find a proper controller that stabilises
the system internally and minimise the H2 norm of the
transfer function from the exogenous input to the perform-
ance output. With output feedback, the H2 design ends up
with having to solve two Riccati equations. Some studies
examined the use of H2 controller design in nonlinear
systems. In [9], the SDRE H2 method was used to design a
full-envelope pitch autopilot. However, solving two Riccati
equations online is very timeconsuming. In this paper, �–D
H2 design is proposed for the same problem as that in [9]
that gives an approximate closed-form solution to the two
state-dependent Riccati equations.
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2 Suboptimal control of a class of nonlinear
systems

We consider systems described by

_xx ¼ f ðxÞ þ BðxÞu ð1Þ

The problem is to find the control u(t) which minimises the
cost J given by

J ¼ 1

2

Z 1

0
ðxT Qx þ uT RuÞdt ð2Þ

where x 2 O � Rn; f :O ! Rn; B 2 Rn	m; u :O ! Rm; Q 2
Rn	n; R 2 Rm	m; O is a compact set in Rn; Q is positive
semidefinite matrix and R is positive definite matrix; fð0Þ ¼
0: The solution to (2) is obtained by solving the Hamilton–
Jacobi–Bellman partial differential equation [1]

@VT

@x
f ðxÞ 
 1

2

@VT

@x
BðxÞR
1BTðxÞ @V

@x
þ 1

2
xT Qx ¼ 0 ð3Þ

with Vð0Þ ¼ 0: The optimal control is given by

u ¼ 
R
1BTðxÞ @V

@x
ð4Þ

and V(x) is the optimal cost, i.e.

VðxÞ ¼ minu

1

2

Z 1

0
ðxT Qx þ uT RuÞdt ð5Þ

The HJB equation is extremely difficult to solve in general;
in this study we find approximate solutions. Add pertur-
bations to the cost function as

J ¼ 1

2

Z 1

0
xT Q þ

X1
i¼1

Di�
i

 !
x þ uT Ru

" #
dt

ð6Þ

where � and Di are chosen such that Q þ
P1

i¼1 Di�
i is

positive semidefinite. For later use we rewrite the state

equation as

_xx ¼ f ðxÞ þ BðxÞu

¼ A0 þ �
AðxÞ
�

� 	
 �
x þ g0 þ �

gðxÞ
�

� 	
 �
u

ð7Þ

where A0 is a constant matrix such that ðA0; g0Þ is a
stabilisable pair and ½ðA0 þ AðxÞÞ; ðg0 þ gðxÞÞ� is pointwise
controllable. Define

l ¼ @V

@x
ð8Þ

By using (8) in (3) we have

lT f ðxÞ 
 1

2
lT BðxÞR
1BTðxÞlþ 1

2
xT Q þ

X1
i¼1

Di�
i

 !
x ¼ 0

ð9Þ

Assume a power series expansion of l as

l ¼
X1
i¼0

Ti�
ix ð10Þ

where Ti are to be determined and assumed to be symmetric.
By substituting (10) into (3) and equating the coefficients of
powers of � to zero we get

T0A0 þ AT
0 T0 
 T0g0R
1gT

0 T0 þ Q ¼ 0 ð11Þ

T1ðA0 
 g0R
1gT
0 T0Þ þ ðAT

0 
 T0g0R
1gT
0 ÞT1

¼
 T0AðxÞ
�


 ATðxÞT0

�
þ T0g0R
1 gT

�
T0

þ T0

g

�
R
1gT

0 T0 
 D1 ð12Þ

T2ðA0 
 g0R
1gT
0 T0Þ þ ðAT

0 
T0g0R
1gT
0 ÞT2

¼ 
T1AðxÞ
�


ATðxÞT1

�
þT0g0R
1 gT

�
T1

þT0

g

�
R
1gT

0 T1 þT0

g

�
R
1 gT

�
T0 þT1g0R
1gT

0 T1

þT1g0R
1 gT

�
T0 þT1

g

�
R
1gT

0 T0 
D2

ð13Þ

TnðA0
g0R
1gT
0 T0ÞþðAT

0 
T0g0R
1gT
0 ÞTn

¼ 
Tn
1AðxÞ
�


ATðxÞTn
1

�

þ
Xn
1

j¼0

Tj g0R
1 gT

�
þg

�
R
1gT

0

� 	
Tn
1
j

þ
Xn
2

j¼0

TjgR
1gT Tn
2
jþ
Xn
1

j¼1

Tjg0R
1gT
0 Tn
j
Dn

ð14Þ

Since the right-hand side of (11)–(14) involve x and �;
Ti ¼ Tiðx; �Þ: The expression for control can be obtained in
a power series as

u ¼ 
R
1BTðxÞl ¼ 
R
1BTðxÞ
X1
i¼0

Tiðx; �Þ�ix ð15Þ

Note that (11) is an algebraic Riccati equation. The rest of
equations are linear Lyapunov equations. In the rest of this
paper we call this method the �–D approximation
technique. The algorithm in [2] results in the
‘�-approximation’ (without the Di terms) although through
a different approach. A problem with the �-approximation is
that large initial conditions may give rise to large control or
even instability. We avoid it by constructing Di as

D1 ¼ k1e
l1t 
T0AðxÞ
�


 ATðxÞT0

�


 �
ð16Þ

D2 ¼ k2e
l2t 
T1AðxÞ
�


 ATðxÞT1

�


 �
ð17Þ

..

.

Dn ¼ kne
lnt 
Tn
1AðxÞ
�


 ATðxÞTn
1

�


 �
ð18Þ

where ki and li > 0; i ¼ 1;    n are constants. The
motivation for this kind of Di construction is to offset
the large control results from the state dependent term A(x)
in (11)–(14). For example, when A(x) includes a cubic
term, a higher initial state will result in higher initial Ti

and consequently higher initial control. So if we choose Di

such that
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Ti
1AðxÞ
�


 ATðxÞTi
1

�

 Di

¼ eiðtÞ 
Ti
1AðxÞ
�


 ATðxÞTi
1

�


 �
ð19Þ

where eiðtÞ ¼ 1 
 kie

lit and eiðtÞ is a small number, ei can

be used to suppress this large value to propagate in
(12)–(14). eiðtÞ is chosen to satisfy some conditions
required in the proof of convergence and stability of the
algorithm [10] while e
lit with li > 0 is used to let the
perturbation terms in the cost function and HJB equation
diminish with time. ðki; liÞ are design parameters which can
be tuned to adjust system transient performance.

Remark 2.1: Solutions to (11)–(14) are carried out offline
from top to bottom. Equation (11) is a standard algebraic
Riccati equation. The rest of (12)–(14) are linear equations
in terms of T2;    ;Tn with constant coefficients A0 

g0R
1gT

0 T0 and AT
0 
 T0g0R
1gT

0 : So we get the closed-
form solutions for T2;    ;Tn with just one matrix inverse
operation after some algebra.

Remark 2.2: � is just an intermediate variable. It turns out to
be cancelled by the choice of Di matrices (see (16)–(18)).
In the simulation, it is set to one. Theoretical work on
convergence of series expansion of

P1
i¼0 Tiðx; �Þ�i; semi-

globally asymptotic stability of the �–D method etc. can be
found in [10].

3 Missile longitudinal autopilot design

3.1 Formulation of �– D H2 problem

Consider the general nonlinear system

_xx ¼ f ðxÞ þ BwðxÞw þ BuðxÞu ð20Þ

z ¼ czðxÞ þ DzuðxÞu ð21Þ

y ¼ cyðxÞ þ DywðxÞw ð22Þ

where w is the exogenous input including tracking
command and noises injected into the system; u is the
control, z is the performance output and y is the
measurement output.

The nonlinear dynamic is rewritten to have a linear-like
structure as

_xx ¼ AðxÞx þ BwðxÞw þ BuðxÞu ð23Þ

z ¼ CzðxÞx þ DzuðxÞu ð24Þ

y ¼ CyðxÞx þ DywðxÞw ð25Þ

Then the following formulation is similar to the standard
linear H2 problem except that the coefficent matrices of x, u
and w are state-dependent. This has the same formulation as
SDRE H2 at this point [9].

The linear H2 problem leads to solving two Riccati
equations given in terms of their hamiltonians

A 
 BuR
1
2 RT

12 
BuR
1
2 BT

u


R1 þ R12R
1
2 RT

12 
ðA 
 BuR
1
2 RT

12ÞT


 �
ð26Þ

ðA 
 V12V
1
2 CyÞT 
CT

y V
1
2 Cy


V1 þ V12V
1
2 VT

12 
ðA 
 V12V
1
2 CyÞ


 �
ð27Þ

where

V1 ¼ BwBT
w V12 ¼ BwDT

yw V2 ¼ Dyw DT
yw

R1 ¼ CT
z Cz R12 ¼ CT

z Dzu R2 ¼ DT
zu Dzu ð28Þ

Assume that the solutions to (26) and (27) are P1 and P2:
If we rewrite (20)–(22) as linear-like systems (23)–(25),
the nonlinear H2 problem needs to solve the state-dependent
Riccati equation (26) and (27) where the argument x has
been omitted for brevity. Construct the nonlinear feedback
controller via

dx̂x

dt
¼ Ac x̂x þ Bc y ð29Þ

u ¼ Cc x̂x ð30Þ
where Ac; Bc; and Cc are

Ac ¼ A þ BuCc 
 BcCy ð31Þ

Bc ¼ ½P2CT
y þ V12�V
1

2 ð32Þ

Cc ¼ 
R
1
2 ½BT

u P1 þ RT
12� ð33Þ

It is interesting to note that solving the state-dependent
Riccati equation (26) is equivalent to solving the following
nonlinear optimal control problem:

Find u(t) to minimise J where

J ¼
Z 1

0
xT ½ðR1 
 R12R
1

2 RT
12Þx þ uT R
1

2 u�dt ð34Þ

subject to

_xx ¼ ½AðxÞ 
 BuðxÞR
1
2 RT

12�x þ BuðxÞu ¼ f ðxÞ þ BuðxÞu
ð35Þ

This class of nonlinear optimal control problem can be
solved by using the �–D technique. The same is true for the
second state-dependent Riccati equation (27).

3.2 Missile longitudinal dynamics

The missile model used in this paper is taken from [9]; it
assumes constant mass, post burnout, no roll rate, zero roll
angle, no sideslip, and no yaw rate. The rigid body equations
of motion reduce to two force equations, one moment
equation, and one kinematic equation

_UU þ qW ¼
P

FBX

m
ð36Þ

_WW 
 qU ¼
P

FBZ

m
ð37Þ

_qq ¼
P

MY

IY

ð38Þ

_�� ¼ q ð39Þ
where U and W are components of velocity vector V

*

T along
the body-fixed x- and z-axes; � is the pitch angle; q is the
pitch rate about the body y-axis; m is the missile mass. The
forces along the body–fixed co-ordinates and moments
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about the centre of gravity are shown in Fig. 1. The force
and moments about the centre of gravity areX

FBX
¼ L sin a
 D cos a
 mg sin � ð40Þ

X
FBZ

¼ 
L cos a
 D sin aþ mg cos � ð41Þ

X
MY ¼ �MM ð42Þ

where a is angle of attack; L denotes lift; D denotes drag and
�MM is the pitching moment.

L ¼ 1

2
rV2SCL; D ¼ 1

2
rV2SCD; �MM ¼ 1

2
rV2SdCm ð43Þ

The normal force coefficient CZ is used to calculate the lift
and drag coefficients

CL ¼ 
CZ cos a; CD ¼ CD0

 CZ sin a ð44Þ

where CD0
is the drag coefficient at the zero angle of attack.

The nondimensional aerodynamic coefficients at 6096m
altitude are:

CZ ¼ ana
3 þ bnajaj þ cn 2 
 M

3

� 	
aþ dnd ð45Þ

Cm ¼ ama
3 þ bmajaj þ cm 
7 þ 8M

3

� 	
aþ dmdþ emq

ð46Þ

In this paper we adopt Mach number M, angle of attack a;
flight path angle g; and pitch rate q as the states since they
appear in the aerodynamic coefficients. Note that

tan a ¼ W

U
; V2 ¼ U2 þ W2; M ¼ V

a
; g ¼ �
 a ð47Þ

and

_MM ¼
_VV

a
; _VV ¼

_UUU þ _WWW

V
ð48Þ

The numerical values for the coefficients in (45) and (46) are
given in Table 1 and the physical parameters associated with
this missile are given in Table 2.

The state equations can now be written as

_MM ¼ 
0:7P0S

ma
½M2ðCD0


 CZ sin aÞ� 

g

a
sin g ð49Þ

_aa ¼ 0:7P0S

ma
MCZ cos aþ

g

aM
cos gþ q ð50Þ

_gg ¼ 
 0:7P0S

ma
MCZ cos a


g

aM
cos g ð51Þ

_qq ¼ 0:7P0Sd

IY

M2Cm ð52Þ

By substituting the aerodynamic data, (49)–(52) become

_MM ¼ 0:4008M2a3 sin a
 0:6419M2jaja sin a


 0:2010M2 2 
 M

3

� 	
a sin a
 0:0062M2


 0:0403M2 sin ad
 0:0311 sin g ð53Þ

_aa ¼ 0:4008Ma3 cos a
 0:6419Mjaja cos a


 0:2010M 2 
 M

3

� 	
a cos a


 0:0403M cos ad
 0:0311
cos g

M
þ q ð54Þ

_gg ¼ 
 0:4008Ma3 cos aþ 0:6419Mjaja cos a

þ 0:2010M 2 
 M

3

� 	
a cos a

þ 0:0403M cos adþ 0:0311
cos g

M ð55Þ

_qq ¼ 49:82M2a3 
 78:86M2jaja

þ 3:60M2 
7 þ 8M

3

� 	
a


 14:54M2d
 2:12M2q ð56Þ

Actuator dynamics are incorporated with the following
dynamics:

_dd
€dd


 �
¼ 0 1


o2
a 
2zoa


 �
d
_dd


 �
þ 0

o2
a


 �
dc ð57Þ

where z ¼ 0:7 and oa ¼ 50: The normal acceleration (in gs)
is described by

Table 2: Physical Parameters

Symbol Name Value

P0 Static Pressure 973:3 lb=ft2

IY Moment of Inertia 182:5 slug � ft2

S Reference Area 0:44 ft2

d Reference Distance 0:75 ft

m Mass 13:98 slug

a Speed of Sound 1036:4 ft= sec

g Gravity 32:2 ft= sec2

Table 1: Aerodynamic Coefficients

Force Moment

an ¼ 19:373 am ¼ 40:440

bn ¼ �31:023 bm ¼ �64:015

cn ¼ �9:717 cm ¼ 2:922

dn ¼ �1:948 dm ¼ �11:803

CD0
¼ 0:300 em ¼ �1:719

VTγ
α θ

MY

CL L

D

FBZ CZ

FBX

W 

U 

 

 

horizontal reference

mg 

body z-axis 

body x-axis 

Fig. 1 Longitudinal forces and moment acting on missile
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nz ¼
P

FBZ

mg
þ cos � ¼ 0:7P0S

mg
M2CZ þ cosðgþ aÞ ð58Þ

In terms of the flight conditions at 6096m,

nz ¼ 12:901M2a3 
 20:659M2jaja


 6:471M2 2 
 M

3

� 	
a


 1:297M2dþ cosðgþ aÞ ð59Þ

3.3 �– D controller design

The controller objective is to drive the system to track the
commanded normal acceleration (in gs). The tracking block
diagram is shown in Fig. 2. The Kalman gain K1 and K2 are
the solutions of the dynamic feedback controller (29)–(33).
The control weight is rc: The plant and output disturbance
weights are rw and rD: The performance weighting function
for tracking error yr 
 ym is chosen to be [9]

WtðsÞ ¼
1

s þ 0:001
ð60Þ

or in state-space form

Wt ¼
At Bt

Ct 0

2
64

3
75 ¼ 
0:001 1

1 0


 �
ð61Þ

Performance output is

z ¼ zt zc½ �T ð62Þ
The augmented state-space x is given as

x ¼ ½M; a; g; q; d; _dd; xt�T ð63Þ
The control variable is the fin deflection

u ¼ dc ð64Þ
The measurement vector is

ym ¼ nz M q½ �T ð65Þ
The acceleration command

yr ¼ nzc
ð66Þ

where nzc
is the normal acceleration command. So the

output vector in the controller design is

y ¼ yr ym½ �T¼ nzc
ym

� �T¼ nzc
nz M q

� �T ð67Þ

The exogenous input is

w ¼ nzc
Dplant Dnz

DM Dq

� �T ð68Þ

where Dplant is the process noise and ½DnZ
DM Dq�T the

measurement noise. In the simulation they are assumed
gaussian with unit variance.

The plant noise weights are chosen to be:

rw ¼ 0:2 0:01 0:01 0:2 0:01 0:01½ �T ð69Þ
The measurement noise weights on nz; M and q are,
respectively, the diagonal elements of

rD ¼
0:01 0 0

0 0:001 0

0 0 0:01

2
4

3
5

ð70Þ
To avoid overflow in the numerical simulations, sin g=g is
set to 1 when g is less than 10
4 radian.

In the �–D formulation we choose the partition of (7) as

_xx ¼ Aðx0Þ þ �
AðxÞ 
 Aðx0Þ

�

� 	
 �
x

þ Bðx0Þ þ �
BðxÞ 
 Bðx0Þ

�

� 	
 �
u

ð71Þ
The advantage of choosing this partition is that in the �–D
formulation T0 is solved from A0 and g0 in (7) and (11).
If A0 ¼ Aðx0Þ and g0 ¼ Bðx0Þ are selected, one would have
a good starting point for T0 because Aðx0Þ and Bðx0Þ keep
much more system information than an arbitrary choice of
A0 and g0:

4 Numerical results and analysis

The simulation scenario is to initially command a zero-g
normal acceleration, a square wave of magnitude 10g at one
second, returning to zero at three seconds. The initial state
space is x0 ¼ ½2:5 0 0 0 0 0 0�T :The simulation is
run at 100 Hz. In solving the two state-dependent Riccati
equations (26) and (27), we use T0; T1 and T2 terms in the
l expansion (10). Three terms have been found to be
sufficient. For comparison we also use the SDRE H2 method.

The results are presented in Figs. 3–9. Figure 3 shows
the commanded and achieved normal acceleration

yr = nzc K1 + 
Bu(x)

 

rc

zc

∫ C(x)  

A(x) 

K2

+ 

Wt

–

ym+ + 

+ 

∆q

∆M

∆n
z

+ + + 

∆plant

zt

rw r∆

Fig. 2 H2 tracking block diagram
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and the control usage when the weight rc of control is 1.
Both the SDRE method and the �–D method track very well
and have reasonable transient responses. Figure 4 shows that
the state histories are similar for both methods. The normal

acceleration tracking for SDRE has no overshoot and a little
faster response. However, it needs considerable control
effort at this jump as seen from Fig. 4. Figure 5 represents
the effects of increase in the control weight rc to 2. While
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the control usage is reduced, the normal acceleration
tracking shows more lag and overshoot.

As discussed in Section 2, the construction of pertur-
bation matrices Di in (16)–(19) is used to overcome the
initial large control problem which is induced by the
propagation of large initial states through �–D algorithm
(11)–(14). The �–D design parameters are chosen as

D1 ¼ e
40t 
T0 AðxÞ
�


 ATðxÞT0

�


 �
;

D2 ¼ e
40t 
T1AðxÞ
�


 ATðxÞT1

�


 �
ð72Þ

These parameters are selected based on many initial
conditions of interest. For the initial state x0 ¼ ½2:5 0 0 0
0 0 0�T ; the tracking is good and the control usage is
reasonable even without D1 and D2: To demonstrate the
function of D1 and D2; the results from a different initial
state x0 ¼ ½3:5 50 50 100=s 0 0 0�T is given in Figs. 6 and 7.
As can be seen from Fig. 6, the initial maximum control is
about 580 without D1 and D2 but is reduced to 290 with D1

and D2 in Fig. 7. The selection of ðki; liÞ in Di terms is
problem dependent. A large exponential parameter is
chosen in this particular problem because we found that
large control only happens at the very early stage. It may not
be the case for other problems in which ðki; liÞ could be
small values. These are design parameters that need tuning.
Numerical experiments with these parameters show that the
system performance is not sensitive to the variations around
the selected values. To show this, Fig. 8 presents the results
with two other sets of parameters k1 ¼ k2 ¼ 0:9; l1 ¼ l2 ¼
40 and k1 ¼ k2 ¼ 0:9; l1 ¼ l2 ¼ 1: As can be seen, the
tracking performance does not change significantly and the
maximum control effort for both cases is about 370:
Compared with large l1 ¼ l2 ¼ 40; the transient response
in the first second with l1 ¼ l2 ¼ 1 is only a little worse.

We have further investigated performance robustness of
both controllers to parameter variations. All aerodynamic
coefficients are then changed by �10% in the missile model
while keeping elevator coefficients unaltered. As can be
seen from Fig. 9, the performance and control usage for both
methods do not change significantly with these parameter
variations.

As far implementation considerations, though, the �–D
algorithm needs just one matrix inverse operation offline
when solving the linear Lyapunov equations (12)–(14) and
solution to the first algebraic Riccati equation (11) only one

time, offline. That is to say, when solving (12)–(14), we
only need to rearrange the left-hand side of the equations
such that they form a linear matrix equation ÂA0Ti ¼
Qiðx; �; tÞ and then Ti ¼ ÂA
1

0 Qiðx; �; tÞ; where ÂA0 is a
constant matrix and Qiðx; �; tÞ is the right-hand side of
(12)–(14). When implemented online, this method involves
only two 7 	 7 matrix multiplications and three 7 	 7
matrix additions if we take three terms. However, in
comparison, SDRE needs computation of the 7 	 7
algebraic Riccati equation at each sample time.

5 Conclusions

A new suboptimal nonlinear control synthesis technique has
been applied to the missile longitudinal autopilot design.
The new nonlinear �–D H2 design extends the applicability
of the linear H2 design. Compared with the SDRE H2

design, this approach does not need the intensive online
solutions of the Riccati equation.
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