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Output Feedback Force Control for a Parallel Turning Operation 

Raghusimha Sudhakara 
Performance Consulting Services 

Montrose, Colorado 81401 
rsudhakaraBpcs-mail.com 

ABSTRACT - Parallel machine tools (Le., machine tools capable of 
cutting a part with multiple tools simultaneously but 
independently) are being utilized more and more to increase 
operation productivity, decrease setups, and reduce floor space. 
Process control is the utilization of real-time process sensor 
information to automatically adjust process parameters (e.g., feed, 
spindle speed) to increase operation productivity and quality. To 
date, however these two technologies have not been combined. 
This paper describes the design of an output feedback controller 
for a parallel turning operation that accounts for the inherent 
nonlinearities in the force process. An analysis of the process 
equilibriums explains the system stability behavior for different 
design specifications and the reverse trajectory method is used to 
numerically determine the exact stability boundary. Effects of 
saturation on stability are also analyzed and from this sufficient 
conditions for global stability are obtained. 

INTRODUCTION - In manufacturing there is a constant need for 
productivity and quality improvements. To realize these 
improvements, there have been two developments in the 
machining community: process control and parallel (i.e., 
simultaneous) machine tools. An enormous amount of research in 
process control has focused on the area of machining force 
regulation. Various force control approaches have been developed 
for different processes such as turning, milling, etc., resulting in 
significant productivity gains. Most force control strategies utilize 
adaptive control techniques (e.g., [I]). Others include direct 
model-based methods (e.g., [2]) and robust (e.g., [3]) techniques. 
Parallel machine tools (and parallel machining) have emerged as a 
new alternative to conventional machine tools. Levin and Dutta 
[4] and YipHoi  and Dutta [5] have discussed these from a 
process planning perspective. Force controllers for these machine 
tools have not been investigated or developed thus far. In this 
paper, a stepped part turned by two single point cutting tools is 
considered. Figure 1 provides a schematic illustrating the process. 

In this paper, an output feedback based force controller is 
developed for a parallel turning operation utilizing two tools. A 
static force feed model is used to characterize the cutting forces. A 
first order servo model is used for the feed dynamics and a linear 
output feedback law is implemented. Sufficient conditions are 
obtained for control gains to ensure global asymptotic stability of 
the closed-loop system. Simulations and phase plots are used to 
validate the analysis. Finally, the controkler is investigated for 
robustness to parameter uncertainties. 

FORCE PROCESS MODEL - In this section a force process model is 
presented for a parallel lathe with two tools. Machining force 
processes are nonlinear and depend on a number of parameters. 
The model used in this paper couples a static force process with a 
first-order servomechanism system. The cutting force model for 
each tool is 

The transfer function between the actual and commanded feed is 
F, = K , d p  V,’’f,a‘ = i?,,f,”’ i = 42 (1) 
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i = 1,2 
1 

ft - 

f,, r,s+1 
-- 

Combining equations ( 1 )  and (2) 

The part and tool structures are assumed to be rigid and, thus, 
there is no direct coupling between the two force processes. 
Typically, maximum metal removal rates are achieved when 
operating at the machine tool spindle’s maximum continuous 
power; therefore, the machining force controller designed below 
will regulate the spindle power at this maximum value. In this 
paper, the spindle power is divided equally between the two tools. 
Corresponding to the maximum power, reference forces are 
computed for a given spindle speed. The maximum spindle power 
is 

r,F,+1;1 =K,C i=1,2 (3) 

2 

,=I 
pmm = 1 YE, (4) 

where 

i = 1,2 F - 
2 y  

The nominal feeds are 

Equation (3) is linearized about the reference forces and feeds. 
The linearized model, in terms of perturbed forces, feeds, and 
power is given by 

AP = [v, .c“] = c[ 21 
M 2  

where = K p ,  fnja’-‘), hF, =I;1  - F ,  , and Af, = f,, - f., i =  

1,2 and AP = P - P,,. 

Since the origin is an equilibrium of the linearized system, the 
control problem is reduced to a regulation problem. Expressing the 
original nonlinear equations in terms of the perturbed forces and 
feeds 

The origin is clearly an equilibrium of the original nonlinear 
system as well. From equation (7a) it is evident that the 
eigenvalues of the Jacobian are negative and real and, thus, the 
system is Hunvitz indicating that the equilibrium of the nonlinear 
system is a stable node. 

Saturation constraints are imposed on the commanded feeds. The 
lower saturation limits are zero since it is not desirable for the tool 
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to disengage from the part. Upper saturation limits are also 
imposed due to process or machine tool constraints. 

CONTROLLER DESIGN. -- This section describes the design 
procedure for the output feedback controller. The design is based 
on the linearized system model given in equations (7a) and (7b). 
The linear feedback control law is 

AfC = -HAP = -HC@ 
Where A ~ T  = [AA, ~ j ; , ~ ]  and GT = [w h~,]. This results in 

the closed loop system 

with the eigenvalues of the matrix A,/ being at the locations 
required by the design specifications. A solution for H to place 
poles of the system almost arbitrarily exists if the system is 
completely controllable. The controllability matrix is 

(9) 
- 

~ = ( A  - BHC)AF = A ~ , A F  (10) 

r -  - -? 

which has full rank. Thus, the closed loop poles can arbitrarily be 
placed almost anywhere in the complex plane [6]. 

The following design algorithm is used to obtain the output 
feedback controller. 

Step 1: Choose the desired eigenspectrum based on the design 
specifications. If ml and rn2 are the design time constants, then the 
required eigenspectrum is = [-l/m, -1/m2]. 

Step 2: Design a full state feedback controller [7] such that 
AX = -K*. One such gain matrix for a full state feedback 
controller is given by 

1 

Step 3: Obtain the output feedback controller gain vector from the 
full  state feedback gain matrix [8]. Comparing the closed-loop 
matrix A,/ in equation ( I O )  with that in the full state feedback 
design, the following relationship is established 

The vector H is obtained by post multiplying Cg on both sides 

where C i s  the pseudo inverse of the matrix C. 

Theorem 1 [8]: A necessary and sufficient condition for all of the 
poles described by equation ( I O )  to be arbitrarily assigned by 
using constant output feedback is that one of the set of state 
feedback matrices K, which achieves the same pole placement, 
and one of the pseudo-inverses of C satisfy the consistence 
relationship KCgC = K, where Cg is given by (C@)C = C. 

The vector H is determined analytically in tenns of the system 
parameters and is 

K = H C  (13) 

H = KCg (14) 

This gain matrix satisfies the conditions of Theorem (1). Since the 
matrix H places the poles in the desired locations exactly, the 
closed loop system matrix is Hunvitz and consequently, the 
linearized closed-loop system is stable. 

FORCE PROCESS MODEL AND SIMULATION PARAMETERS - 
Simulation studies will subsequently be performed to analyze the 
controller performance. The cutting force data for a steel part and 
a coated carbide insert are used to obtain the parameters for the 
nonlinear force process model [9]. The least squares method is 
used and the correlation coefficient is 0.96, indicating a very good 
fit. The list of the various parameters used in the subsequent 
simulations is given in Table 1 .  The fourth order Runge-Kutta 
numerical integration method is used and a sample period of 0.004 
s is chosen. Saturation constraints as discussed earlier are 
incorporated into the simulations where the maximum commanded 
feeds are 1.5 mm. 

STABILITY ANALYSIS - In this section the stability of the closed- 
loop nonlinear system is analyzed. The closed-loop system 
dynamics are found by inserting the control law given by equation 
(9) into the open loop nonlinear system given by equation (8). 
Combining these equations results in 

In terms of the actual forces, the nonlinear ecluations are 

One equilibrium point of the perturbed system is the origin as 
discussed before. The eigenvalues of the Jacobian of the nonlinear 
system given by equation (16) are located in the negative half 
plane, their exact locations depending on the desired closed-loop 
time constants. 

Theorem 2 [IO]: The equilibrium point at the origin of equation 
(10) is stable if and only if all eigenvalues of the Jacobian satisfy 
Re(&) 5 0 and every eigenvalue with &(Ai) = 0 has an associated 
Jordan block of order one. The equilibrium point is asymptotically 
stable if and only if all the eigenvalues of the Jacobian satisfy 
Re(;li) < 0. 

Lemma 2.1 [IO]: If the origin of the linearized state equation is a 
stable node with distinct eigenvalues, a stable focus, or a saddle 
point, then, in a small neighborhood of the equilibrium point, the 
trajectories of the nonlinear state equation will behave like a stable 
node, a stable focus, or a saddle point, respectively. 

The perturbed system has a stable equilibrium point at the origin, 
which is the desired operating point of the machine tool. Also, 
trajectories starting out in a small neighborhood of the origin will 
asymptotically converge to the origin. To obtain a global overview 
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of the system behavior, phase portraits are constructed. Figures 2 
and 3 illustrate the system behavior for two different design 
specifications. While Figure 2 is globally stable, Figure 3 is 
clearly not and there exists a region of low initial forces where the 
system is unstable. It is desirable to be able to predict the region of 
attraction R, defined as the set of all initial conditions whose 
trajectories converge to the stable equilibrium (origin) 
asymptotically as time tends to infinity. 

In addition to the equilibrium discussed above, other equilibria 
may exist which cannot be computed analytically. However, the 
equilibrium points can be computed graphically by plotting 
equations (17a) and (17b) with the derivatives set to zero. The 
intersection points of the two curves are the system equilibriums. 
The equilibriums for the two cases corresponding to the phase 
plots in Figures 2 and 3 are plotted in Figures 4 and 5, 
respectively. The second case clearly has two equilibriums, one of 
which is the desired operating point. When the system is linearized 
about the other equilibrium point, the eigenvalues of the Jacobian 
of the closed-loop system are found to be unstable. From Theorem 
2, this is an unstable equilibrium point. 

Theorem 3 [lo]: If the origin is an asymptotically stable 
equilibrium point for an autonomous nonlinear system, then its 
region of attraction R, is an open connected, invariant set. 
Moreover, the boundary of R, is formed by its trajectories. 

Lemma 3.1 [ 1 I]: The boundary R, is formed by whole trajectories 
and thus, as a consequence, the following holds true for n = 2. If 
R, is bounded, its boundary is formed by either a limit cycle or a 
phase polygon (with unstable equilibrium points) or a closed curve 
of critical points. 

The unstable equilibrium point lies on the stability boundary as 
expected by lemma 3.1. Moreover, the boundary of R, can be 
obtained graphically by starting off at initial conditions close to 
the unstable equilibrium and developing a reverse trajectory [ l  11. 
This is illustrated in Figure 6 and the boundary obtained by this 
method exactly agrees with the phase portrait of Figure 3.  The 
reverse trajectory is obtained by backward integration of the 
nonlinear system given by equation (16), i.e., by changing the sign 
of the right hand side of the expression. Also, it is observed that as 
the desired closed-loop poles are chosen further away from the 
open-loop poles, this unstable equilibrium point moves further 
away. This results in an increase in the region of instability. 

The presence of a single stable equilibrium point is globally 
attractive since all trajectories converge to the only equilibrium in 
the state plane. The idea used in this paper to achieve global 
stability is to select the controller gains such that the unstable 
equilibrium lies outside the machine tool operation space (i.e., 
positive forces). The control law in equation (9) can be expressed 
as 

In terms of the actual feeds, the control law is 
Af, ,  = --k,(V,M1 + V2AF2) i = 1,2 (18) 

s,, = r . , - h , [ 5 ( F ; - ~ ) + V 2 ( F 2 - F , ) ]  i = l , 2  (19) 
With saturation limits the control law can be written as 

Figure 7 graphically provides the lower saturation limits for design 
time constants corresponding to those of Figure 5. The saturation 
boundaries are obtained by calculating forces where the control 
law yields a feed of zero, i.e. by solving the equation 

f, +h,(V,F, +V,F,)-hi(V,F,+V2F2)=0 i = l , 2  (21) 
In the case discussed above, saturation of the second feed 
interrupts the controller function at low initial forces. Further, it is 
seen that the slope of the saturation boundary is exactly the same 
as the stability boundary. It can be inferred that the saturation 
causes the instability. Also, in simulations it is the second force 
that goes unstable further reinforcing the direct relationship 
between saturation and the region of instability. The slopes of the 
saturation lines are given by 

hlV,- v ‘ < o  i=1,2 (22) 
4V2 v2 

The slopes are negative meaning that if the gains are chosen such 
that the saturation boundaries pass through the origin or are below 
it, the entire saturation line will never occupy the first quadrant, 
which is the space of the machine tool operation. Thus, global 
asymptotic stability in the region of interest (i.e., for positive 
machining forces) is obtained by picking the gains such that 

The inequality of equation (23) provides sufficient conditions for 
global stability and is validated via phase portraits and simulations 
results. 

The global stability of the parallel machining system evident in the 
phase portraits and by simulations is rigorously proved using the 
method of Lyapunov. The following scalar quadratic Lyapunov 
function is chosen 

The function is clearly positive definite and is zero at the origin. 
Global stability can be proven if it can be shown that the time 
derivative of the Lyapunov function is negative definite. The 
derivative is obtained by using equations (1 6) and (24). 

The gains h, (i=1,2) obtained from the equality of equation (23) 
are used in equation (25) to yield 

r S, la! 

r s, 

L 

It is evident from equation (26) that the derivative of the 
Lyapunov function is zero at the origin. The function is analyzed 
for cases when the states are non-zero and proved to be negative 
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definite. The saturation constraints in equation (20) are used in the 
analysis. There are four possible cases. 

Case 111: q > 0 and m2 < 0 
This case represents the fourth quadrant of the state space and can 

Case I: U, 2 0 and w1 2 0 

The term T of equation (26) is positive and, thus, s, > f,, and 

s, > f n ,  . Therefore, 
+ "'2 

+"e 
-we 

a2 

7 2  7 2  

The parameters ai ( i  = 1,2) are between zero and one. The worst- 
case scenario for the derivative of the Lyapunov equation being 
negative is when the positive terms are maximum (i.e., a1 = a2 = 
1 ) .  Equation (27) simplifies to 

The first and second partial derivatives of 
and AF2, respectively, are 

with respect to AFl 

The only solution to the first two equations of equation (29) is AF1 
= AF2 = 0 and this solution is a maximum. Thus, the term V is 
negative in the first quadrant except at the origin. 

be further divided into two cases: one when Iv,wF;I > IyZw2F;I and one 

when /qwl< IvzuzI. In the first case, the term T in equation (26) 
is positive and, thus, s, >A, and sz > J . Therefore, it follows that 

and, consequently, implies that the last two terms of equation (26)  
taken together are negative. The rest of the derivative is denoted 
by J and given is by 

r 1"' 

L- z 1  
where Z > 1. The worst-case scenario corresponds to cyI = 1 .  The 
negative definiteness is thus proved only for this worst case. 

J = ---- m;+ ww2F;,, < o  (34) 
22, r2 . , (V;%+V24J 

All of the terms in equation (34) are negative. For the case when 
~ ~ ~ ~ < ~ ~ z ~ z ~ ,  the term T i n  equation (26) is negative and, thus, 

s, < J", and s, < J-, . It follows that 

and, consequently, implies that the second and third terms of 
equation (26) added together are negative. The rest of the 
derivative is denoted by L and given by 

7, 1 2  r2 

Case IT: U, 5 0 and M~ 5 0 

The term T of equation (26) is now negative and, thus, s, < f 

where Z < 1. The worst-case scenario corresponds to cyl = 1. The 
negative definiteness is thus proved only for this worst case. 

I hF2 WAw7r2 (37) 
< O  L = - l - S +  and s2 < f,, . This case is similar to Case I except that the signs of 

27, 7, rz(5E, + v ~ c ~ )  
the non-square terms are reserved. 

V = ---- 
The parameter L is clearly negative since all the three terms of 
equation (37) are negative. This proves the negative definiteness 
of the derivative of the Lyapunov function for this case. 

(30) YIP, + V F ,  

YIF, + V2Fr2 
~ 2 ~ r ~  L\F,F~~ +- 

The worst-case scenario for the derivative of the Lyapunov 
equation being negative is when the negative terms are minimum 
(i.e., al  = a2 = 1). In this case, equation (30) is 

v=----+ . W2 hF: 5qw2c2 + v2wMiC (31) 

Computing the maximum along the same lines as in the previous 
case, it is found that the maximum is at the origin of the perturbed 
force state space. At the origin, V is zero. This clearly implies that 
everywhere else in the third quadrant the derivative of the 
Lyapunov function is negative. 

r2 r2 7 2  

21, 2r2 r2(5<, +V,C2) r,(<% +v2e21 

Case IV: q < 0 and m2 > o 
This case is along the same lines as Case ZIZ and, thus, is not 
illustrated in this paper. A similar derivation shows that the 
function is negative at all points. Thus global stability is achieved 
in the second quadrant. 

Clearly, it can be concluded that the time derivative of the 
Lyapunov is negative definite in the region of interest and this 
implies global asymptotic stability of the system. Thus, a rigorous 
mathematical stability analysis is established. 

SUMMARY AND CONCLUSIONS - A model based machining force 
control system is presented for a parallel turning operation using 
output feedback control. This approach incorporates a 
mathematical model for the process coupled with first order servo 
dynamics. The model is developed from empirical cutting force 
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data and includes basic machining nonlinearities. The nonlinear 
model is linearized to compute the output feedback controller 
gains. The controller design algorithm is given in three steps and 
is simple to implement. Equilibrium analysis and effects of 
saturation are used to analyze system behavior. It is found that-the 
system is unstable when the initial forces are close to the origin of 
the perturbed force system. An unstable equilibrium lying on the 
saturation boundary is found to be the cause for this type of 
behavior. Sufficient conditions for global stability are developed 
by obtaining mathematical constraints that ensure that the unstable 
equilibrium and saturation boundary are outside the global 
operation space of the machine tool. Phase portraits of the system 
prove the analysis. The reverse trajectory method is employed to 
show the numerical construction of the stability boundary, which 
closely agree with the simulation results. Further, global stability 
is proved for the closed loop system using the method of 
Lyapunov. 

NOMENCLATURE 
di ( i  = 1,2): depth of cut (mm) of fh  tool 
A, ( i  = 1,2): commanded feed (mm) of ith tool 

J;  ( i  = 1,2): actual feed (mm) of ith tool 
f, ( i  = 1,2): nominal feed (mm) of fh  tool 

Fi ( i  = I,2): cutting force ( k ~ )  of ith tool 
F ( i  = 1,2): reference cutting force ( k ~ )  of ith tool 

hfC, ( i  = 1,2): perturbed commanded feed (mm) of ith tool 

AFi ( i  = 1,2): perturbed cutting force (kN) of th tool 
H = (h,, hd’: gain vector used in feedback control law 
K. full state feedback gain matrix 
Ki ( i  = l,2): cutting coefficient (kN/mm2) of ith tool 
Ei ( i  = 1,2): static gain of ith tool (kN/mm*) 
Eta ( i  = l,2): linearized cutting coefficient of ith tool 

m: number of outputs 
mi ( i  = 1,2): desired time constants (s) 
n: number of states 
Ns: spindle speed (rpm) 

I 

P: 
P: 
pma: 
AP: 
R,: 
V: 
Vi ( i  = 1,2): 
ai(;= l,2): 
h(i= l,2): 
z ( i =  1,2): 
ri ( i  = l,2): 

number of inputs 
spindle power (kW) 
maximum spindle power (kW) 
perturbed spindle power (kW) 
region of attraction 
Lyapunov function 
cutting velocity (km/min) of iIh tool 
feed-force exponent of i’h force process 
depth of cut-force exponent of ith force process 
cutting velocity-force exponent of ith force process 
open-loop time constant (s) of ith servo system 
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n tool 

U /;1 I tool2 
U 

Fig. 1. Schematic of a Parallel Turning Operation with Two 
Tools. 

8 ,  I 

‘0 1 2  3 4 5 6 7 8 
Force l(kN) 

Fig. 4. Phase Plot: ml = 0.5 s, m2 = 0.49 s, and Controller Gains 
Given by Equation (15). 
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a 1 
3.5 

3 -  

2 5 -  

'0 1 2  3 4 5 6 7 8 

- 

Force 1 (kN) 

Fig. 5. Phase Plot: ml = 1.5 s, m2 = 1.49 s, and Controller Gains 
Given by Equation (15). Stability Boundary Given by Thick 
Line. 

--.- Tool2 

Force 1 (kN) 

Fig. 6. Plot of Equation (17a) = 0 (solid line) and Equation 
(17b) = 0 (dotted line). m, = 0.5 s, mz = 0.49 s, and Controller 
Gains Given by Equation (15). 

Tool 2 Stable Equilibrium 
1 2  

Unstable Equilibrium 
0 4 -  

1 9  2 2 1  2 2  2 3  2 4  2 5  2 6  2 7  
Force l(kN) 

Fig. 7. Plot of Equation (17a) = 0 (solid line) and Equation 
(17b) = 0 (dotted line). ml = 1.5 s, m2 = 1.49 s, and Controller 
Gains Given by Equation (15). 

Force l(kN) 

Fig. 8. R, by Reverse Trajectory. m, = 1.5 s, m2 = 1.49 s, and 
Controller Gains Given by Equation (15). 

I I I I I I I I I 
'0 1 2  3 4 5 6 7 8 

Force l(kN) 

Fig. 9. Plot of Equation (21) = 0 for i = 1 (stars) and i = 2 
(triangles) Illustrating Control Saturation Boundaries for the 
First and Second Tool, Respectively. ml = 1.5 s, mz = 1.49 s, 
and Controller Gains Given by Equation (15). 

Table 1. Parameters used in Simulation Studies. 
Parameter Tool 1 Tool 2 Unit 

h 0.528 0.875 mm 
CY 0.89 0.89 - 

0.87 0.87 - 

- 
P 

K 1.17 1.17 IdV/mm2 
D 0.05 0.10 m 
d 0.003 0.001 m 
7 0.05 0.049 S 

P 20 kW 
Ns 1500 rpm 

Y -0.27 -0.27 
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