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Recursive algorithm for arrays of generalized Bessel functions:
Numerical access to Dirac-Volkov solutions

Erik Lötstedt1,* and Ulrich D. Jentschura1,2

1Max-Planck-Institut für Kernphysik, Postfach 10 39 80, 69029 Heidelberg, Germany
2Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

�Received 23 October 2008; published 27 February 2009�

In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter
interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov
solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic pro-
cesses in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel
functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be
evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only,
without having to compute any initial value. We demonstrate the utility of the method by illustrating the
quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.

DOI: 10.1103/PhysRevE.79.026707 PACS number�s�: 02.70.�c, 31.15.�p, 32.80.Wr

I. INTRODUCTION

The Volkov solution �1� is the exact solution of the Dirac
equation in the presence of a classical plane-wave laser field
of arbitrary polarization. In order to evaluate cross sections
by quantum electrodynamic perturbation theory, it is crucial
to decompose the Volkov solutions into plane waves, in order
to be able to do the time and space integrations over the
whole Minkowski space time. If the laser field is linearly
polarized, one naturally encounters the generalized Bessel
functions as coefficients in the plane-wave �Fourier� decom-
position of the wave function, both for the Dirac-Volkov
equation as well as for the laser-dressed Klein-Gordon solu-
tions, and even for Schrödinger-Volkov states �see also Sec.
V�.

The wide use of the generalized Bessel function in theo-
retical laser physics is thus due to the fact that different
physical quantities, such as scattering cross sections and
electron-positron pair production rates, can be expressed ana-
lytically in terms of infinite sums over generalized Bessel
functions which we here denote by the symbol Jn�x ,y�. The
generalized Bessel function Jn�x ,y� is a generalization of the
ordinary Bessel function Jn�x� and characteristic of the inter-
action of matter with a linearly polarized laser field; it de-
pends on two arguments x and y, and one index n. Here, we
use it in the convention

Jn�x,y� =
1

2�
�

−�

�

exp�− in� + ix sin��� − iy sin�2���d� ,

�1�

where n is an integer, and x and y are real numbers. Jn�x ,y�
is real valued. The generalized Bessel functions provide a
Fourier decomposition for expressions of the form
exp�ix sin �− iy sin�2��� as follows:

exp�ix sin � − iy sin�2��� = �
n=−�

�

Jn�x,y�exp�in�� . �2�

In practical applications, the angle � often has the physical
interpretation of a phase of a laser wave, �=�t−k� ·x�, where
� is the angular laser photon frequency, and k� is the laser
wave vector. By contrast, the well-known ordinary Bessel
functions are defined as

Jn�x� =
1

2�
�

−�

�

exp�− in� + ix sin����d� , �3�

and they have the fundamental property

exp�ix sin �� = �
n=−�

�

Jn�x�exp�in�� . �4�

The generalized Bessel function was first introduced by Re-
iss in the context of electron-positron pair creation �2�, fol-
lowed by work of Nikishov and Ritus �3� and Brown and
Kibble �4�. Further examples of work utilizing Jn�x ,y� in the
relativistic domain include pair production by a Coulomb
field and a laser field �5–7�, laser-assisted bremsstrahlung
�8–10�, muon-antimuon creation �11,12�, undulator radiation
�13�, and scattering problems, both classical �14� and quan-
tum mechanical �15,16�. A fast and reliable numerical evalu-
ation of Jn�x ,y� would also speed up calculation of wave-
packet evolution in laser fields �17,18�. In nonrelativistic
calculations, the generalized Bessel function has been em-
ployed mainly for strong-field ionization �19–22�, but also
for high-harmonic generation �23,24�.

On the mathematical side, a thorough study of Jn�x ,y� has
been initiated in a series of papers �25–27�, and even further
generalizations of the Bessel function to multiple arguments
and indices have been considered �28–31�. On the numerical
side, relatively little work has been performed. Asymptotic
approximations have been found for specific regimes �3,19�,
and a uniform asymptotic expansion of Jn�x ,y� for large ar-
guments by saddle-point integration is developed in Ref.
�32�. For some of the applications described above, in par-*erik.loetstedt@mpi-hd.mpg.de
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ticular when evaluating second-order laser-assisted quantum
electrodynamic processes �33�, a crucial requirement is to
evaluate large sets of generalized Bessel functions, at fixed
arguments x and y, for all indices n for which the generalized
Bessel functions acquire values which are numerically differ-
ent from zero �as we shall see, for �n�� �x� , �y�, the general-
ized Bessel functions decay exponentially with n�.

It is clear that recursions in the index n would greatly help
in evaluating large sets of Bessel functions. For ordinary
Bessel functions, an efficient recursive numerical algorithm
is known, and it is commonly referred to as Miller’s algo-
rithm �34,35�. However, a generalization of this algorithm
for generalized Bessel functions has been lacking. The pur-
pose of this paper is to provide such a recursive numerical
algorithm: We show, using ideas from �36–39�, that a stable
recurrence algorithm can indeed be established, despite the
more complex recurrence relation satisfied by Jn�x ,y�, as
compared to the ordinary Bessel function Jn�x�. The reduc-
tion of five-term recursions to four- and three-term recur-
sions proves to be crucial in establishing a numerically stable
scheme.

The computational problem we consider is the following:
to evaluate

Jn�x,y�: x fixed, y fixed,

where nmin � n � nmax, �5�

by recursion in n. Our approach is numerically stable, and
while all algorithms described here have been implemented
in quadruple precision �roughly 32 decimals�, we note that
the numerical accuracy of our approach can easily be in-
creased at a small computational cost.

Our paper is organized as follows. In Sec. II, we recall
some well-known basic properties of Jn�x ,y�, together with
some properties of the solutions complementary to Jn�x ,y�,
which fulfill the same recursion relations �in n� as the gen-
eralized Bessel functions but have a different asymptotic be-
havior for large �n� as compared to Jn�x ,y�. After a review of
the Miller algorithm for the ordinary Bessel function, we
present a recursive Miller-type algorithm for generalized
Bessel functions in Sec. III, and show that it is numerically
stable. In Sec. IV, we numerically study the accuracy which
can be obtained, and compare the method presented here
with other available methods. We also complement the dis-
cussion by considering in Sec. V illustrative applications of
the numerical algorithm for Dirac-Volkov solutions in par-
ticular parameter regions, together with a physical derivation
of the recurrence relation satisfied by the generalized Bessel
function. Section VI is reserved for the conclusions.

II. BASIC PROPERTIES OF THE GENERALIZED BESSEL
FUNCTION

A. Orientation

Because the definition �1� provides us with a convenient
integral representation of the generalized Bessel function, all
properties of Jn�x ,y� needed for the following sections of
this paper can in principle be derived from this representa-

tion alone �3,19�. For example, shifting �→−�−� and �
→�+�, respectively, in Eq. �1� gives two symmetries,

Jn�x,− y� = �− 1�nJ−n�x,y� ,

Jn�− x,y� = �− 1�nJn�x,y� , �6�

from which J−n�x ,y�=Jn�−x ,−y� follows. We recall the cor-
responding properties of the ordinary Bessel function,

Jn�x� = �− 1�nJn�− x� = �− 1�nJ−n�x� . �7�

Due to the symmetries �6�, we can consider in the following
only the case of positive x and y without loss of generality,
provided we allow n to take arbitrary positive and negative
integer values. Our sign convention for the y sin 2� term in
the argument of the exponential in Eq. �1� agrees with �3�,
but differs from the one used in �19�. As is evident from
inspection of Eqs. �1� and �3�, Jn�x ,y� can be expressed as an
ordinary Bessel function if one of its arguments vanishes,

Jn�x,0� = Jn�x�, Jn�0,y� = �J−n/2�y� if n is even

0 if n is odd.
	 �8�

By inserting the expansion of the ordinary Bessel function
�n=−�

� Jn�x�exp�in��=exp�ix sin �� into Eq. �1�, we see that
Jn�x ,y� can be expressed as an infinite sum of products of an
ordinary Bessel function,

Jn�x,y� = �
s=−�

�

J2s+n�x�Js�y� . �9�

There are also the following sum rules:

�
n=−�

�

Jn�x,y� = �
n=−�

�

Jn
2�x,y� = 1, �10�

which can be derived by considering the case �=0 in Eq. �2�
�for �n=−�

� Jn�x ,y�=1�, by considering Eq. �2� multiplied with
its complex conjugate, and integrating over one period �for
�n=−�

� Jn
2�x ,y�=1�. The relation �10� is important for a recur-

sive algorithm because it provides a normalization for an
array of generalized Bessel functions computed according to
the recurrence relation

2nJn�x,y� = x�Jn+1�x,y� + Jn−1�x,y��

− 2y�Jn+2�x,y� + Jn−2�x,y�� , �11�

which connects generalized Bessel functions of the same ar-
guments but different index n. Equation �11� can be derived
by partial integration of Eq. �1�. Interestingly, Eq. �11� to-
gether with the normalization condition �10� can be taken as
an alternative definition for Jn�x ,y�, from which the integral
representation �1� follows. The recursion �11� is the basis for
the algorithm described below in Sec. III.

B. Saddle-point considerations

A qualitative picture of the behavior of Jn�x ,y� as a func-
tion of n can be obtained by considering the position of the
saddle points of the integrand in Eq. �1� �30,32�. By defini-
tion, a saddle point �s denotes the point where the derivative
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of the argument of the exponential in Eq. �1� vanishes, and
therefore satisfies

cos �s� =
x

8y
�
 x2

64y2 +
1

2
−

n

4y
. �12�

By writing Jn�x ,y� as

Jn�x,y� =
1

�
Re��

0

�

exp�− in� + ix sin��� − iy sin�2���d�	 ,

�13�

we can consider only saddle points with 0�Re �s��. By
the properties of the cosine function, the saddle points come
in conjugate pairs, so that if �s is a saddle point, so is �

s
*.

Furthermore, since cos�2�−�s�=cos �s, the saddle points are
placed mirror symmetrically around Re �s=�. Since each of
the end-point contributions at �=0 and �=� to the integral
�13� vanish �provided the end points are not saddle-points�,
an asymptotic approximation for Jn�x ,y� is provided by the
saddle point method �the method of steepest descent� �40� by
summing the contributions from the saddle points �s situated
on the path of steepest descent. Here, imaginary saddle
points �i.e., saddle points with Im �s��0� give exponentially
small contributions to the integral, while real saddle points

contribute with an oscillating term. Closer inspection of Eq.
�12� reveals two cases.

In case 1, with 8y	x, there are four different regions,
which we denote by a1, b1, c1, and d1 �see Table I�. In region
a1, where n
−2y−x, we have four distinct saddle-point so-
lutions �s� ,�

s�
* , which are all imaginary, and Jn�x ,y� is ex-

ponentially small. Region b1, where −2y−x
n
−2y+x,
has two imaginary ��s+ ,�

s+
* � and one real saddle point �s−,

and Jn�x ,y� exhibits an oscillating behavior here. For −2y
+x
n
2y+x2 / �16y�, i.e., in region c1, both saddle points
are real, and in the region d1, n	2y+x2 / �16y�, the two
saddle points �s� are again imaginary, which results in very
small numerical values of the generalized Bessel functions.
For case 2, 8y
x, there are only three regions, as recorded
in Table I. The two cases coincide if 8y=x. Figure 1 illus-
trates the two different cases.

In all regions a1, b1, c1, d1, a2, b2, and c2, there are,
depending on the region, up to four saddle points to consider.
Of these one or two saddle points contribute to the numerical
approximation to Jn�x ,y�. For large arguments y, x, and/or a
large index n, asymptotic expressions can be derived �32,30�.
The general form for the leading-order term is �see �40� for a
clear exposition of the general theory of asymptotic expan-
sions of special functions�

Jn�x,y� � Re�
 2

��f���s+��
exp�if��s+� − in�s+ + i�+�

+
 2

��f���s−��
exp�if��s−� − in�s− + i�−�


= F+�n,x,y� + F−�n,x,y� , �14�

where

f��� = x sin��� − y sin�2�� . �15�

For imaginary saddle points, only the contribution of those
situated on the path of steepest descent should be included,
i.e., the integration around the saddle point should be carried
out along a curve of constant complex phase, with �=�
+ i
 satisfying

TABLE I. Saddle-point configurations for the generalized
Bessel function Jn�x ,y� as a function of the arguments x and y. A
distinct imaginary saddle point is denoted “imag.” whereas a real
saddle point is denoted “real.” The different regions are illustrated
in Fig. 1.

Region Condition Saddle points

Case 1: 8y	x

a1 n
−2y−x 4 imag.

b1 −2y−x
n
−2y+x 2 imag.+real

c1 −2y+x
n
2y+x2 / �16y� 2 real

d1 n	2y+x2 / �16y� 2 imag.

Case 2: 8y
x

a2 n
−2y−x 4 imag.

b2 −2y−x
n
−2y+x 2 imag.+real

c2 n	−2y+x 2 imag.

J
n
(x

,y
)

n

a1 b1 c1 d1

−4000 −2000 2000

0

0

−0.05

0.05

J
n
(x

,y
)

n

a2 b2 c2

1000500

0

0−500−1000−1500
−0.1

−0.05

0.1

0.05

(b)(a)

FIG. 1. �Color online� Illustration of the different saddle-point regions of Jn�x ,y�, for the two qualitatively different cases: number 1, with
8y	x �here x=y=103 was used�, and number 2, with 8y
x �x=10y=103�. In case 1 �panel �a��, the transition from region b1, where only
one saddle point is real, to c1, where two real saddle points contribute, occurs precisely at n=−2y+x=−103 �see also Table I�. The complex
oscillating behavior in region c1 can be understood as interference between the contributions from the two real saddle points. In case 2 �panel
�b��, we have 8y
x, with only three as opposed to four qualitatively different regions �see also Table I�.
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Im�if��� − in�� = const �16�

on that curve. In practice this means for regions with imagi-
nary saddle points only, Jn�x ,y� is given by the contribution
from the saddle point with the smallest �Im �s�, and in regions
with both imaginary and real �s the contribution from the
imaginary saddle point can be neglected. However, we will
see in the following discussion that all saddle points, includ-
ing those not on the path of steepest descent which would
produce an “exponentially large” contribution, can be inter-
preted in terms of complementary solutions to the recurrence
relation �11�. The constant phase �� in Eq. �14� is given by

�� =
�

4
sgn�f���s��� �17�

for real saddle points. For imaginary saddle points, �� can be
found from the requirement

tan �� = � d


d�
�

�=�s�

, �18�

with �=�+ i
 describing the path of steepest descent �see
Eq. �16��. For a detailed treatment of the saddle-point ap-
proximation of Jn�x ,y� we refer to �32�, where uniform ap-
proximations, valid also close to the turning points �the bor-
ders between the regions described in Fig. 1� and beyond the
leading term �14�, are derived. For our purpose, namely to
identify the asymptotic behavior of the complementary solu-
tions, the expression �14� is sufficient.

C. Complementary solutions

The recurrence relation �11� involves the five generalized
Bessel functions of indices n−2, n−1, n, n+1, n+2. In gen-
eral, an m-term recursion relation is said to be of order m
−1. If we regard the index n as a continuous variable, then a
recursion relation of order m−1 corresponds to a differential
equation of order m−1, which has �m−1� linearly indepen-
dent solutions. Equation �11� consequently has four linearly
independent �complementary� solutions. The function
Jn�x ,y� is one of these.

For the analysis of the recursive algorithm in Sec. III
below, we should also identify the complementary solutions
to the recurrence relation �11�. For our purposes, it is suffi-
cient to recognize the asymptotic behavior of the comple-
mentary solutions in the different regions a1−d1 and a2−c2
�see Fig. 1�. It is helpful to observe that the recurrence rela-
tion �11� is satisfied asymptotically by each term F��n ,x ,y�
from Eq. �14� individually. The recurrence relation �11� is
also satisfied, asymptotically, by a function obtained by tak-
ing in Eq. �14� a saddle point that is not on the path of
steepest descent, which is equivalent to changing the sign of
the entire argument of the exponential. In addition, for real
saddle points and in regions with only two imaginary saddle
points, the recurrence relation is asymptotically satisfied by
taking the same saddle point but the imaginary part instead
of the real part in Eq. �14� �and thereby changing the phase�.

In regions with four imaginary saddle points �a1 ,a2�,
there are thus two solutions that are exponentially increasing
with the index n→−� �the two solutions correspond to the

two saddle points �s where Re�if��s�− in�s�	0�, and two
further solutions which are exponentially decreasing �from �s
with Re�if��s�− in�s�
0�. In regions with two imaginary
and one real saddle points �b1 ,b2�, the four solutions behave
as follows. There are two oscillatory solutions �these corre-
spond to the real and imaginary parts of the term which
contains the real saddle point in Eq. �14��, a third solution
which is exponentially increasing, and a fourth one which is
exponentially decreasing as n→−� �the two latter solutions
are due to the imaginary saddle points in Eq. �14��. The
region with two real saddle points �c1� has four oscillating
solutions, as a function of n. Finally, in regions d1 and c2,
where we have two distinct imaginary saddle points, we have
two exponentially increasing �as n→�� solutions with dif-
ferent phase, and two exponentially decreasing with different
phase. Concerning the question of how to join the different
asymptotic behaviors to form four linearly independent solu-
tions, we note that Jn�x ,y� is the only solution which can
decrease in both directions n→ ��, since it represents the
unique, normalizable physical solution to the wave equation
�see Sec. V A�. Furthermore, there must be one solution that
increases exponentially where Jn�x ,y� decreases and that ex-
hibits an oscillatory behavior where Jn�x ,y� also oscillates.
The reason is that in either of the limits x→0 or y→0, we
must recover the ordinary Bessel function and the Neumann
function as the two solutions to the recurrence relation. Hav-
ing fixed the asymptotic behavior of two of the solutions, the
behavior of the the two remaining functions follows. We la-
bel the four different solutions with Jn, Yn, Xn, and Zn, where
Jn is the generalized Bessel function Jn�x ,y� with the argu-
ments x, y suppressed.

Integral representations for the complementary solutions
can be found by employing Laplace’s method �41�, details of
which will be described elsewhere. The explicit expressions
can be found in the Appendix. However, as noted previously,
in this paper we shall need only the asymptotic properties of
the complementary solutions, which can be deduced from
Eq. �14�.

We also observe that the situation for Jn�x ,y� described
above is directly analogous to that of the ordinary Bessel
function Jn�x� and the complementary Neumann �also called
Weber� function Yn�x� of a single argument. For x�n they
have the asymptotic behavior Jn�x��Re
2 / ��x�exp�ix
− i� /4− in� /2�, Yn�x�� Im 
2 / ��x�exp�ix− i� /4− in� /2�,
and for x�n we have Jn�x���ex�n�2n�−n /
2�n, Yn�x��
−2�ex�−n�2n�n /
2�n.

According to the above discussion and as illustrated in
Fig. 2, the functions Jn, Yn, Xn, and Zn have the following
relative amplitudes in the different regions:

region a1,a2: �Zn� 	 �Yn� 	 �Jn� 	 �Xn� ,

region b1,b2: �Zn� 	 �Yn� � �Jn� 	 �Xn� ,

region c1: �Zn� � �Yn� � �Jn� � �Xn� ,

region d1,c2: �Yn� � �Xn� 	 �Jn� � �Zn� . �19�

In Eq. �19�, we have assumed that all functions have the
same order of magnitude in the oscillating region. This can
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be accomplished by choosing a suitable constant prefactor
for the complementary functions Zn, Yn, and Xn. Figure 2
shows an example of the four different solutions for case 1
�8y	x�. The actual numerical computation of the comple-
mentary solutions is discussed in Sec. III C.

III. MILLER-TYPE ALGORITHM FOR GENERALIZED
BESSEL FUNCTIONS

A. Recursive Miller’s algorithm for ordinary Bessel functions

A straightforward implementation of Miller’s algorithm
�34,35,42� can be used for the numerical calculation of the
ordinary Bessel function Jn�x�. We note that there are also
other ways of numerically evaluating Jn�x�, which include
series expansions �43� or contour integration �44�. In the fol-
lowing, we review the simplest form of Miller’s algorithm to
prepare for the discussion on the generalized algorithm. We
treat the case of positive n and x. For negative n and x, we
appeal to the symmetry relation �7�. The properties of Jn�x�
used for the algorithm are the recurrence relation �11�, with
y=0, which automatically reduces Eq. �11� to a three-term
relation with only two linearly independent solutions. We
also use the normalization condition �n=−�

� Jn�x�=1.
Viewed as a function of n, Jn�x� exhibits an oscillatory

behavior for n
x, and decreases exponentially for n	x.
The complementary solution Yn�x�, called the Neumann
function, oscillates for n
x and grows exponentially for n
	x. To calculate an array of Jn�x�, for 0�n
N, with N
	x, we proceed as follows. We take a �sufficiently large�
integer M 	N, and the initial values cM =1, cM+1=0. We use
the recurrence relation �11� with y=0 to calculate all cn with
indices 0�n
M by downward recursion in n. Now, since
the ensemble of the Yn�x� plus the Jn�x� constitute a complete

basis set of functions satisfying the recurrence relation, the
computed array of the cn can be decomposed into a linear
combination,

cn = �Jn�x� + �Yn�x� , �20�

where � and � are constants, and this decomposition is valid
for any n. That means that the same decomposition must also
be valid for the initial index M +1 from which we started the
downward recursion, i.e.,

cM+1 = 0 = �JM+1�x� + �YM+1�x� . �21�

From Eq. �20� it follows that

cn = ��Jn�x� −
JM+1�x�Yn�x�

YM+1�x�
� . �22�

Provided the starting index M 	x is chosen large enough, the
quantity JM+1�x� /YM+1�x� is a small quantity, due to the ex-
ponential character of Jn�x� and Yn�x� for index n	x, so that
the computed array cn is to a good approximation propor-
tional to the sought Jn�x�. Loosely speaking, we can say that
we have selected the exponentially decreasing function Jn�x�
by the downward recursion because the exponentially in-
creasing function Yn�x� as �n � →� is suppressed in view of
its exponential decrease for decreasing �n�. In other words,
the error introduced by the initial conditions decreases rap-
idly due to the rapid decrease of Yn�x� for decreasing n, so
that effectively only the part proportional to Jn�x� is left.

Finally, the constant � can be found by imposing the nor-
malization condition

�
n

cn = c0 + 2�
n=1

�

c2n = 1. �23�

Here, we have used the symmetries �7� in order to eliminate
the terms of odd index from the sum.

Remarkably, numerical values of Jn�x� can be computed
by using only the recurrence relation and the normalization
condition, and not a single initial value is needed �e.g., one
might otherwise imagine J0�x� to be calculated by a series
expansion�. Miller’s algorithm has subsequently been refined
and the error propagation analyzed by several authors
�35,45–47� and also implemented �48–50�.

B. Recursive algorithm for generalized Bessel functions

In view of the four different solutions pictured in Fig. 2, it
is clear from the discussion in the preceding section that
Jn�x ,y� cannot be calculated by naive application of the re-
currence relation. The general paradigm �see Fig. 2� there-
fore has to change. We first observe that if we would start the
recursion using the five-term recurrence relation �11� in the
downward direction, starting from large positive n, then the
solution would eventually pick up a component proportional
to Zn, which diverges for n→−�. Conversely, if we would
start the recursion using the five-term recurrence relation
�11� in the upward direction, starting from large negative n,
then the solution would pick up a component proportional to
Xn. Thus Eq. �11� cannot be used directly.

The solution to this problem is based on rewriting Eq.
�11� in terms of recurrences with less terms �only three or

n

ab
so

lu
te

va
lu

e

|Jn|

|Yn|

|Xn|

|Zn|

a1 b1 c1 d1

−4000 −2000 0 2000
10−100

10−50

100

1050

10100

FIG. 2. �Color online� The five-term recurrence relation �11� has
four linearly independent solutions. Note the logarithmic scale. The
values x=y=103 were used for the calculation, corresponding to
case 1 �8y	x�. The solutions are labeled by Jn �red line, the true
generalized Bessel function Jn�x ,y��, Yn �light blue line�, Xn �green
line�, and Zn �blue line�. The numerically obtained solutions Xn, Yn,
and Zn have been shifted vertically by multiplication with an appro-
priate constant �of order 1010 for Yn, 10−10 for Zn, and 10−20 for Xn�
for clarity. The separation of the different saddle-point regions is
marked with dashed lines. The regions a1, b1, c1, and d1 are de-
scribed in Table I.
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four as opposed to five�. By consequence, the reformulated
recurrence has less linearly independent solutions, and in fact
it can be shown �see the discussion below� that the four-term
recurrence, if used in the appropriate directions in n, numeri-
cally eliminates the most problematic solution Zn, which
would otherwise be admixed to Jn�x ,y� for n→�, leading to
an algorithm by which it is possible to calculate the general-
ized Bessel function Jn�x ,y� for n down to the point where
we transit from region b1 to a1 in Fig. 2, where the recur-
rence invariably picks up a component from the exponen-
tially growing solution Yn, and it becomes unstable. How-
ever, by using the additional three-term recurrence in suitable
directions in n, we can numerically eliminate the remaining
problematic solution Yn which would otherwise be admixed
to Jn�x ,y� for n→−� even after the elimination of Zn, lead-
ing to an algorithm by which it is possible to calculate the
generalized Bessel function Jn�x ,y� for n up to the point
where we transit from region c1 to d1 in Fig. 2, where the
recurrence invariably picks up a component from the expo-
nentially growing solution Xn, and it becomes unstable. In
the end, we match the results of the four-term recursion and
the three-term recursion at some “matching index” K, situ-
ated in region b1 or c1, normalize the solutions according to
Eq. �10�, and obtain numerical values for Jn�x ,y�.

Indeed, in region b1 �see Fig. 2�, the wanted solution
Jn�x ,y� satisfies �Xn /Xn+1�
 �Jn�x ,y� /Jn+1�x ,y��
 �Zn /Zn+1�,
which means that here application of the recurrence relation
is unstable in both the upward and downward directions with
respect to n. By suitable transformations of the recurrence
relation, we remove one, and then two of the unwanted so-
lutions Yn and Zn. With only three �or two� solutions left, we
can proceed exactly as described in Sec. III A to calculate
Jn�x ,y� in a stable way by downward recursion in n. We note
that the general case of a stable numerical solution of recur-
rence relations of arbitrary order has been described previ-
ously in �36–39,51�, but the application of this method to the
calculation of the generalized Bessel function has not been
attempted before, to the authors knowledge.

In the following, we describe the algorithm to compute an
approximation to the array Jn�x ,y�, nmin�n�nmax. We let

n− = − 2y − x, n+ = �2y +
x2

16y
if 8y 	 x ,

− 2y + x if 8y 
 x
� �24�

denote the “cutoff” indices, beyond which Jn�x ,y� decreases
exponentially in magnitude. In terms of the regions intro-
duced in Table I, n− marks the transition from region a1 to b1
for case 1 �or a2 to b2 for case 2�, and n+ is the border
between region c1 and d1 for case 1 �between b2 and c2 in
case 2�. Note that we do not assume nmin
n− or nmax	n+, in
general nmin and nmax are arbitrary �with nmin�nmax�. The
usual situation is, however, to require nmin�n− and nmax
�n+. Without loss of generality, we assume that both x and y
are nonzero �otherwise the problem reduces to the calcula-
tion of ordinary Bessel functions via Eq. �8��.

Central for our algorithm is the transformation of the five-
term recurrence relation �11� into a four-term and three-term

recurrence relation. Suppressing the arguments x and y, we
can write the four-term recurrence

2yJn+1 + �n
1Jn + �n

2Jn−1 + �n
3Jn−2 = 0, �25�

and the second-order relation

2yJn+1 + �n
1Jn + �n

2Jn−1 = 0. �26�

The coefficients themselves also satisfy recursion relations,
which are, however, of first order, namely

�n
1 = − x −

4y2

�n−1
3 , �n

2 = 2�n − 1� −
2y�n−1

1

�n−1
3 ,

�n
3 = − x −

2y�n−1
2

�n−1
3 , �27�

and

�n
1 = �n

1 −
2y�n

3

�n−1
2 , �n

2 = �n
2 −

�n−1
1 �n

3

�n−1
2 . �28�

By construction, all sequences yn that solve the original
recurrence relation �11� also solve Eqs. �25� and �26�, regard-
less of the initial conditions used to calculate the coefficients
�n

1,2,3 and �n
1,2. The converse does not hold: a solution yn to

the transformed recurrence relation �25� or �26� does not au-
tomatically solve Eq. �11�. Rather, this depends on the initial
conditions used for the coefficients �n

1,2,3 �or �n
1,2�.

The transformation into a four-term and three-term rela-
tion offers a big advantage, as briefly anticipated above. We
now describe how the algorithm is implemented in practice
and postpone the discussion of numerical stability until Sec.
III C. We proceed in five steps.

�1� Select a positive starting index M+	n+ ,nmax and a
negative starting index M−
n− ,nmin, where the M’s differ
from the n’s by some “safety margin.” The dependence of
the accuracy obtained on the “safety margin” is discussed
later, in Sec. IV.

�2� Calculate the arrays �n
1,2,3, and �n

1,2 for M−�n�M+
+1, employing the recurrence relations �27� and �28� in the
upward direction for n. The recurrence is started at n=M−
with nonzero �M−

3 , but otherwise arbitrary initial values. A
practical, useful choice is �M−

1 =�M−

2 =�M−

3 =1 for the four-term
formula �27� and �M−

1 =�M−

2 =1 for the three-term recurrence
�28�.

�3� Calculate the array fn, with M−�n�M+ according to
the recurrence formula �25�, and the array gn, also with M−
�n�M+ according to the recurrence formula �26�. In both
cases, the recurrence is performed in the downward direc-
tions for n, with arbitrary �but not all zero� starting values for
fM+

, fM++1, fM++2 and gM+
, gM++1.

�4� Choose a “matching index” K, with n−
K
n+ to
match the solutions gn and fn to each other, realizing that gn
will be unstable for n	n+, and fn will be unstable for n

n−. Specifically, we construct the array
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hn = �gn if M− � n � K ,

gK

fK
fn if K 
 n � M+, � �29�

where fK, gK�0 is assumed.
�5� The numerical approximation to the generalized

Bessel functions is now given by normalizing hn according
to the sum rule �10�,

Jn�x,y� � sgn� hn

H1
�
 hn

2

H2
,

nmin � n � nmax, Hj = �
n=M−

M+

�hn� j . �30�

The reason why we normalize the sum of squares is that a
summation of only non-negative terms cannot suffer from
numerical cancellation. An alternative way of normalization
would consist in calculating a particular value of Jn�x ,y�, say
J0�x ,y�, by another method, like the sum �9�, or an
asymptotic expansion �32�. In this case, the approximation to
Jn�x ,y� would be given as

Jn�x,y� �
J0�x,y�

h0
hn, �31�

for all nmin�n�nmax, provided J0�x ,y�, h0�0.
To illustrate some of the intermediate steps of the algo-

rithm, we show in Fig. 3 the typical behavior of the coeffi-
cients �n

1,2,3 and �n
1,2 calculated in step 2, and also the result

after step 3, before normalization of the arrays fn and gn.
Concluding the description of our recursive algorithm, we
summarize the different integer indices which occur in the
problem, which is useful to have in mind in the ensuing
discussion: n− and n+ are the negative and positive cutoff
indices, respectively, and are fixed by the values of the argu-

ments x and y through Eq. �24�. M− and M+ are the negative
and positive starting indices, respectively. For the algorithm
to converge, they should be chosen such that M−
n−, and
M+	n+. The accuracy of the computed approximation to
Jn�x ,y� will increase if the distances n−−M−, M+−n+ are
increased �see Sec. IV�. K is a matching index, where the
solutions fn and gn computed with different recurrence rela-
tions should be matched and should satisfy n−
K
n+. Fi-
nally, nmin and nmax are the indices between which numerical
values for Jn�x ,y� are sought. Except for the requirements
nmin	M−, nmax
M+, and nmin�nmax, they can be arbitrarily
chosen. The usual requirement is, however, nmin�n−, nmax
�n+, which in that case implies the following inequality
chain for the different indices involved:

M− 
 nmin � n− 
 K 
 n+ � nmax 
 M+. �32�

C. Demonstration of numerical stability

In this section we show, using arguments similar to those
in �36�, that the previously presented algorithm is numeri-
cally stable. Since the functions Jn, Yn, Xn, and Zn �see Fig.
2� form a complete set of functions with respect to the recur-
rence relation �11�, we can decompose any solution yn to the
four-term recurrence relation �25� as

yn = a1Jn + a2Yn + a3Xn + a4Zn. �33�

The constants a1, a2, a3, and a4 can be found from the initial
conditions. For general i in the range N−2� i�N, where N
is a general starting index �later we will take N=M−�, we
have

yi = a1Ji + a2Yi + a3Xi + a4Zi, �34�

but we can rewrite yN+1 using the four-term recurrence in Eq.
�25� as

(b)(a) n
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FIG. 3. �Color online� Panel �a� shows the absolute value of the coefficients from Eqs. �27� and �28�, used for the transformed recurrence
relations �25� and �26�. Here, a starting index of M−=−4000 and initial values of �M−

1,2,3=�M−

1,2 =1 were used. Note that for better visibility, all
curves except �n

1 have been shifted vertically on the logarithmic ordinate axis by multiplication with a suitable constant �1010 for �n
3, 105 for

�n
2, 10−7 for �n

1, and 10−12 for �n
2�. In panel �b�, we display the absolute values of fn and gn, which result after completing step 3 in the

algorithm described, i.e., before normalizing. The dash-dotted lines indicate the starting indices M�, here M−=−3300 and M+=2350. The
cutoff indices n−=−3000, n+=2063 are plotted with dashed lines. An example of a suitable “matching index” K=0 �see step 4 of the
algorithm� is drawn by a solid line. The initial values used to calculate the curves were fM+

=10−20 /2, fM++1=0, fM++2=10−20, and gM+
=0,

gM++1=1017. Note that in panel �b�, no vertical shifting was applied. The inset shows a magnification of the cutoff region for positive n,
where the diverging behavior of gn for n	n+ is clearly seen. In both graphs we have x=y=103, same as in Fig. 2.
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yN+1 = −
1

2y
��N

1 yN + �N
2 yN−1 + �N

3 yN−2�

= a1JN+1 + a2YN+1 + a3XN+1 + a4ZN+1, �35�

for fixed starting integer N.
If we now for simplicity take the initial value at the upper

boundary of the recursion yN+1=0, by selecting the initial
values �N

1,2,3 for the coefficients accordingly, then we can
choose �provided the system �35� is nonsingular, so that a
solution exists� three sets of initial conditions yi

t, 1� t�3,
N−2� i�N, so that depending on which set is chosen, the
constants aj in Eq. �33� are

aj = � jt, 1 � j � 3, 1 � t � 3, �36�

where � jt is the Kronecker delta, leading to the solutions yn
t

with 1� t�3. By requiring Eq. �36�, we have implicitly re-
duced the solution to a linear combination of just two solu-
tions, with nonvanishing components of one of Jn, Xn, or Yn
on the one hand, and Zn on the other hand. The remaining
constant a4 is obtained, for each set, from

yN+1
t = 0 = �1tJN+1 + �2tYN+1 + �3tXN+1 + a4ZN+1, �37�

assuming ZN+1�0. Because we have reduced the solutions
yn

t to be linear combinations of just two functions, we imme-
diately see that the three sets of initial values correspond to
the three fundamental solutions yn

1,2,3 to the four-term recur-
rence relation �25�,

yn
1 = Jn −

JN+1

ZN+1
Zn,

yn
2 = Yn −

YN+1

ZN+1
Zn,

yn
3 = Xn −

XN+1

ZN+1
Zn. �38�

If now N is taken small enough, N=M−
n−, by virtue of Eq.
�19�, the three fundamental solutions yn

1,2,3 turn to the three
functions Jn, Yn, and Xn. We have basically eliminated the
unwanted solution Zn by rewriting the five-term recurrence
relation �11� into a four-term recurrence relation �25�.

In other words, the reduced four-term recurrence relation
�25�, with the coefficients �n

1,2,3 evaluated according to Eq.
�27� in the direction of increasing n from initial values �M−

1,2,3,
M−
n− with a safety margin, has to a very good approxi-
mation the three functions Jn, Yn, and Xn as fundamental
solutions. This means that a solution fn to the recurrence
relation �25� started with initial values f l, M+� l�M++2,
M+	n+ with a safety margin, and applied in the direction of
decreasing n will be almost proportional to Jn for n
M+, by
the same arguments as in Sec. III A, because after having
eliminated Zn, the wanted solution Jn is the only one which is
suppressed for n→�. This is, however, only true down to the
negative cutoff index n− below which an admixture of the
other unwanted solution Yn takes over, see Fig. 3.

Similarly, for the three-term recurrence relation �26�, we
can write a generic solution vn in terms of the three funda-

mental solutions to the four-term recurrence relation �25�,

vn = b1Jn + b2Xn + b3Yn. �39�

Again, there exist two sets of initial conditions v j
s, 1�s�2,

N−1� j�N+1, with vN+1
1,2 =0, so that

bj = �sj . �40�

The two fundamental solutions to Eq. �25� are therefore

vn
1 = Jn −

JN+1

YN+1
Yn,

vn
2 = Xn −

XN+1

YN+1
Yn. �41�

Thus, provided the recurrence for the coefficients of the
three-term recurrence given in Eq. �28� is started at suffi-
ciently small, negative N=M−
n−, and applied in the for-
ward direction, a solution gn to the three-term recurrence
relation �26�, started at a large M+	n+ and performed in the
direction of decreasing n, will, to a good approximation, be
proportional to Jn for n
n−. Combining the solution fn to
the four-term equation �25� with the solution gn to the three-
term equation �26� at the matching index K, where n−
K

n+, then yields a solution proportional to Jn for all n,
nmin�n�nmax. The proportionality constant is found using
the sum rule �10�.

Having settled the question of convergence, we comment
briefly on how to numerically calculate the complementary
solutions Yn, Xn, and Zn shown in Fig. 2. We assume the most
interesting case 1, x
8y. The function Xn can be computed
by using the original recurrence relation �11� in the direction
of increasing n, starting at an index N
−2y+x, i.e., in re-
gion b1. Here Xn quickly outgrows the other solutions to
leave only the “pure” Xn after a few iterations. For Zn, we
similarly use the original recurrence relation �11�, but this
time in the direction of decreasing n, and starting at a large
positive index N	n+ �for the definition of n+, see Eq. �24��.
However, in this region Jn grows as fast as Zn, and a solution
yn calculated this way will be a linear combination yn
=a1Jn+a2Zn for n	−2y+x, the constants a1,2 depending on
the initial values. For n
−2y+x �in region b1�, Zn grows
faster with decreasing n than the other fundamental solu-
tions, so that here yn=a2Zn. Finally, using the four-term re-
lation �25� in the backward direction, starting at index N

n+ in region c1, yields a solution xn=a1Jn+a2Yn+a3Xn for
−2y+x
n
n+, xn=a1Jn+a2Yn for n−
n
−2y+x, and xn
=a2Yn for n
n−.

IV. DISCUSSION

A. Accuracy

It is necessary to investigate how the accuracy of the com-
puted approximation hn depends on the starting indices
M− ,M+. To this end, we define the positive “safety margin”
parameter � through
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M− = nmin − �, M+ = nmax + � , �42�

so that specifying � fixes both the upper and the lower start-
ing index, and we also define the relative error

�rel = �hn − Jn�x,y�
Jn�x,y�

� . �43�

In Fig. 4, we show the relative accuracy that can be obtained
by the method presented in this paper, as a function of �, for
different values of the arguments x and y, and different index
n in the obtained array hn. We have numerically verified that
a performance, similar to the one presented in Fig. 4, can be
expected even close to zeros of Jn�x ,y� �that is, for a general
index n, nmin�n�nmax, where Jn�x ,y�=0 or Jn�x ,y��0�,
although in this case the estimates remain valid only for the
absolute instead of the relative error. Specifically, in Figs.
4�a�–4�c�, we evaluate the relative error �rel at n=0 and take
nmin=n−, nmax=n+ �see Eq. �24�, and also the discussion pre-
ceding Eq. �32��, which means that the recurrence is started
at a distance � from the cutoff indices. The different curves
in the graphs correspond to the following values of x and y:
In Fig. 4�a�, we have 2y=x=10 for curve 1 �blue line�, 2y
=x=102 for curve 2 �green line�, and 2y=x=103 for curve 3
�red line�. For these values of x ,y, the index n=0 corre-

sponds to the border between the two saddle-point regions b1
and c1. We note that Jn�x ,y� cannot be accurately evaluated
in such border regions using the simple saddle-point approxi-
mation �30,32�, but that our method works well here. In Fig.
4�b� we have y=10x=10 for curve 1 �blue line�, y=102x
=102 for curve 2 �green line�, and y=103x=103 for curve 3
�red line�, demonstrating the method for cases where the ra-
tio y /x is large. In Fig. 4�c�, we have instead a small ratio
y /x: x=10y=10 for curve 1 �blue line�, x=102y=102 for
curve 2 �green line�, and x=103y=103 for curve 3 �red line�.
Finally, in Fig. 4�d� we show the case where Jn�x ,y� is evalu-
ated in the cutoff region, where for all three curves �Jn�x ,y��
is of order 10−10. Here, we have y=x=10, n=nmax=55,
nmin=n−−n+n+=−64 for curve 1 �blue line�, y=x=102, n
=nmax=270, nmin=n−−n+n+=−364 for curve 2 �green line�,
and y=x=103, n=nmax=2200, nmin=n−−n+n+=−3137 for
curve 3 �red line�. The value nmin has in all cases in Fig. 4�d�
been chosen so that the distance n−−nmin equals nmax−n+.
Recall that the starting indices M� follow by fixing nmin,
nmax, and �, by Eq. �42�. The black circles in Figs. 4�a�–4�d�
have been obtained from Eq. �45�, using approximation �46�.
For the calculations, computer arithmetic with 32 decimals
was used.

An analytic formula for the relative error can be obtained
by assuming that after normalization, the calculated value hn
is of the form �writing out the dependence of Yn on the
arguments x and y explicitly�

hn = Jn�x,y� −
JM−

�x,y�

YM−
�x,y�

Yn�x,y� , �44�

for starting index M−
n−, similarly to the case for the ordi-
nary Bessel function �see Eq. �22��. This is a simplified as-
sumption, since the total error in general is more compli-
cated, but Eq. �44� can nevertheless be used to make
practical predictions about the dependence of �rel on �.
Equation �44� yields for the approximative relative error

�rel,app = �hn − Jn�x,y�
Jn�x,y�

� = � JM−
�x,y�

YM−
�x,y�

Yn�x,y�
Jn�x,y� � . �45�

An approximation for the amplitude of YM−
�x ,y� for M−


n− can be obtained from the saddle-point expression �14�
for Jn�x ,y�, but reversing the sign of the real part of the
argument of the exponential. If we write the saddle-point
approximation of Yn�x ,y� as Yn�x ,y�=G+�n�+G−�n�, we
have

� JM−
�x,y�

YM−
�x,y�� � � F+�M−� + F−�M−�

G+�M−� + G−�M−�
� � �JM−

�x,y��2

� �e−�Re�if��+�−iM−�+�� + e−�Re�if��−�−iM−�−���2,

�46�

where f��� is defined as after Eq. �14�, and �� denote the two
different saddle-point solutions from Eq. �12�, with n=M−.
The last approximation in Eq. �46� neglects the preexponen-
tial factor and the oscillating factor in the saddle-point ap-
proximation �14�, which is sufficient for an order-of-
magnitude estimate. The ratio Yn�x ,y� /Jn�x ,y� in Eq. �45�
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FIG. 4. �Color online� The relative error �rel, as defined in Eq.
�43�, as a function of the “safety margin” parameter � �see Eq.
�42��. In each of the different parameter ranges considered, an ex-
ponential decrease of the obtained error with the safety margin pa-
rameter is observed, demonstrating the applicability of the recursive
method. In �a� we consider parameters such that x=2y, in �b� we
have a large ratio y /x, whereas in �c�, we have a small ratio y /x,
and in �d�, results for the cutoff region are presented. A detailed
explanation of the parameter regions considered is in the text. In all
parts, the black circles represent the approximation for the relative
error obtained from Eqs. �45� and �46�.

RECURSIVE ALGORITHM FOR ARRAYS OF GENERALIZED… PHYSICAL REVIEW E 79, 026707 �2009�

026707-9



can be approximated with unity for n in the oscillating region
�Figs. 4�a�–4�c��, and with the simplified saddle-point ap-
proximation �46� for n in the cutoff region �Fig. 4�d��. The
approximation �45� together with Eq. �46� for the relative
error is plotted as circles in Fig. 4. Clearly the approximate
formula can be used for practical estimates of how far out the
recurrence should be started if a specific accuracy is sought
for the array of generalized Bessel functions to be computed.
Formula �46� also explains the exponential decrease in rela-
tive error observed in Fig. 4.

B. Comparison with other methods

Here we briefly comment on the performance of the pre-
sented algorithm as compared to other ways of numerically
evaluating the generalized Bessel function. Let us make a
comparison to an alternative algorithm based on the evalua-
tion of ordinary Bessel functions using the techniques out-
lined in Sec. III A, where we first calculate two arrays
J2s+n�x�, Js�y� of ordinary Bessel functions by Miller’s algo-
rithm and later calculate the generalized Bessel functions us-
ing Eq. �9�. Calculation of the arrays of ordinary Bessel
functions then requires two recurrence runs, and to obtain the
numerical value Jn�x ,y�, in addition, the sum
�s=−�

� J2s+n�x�Js�y� has to be performed. This means that
since the generalized Miller’s algorithm requires two recur-
rence runs only, for calculation of a single value Jn0

�x ,y�, the
two methods demand a comparable amount of time. How-
ever, the calculation of a single generalized Bessel function
is not the aim of our considerations: for the whole array
Jn�x ,y�, nmin�n�nmax, the reduction in computer time due
to the elimination of the calculation of the sums
�s=−�

� J2s+n�x�Js�y� leads to an order-of-magnitude gain with
respect to computational resources while the accuracy ob-
tained by the two different methods is similar.

The second method with which to compare is the
asymptotic expansion by integration through the saddle
points, as presented in �32�. For evaluation of a single value
Jn0

�x ,y�, with moderate accuracy demands, the saddle-point
integration is of course the best method, especially for large
values of the parameters n, x, and y. The drawback of this
method is the relatively complex implementation �32�, and in
addition, an increase in the accuracy of a saddle-point
method typically is a nontrivial task which involves higher-
order expansions of the integrand about the saddle point, and
this typically leads to very complicated analytic expressions
for higher orders, especially for an integrand with a non-
trivial structure as in Eq. �1�. See, however, Ref. �52� for a
possibly simpler numerical method, the “numerical steepest
descent method.” In any case, if the complete array Jn�x ,y�,
nmin�n�nmax is sought to high accuracy, as it is the case for
second-order laser-related problems, then our method is nec-
essarily better, since the time spent on one recursive step is
very brief.

V. ILLUSTRATIVE CONSIDERATIONS FOR THE
DIRAC-VOLKOV SOLUTIONS

In this section, we consider the Volkov solution, the ana-
lytic solution to the Dirac �or Klein-Gordon� equation

coupled to an external, plane-wave laser field. We show that
the generalized Bessel functions can be directly interpreted
as the amplitudes for discrete energy levels of a quantum
laser-dressed electron, corresponding to the absorption or
emission of a specific number of laser photons.

A. Physical origin of the recurrence relation

There is a direct, physical way to derive the recurrence
relation satisfied by the generalized Bessel function, in the
context of relativistic laser-matter interactions. The result of
this approach defines Jn�x ,y� in terms of the recurrence re-
lation and a normalization condition, even on the level of
spinless particles, i.e., on the level of Klein-Gordon theory.
In this section, we set �=c=1, denote the electron’s charge
and mass by e=−�e� and m, respectively, and write dot prod-
ucts between relativistic four-vectors as u ·v=u�v�=u0v0

−u� ·v� , for two four-vectors u� and v�. The space-time coor-
dinate is denoted by z�= �t ,x��, in order not to cause confu-
sion with the argument x of Jn�x ,y�, and k ·z=�t−k� ·x� is the
phase of the laser field. The 4�4 Dirac gamma matrices are
written as ��.

Let us consider the Klein-Gordon equation ��i�z−eA�2

−m2���z�=0 for the interaction of a spinless particle of
charge e with an external laser field of linear polarization
A��z�=a� cos�k ·z�,

�− �z
2 − 2ie cos�k · z�a · �z

+
e2a2

2
cos�2k · z� − m2 −

�e2a2�
2


��z� = 0. �47�

Here a�= �0,a�� is the polarization vector, and k�= �� ,k�� is
the propagation wave vector of the laser field, with k ·k
=k ·a=0. We also introduce the four-vector q�, the so-called
effective momentum �53�, which fulfills

q2 = m2 +
1

2
�e2a2� . �48�

We now insert the Floquet ansatz �54� for the wave function

��z� = e−iq·z�
s

Bse
−isk·z, �49�

where the coefficients Bn are independent of z�, into Eq.
�47�. From this representation, we see that the factor e−isk·z

actually has the same form as a phase factor characterizing
the absorption of s laser photons from the laser field, as we
integrate over the Minkowski coordinate z in the calculation
of an S-matrix element. For negative s, we instead have
emission into the laser mode. Equation �49� also leads to a
relation for the coefficients Bs,

�
s=−�

�

�x cos��� − 2y cos�2�� − s�Bse
−is� = 0,
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x =
ea · q

k · q
, y =

e2a2

8k · q
, � = k · z . �50�

Multiplying Eq. �50� with ein�, and integrating over one pe-
riod, we obtain the recurrence relation �11�, if we identify

Bn � Jn�x,y� . �51�

For the wave function �49� constructed from the solution to
the recurrence relation �11� to be finite, we must demand
Jn�x ,y� to be normalizable. This is expressed by the condi-
tion �10�. Furthermore, using the property �2� of Jn�x ,y�, we
can perform the sum over s in Eq. �49�, with the result

��z� = e−iq·z−ix sin �+iy sin�2��, �52�

which is the form in which the Volkov solution is usually
presented �53�.

For comparison, the solution ��z� to the Dirac equation
in the presence of a linearly polarized laser field,

�i� · �z − ea · � cos � − m���z� = 0 �53�

reads

��z� = e−iq·z �
s=−�

� � ek · �a · �

4k · q
�Js+1�x,y�

+ Js−1�x,y�� + Js�x,y��e−is�uq, �54�

where x ,y are defined in Eq. �50�, and uq is a Dirac bispinor
satisfying

�� · q + 2y� · k − m�uq = 0. �55�

The four-vector p�=q�+2yk� can be identified as the
asymptotic momentum of the particle, or the residual mo-
mentum as the laser field is turned off.

B. Classical-quantum correspondence of Volkov states

It follows from the expression �49� that a quantum Volkov
state �we consider the spinless case for simplicity� can be
regarded as a superposition of an infinite number of plane
waves with definite, discrete, four-momenta q�+nk�. The
amplitude to find the particle with four-momentum q�+nk�

is given by Jn�x ,y�, with x and y as in Eq. �50�. Therefore it
might seem that the particle can acquire arbitrarily high en-
ergy in the field. That this is not so follows from the expo-
nential decay of Jn�x ,y� beyond the cutoff indices, as dis-
cussed in Sec. II B. In the following, we show that the cutoff
indices can also be derived as the lowest and highest energy
of a classical particle moving in a laser field. To this end, we
first recall the classical, relativistic equations of motion of a
particle of charge e and mass m, moving in the laser potential
A�=a� cos �:

du�

d�
=

e

m
�a�k · u − k�a · u�sin � , �56�

where u� is the kinetic momentum, and � is the proper time.
The solution reads �14,55�, assuming initial phase �0=� /2,

u� = p� + xk� cos � − 4yk� cos2 � − ea� cos � , �57�

where p� is the asymptotic momentum. Note that as u� is the
physical momentum, it is gauge invariant under A�→A�

+�k�, where � is an arbitrary function. The phase average is
exactly the effective momentum, u�= p�−k�e2a2 / �4k · p�
=q�. In Fig. 5, we consider the energy u0 as a function of the
phase � and compare it with the discrete energy levels q0

+n� of the quantum wave function. We see that the maximal
and minimal energy of the classical particle correspond ex-
actly to the cutoff indices of the generalized Bessel function.
The probability for the quantum particle to have an energy
larger �or smaller� than the classically allowed energy is thus
exponentially small. Interestingly, the local maxima of the
classical energy u0, labeled uint

0 in Fig. 5, coincide with the
transition between the two different saddle-point regions of
Jn�x ,y�.

VI. CONCLUSIONS

We have presented a recursive algorithm for numerical
evaluation of the generalized Bessel function Jn�x ,y�, which
is important for laser-physics related problems, where the
evaluation of large arrays of generalized Bessel functions is
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FIG. 5. �Color online� Illustration of the classical-quantum cor-
respondence of a laser-dressed electron. Shown to the left ��a�� with
a solid blue line is the classical energy u0 �see Eq. �57�� as a func-
tion of the phase �, for �=1 eV, laser intensity I=1016 W /cm2

�corresponding to �ea� /m=0.1 where a is the laser polarization four-
vector�, initial energy p0=2m, and initial angle �=0.54°, with p� ·k�
= �p� �� cos �. These parameters give x=3.3�103, and y=−2.7
�103 for the arguments of Jn�x ,y�. The dashed lines show the
minimum classical energy umin

0 , the maximum classical energy umax
0 ,

the average energy q0, and the intermediate energy level �local
maximum� uint

0 , as indicated in the center of the figure. In �b�, we
display the quantum mechanical amplitude Jn�x ,y� of energy level
n, which has energy q0+n� �see Eq. �49��. Here positive index n
corresponds to absorbing n number of photons from the laser field,
while negative n means emitting �n� number of photons into the
laser mode. The graph is arranged such that n=0 corresponds to the
average energy q0. The cutoff indices are nicely reproduced by the
classical maxima and minima.
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crucial. In general, we can say that the laser parameters fix
the arguments x and y of the generalized Bessel function
Jn�x ,y�, while the index n characterizes the number of ex-
changed laser photons.

As evident from Figs. 1 and 2, complementary solutions
Yn, Xn, and Zn to the recurrence relation �11� satisfied by
Jn�x ,y� are central to our algorithm. By removing the sources
of numerical instability, which are the exponentially growing
complementary solutions, in a first recurrence run, we are
able to construct a stable recursive algorithm, similar to Mill-
er’s algorithm for the ordinary Bessel function, but suitably
enhanced for the generalized Bessel function. Numerical sta-
bility is demonstrated, and the obtainable accuracy is studied
numerically and by an approximate formula �see Sec. IV�.
The algorithm is useful especially when a large number of
generalized Bessel functions of different index, but of the
same argument, are to be generated. As is evident from the
discussion in Sec. V, a fast and accurate calculation of gen-
eralized Bessel functions leads to a quantitative understand-
ing of the quantum-classical correspondence for a laser-
dressed electron.
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APPENDIX: INTEGRAL REPRESENTATION OF THE
COMPLEMENTARY SOLUTIONS

In this Appendix, we present the expressions for the inte-
gral representations of the complementary solutions Yn�x ,y�,
Zn�x ,y�, and Xn�x ,y� to the recurrence relation �11�, without
giving any details about the mathematical considerations
which lead to these representations. The integrals read

Yn�x,y� = −
1

�
�

0

�

�cos�n�/2 − x cosh ��en�

+ �− 1�ne−n�−x sinh ��e−y sinh 2�d�

−
1

�
�

�/2

�

sin�n� − x sin � + y sin 2��d� , �A1�

Xn�x,y� = −
1

�
�

0

�

sin�n�/2 − x cosh ��en�−y sinh 2�d�

−
1

�
�

0

�/2

cos�n� − x sin � + y sin 2��d� , �A2�

Zn�x,y� = −
1

�
�

0

�

sin�n� − x sin � + y sin 2��d�

−
1

�
�

0

�

��− 1�ne−x sinh � − ex sinh ��

� e−n�−y sinh 2�d� . �A3�

Recall that we consider nonzero, positive values of the
arguments x and y, and an arbitrary integer n. By partial
integration, the functions �A1�–�A3� verify the recurrence
relation �11�. The prefactor has been selected for each case
so that the functions Xn�x ,y�, Yn�x ,y�, and Zn�x ,y� have the
same amplitude as Jn�x ,y� in the oscillating region, and this
choice also implies that the functions Yn�x→0,y� and Zn�x
→0,y�, for even and odd n, respectively, can be expressed as
Neumann functions of fractional order. �The latter statement
is also given here without proof.� A more detailed discussion
of the mathematical properties of the four functions defined
by the integral representations �1� and �A1�–�A3� will be
given elsewhere. For all considerations reported in the cur-
rent paper, the detailed knowledge of the integral represen-
tations is not necessary; it is sufficient to know the recur-
rence relation �11� that they fulfill.
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