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Abstract

We analyze the phase structure and the renormalization group (RG) flow of the generalized sine-
Gordon models with nonvanishing mass terms, using the Wegner—Houghton RG method in the local
potential approximation. Particular emphasis is laid upon the layered sine-Gordon (LSG) model,
which is the bosonized version of the multi-flavour Schwinger model and approaches the sum of
two “normal”, massless sine-Gordon (SG) models in the limit of a vanishing interlayer coupling
Another model of interest is the massive sine-Gordon (MSG) model. The leading-order approxima-
tion to the UV (ultraviolet) RG flow predicts two phases for the LSG as well as for the MSG, just
as it would be expected for the SG model, where the two phases are known to be separated by the
Coleman fixed point. The presence of finite mass terms (for the LSG and the MSG) leads to correc-
tions to the UV RG flow, which are naturally identified as the “mass corrections”. The leading-order
mass corrections are shown to have the following consequences: (i) for the MSG model, only one
phase persists, and (ii) for the LSG model, the transition temperature is modified. Within the mass-
corrected UV scaling laws, the limit of — 0 is thus nonuniform with respect to the phase structure
of the model. The modified phase structure of general massive sine-Gordon models is connected
with the breaking of symmetries in the internal space spanned by the field variables. For the LSG,
the second-order subleading mass corrections suggest that there exists a cross-over regime before the
IR scaling sets in, and the nonlinear terms show explicitly that higher-order Fourier modes appear in
the periodic blocked potential.
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1. Introduction

At the heart of every quantum field theory, there is the need for renormalization. In
the framework of the well-known perturbative renormalization procedure (see[®.g.,

2]), the potentials—or interaction Lagrangians—are decomposed in a Taylor series in the
fields; this Taylor series generates the vertices of the theory. If the expansion contains only
a finite number of terms (this is the “normal” case), then each interaction vertex can be
treated independently. However, certain theories exist which cannot be considered in this
traditional way. In some theories, symmetries of the Lagrangian impose the requirement
of taking infinitely many interaction vertices into account; any truncation of these infinite
series would lead to an unacceptable violation of essential symmetries of the model. The
subject of this article is to consider theories which fall into the latter category.

Specifically, we here consider generalizations of the well-known sine-Gordon (SG)
scalar field theory with mass terms. The “pure”, massless SG model is periodic in the
internal space spanned by the field variable. One of the central subjects of investigation is
the layered sine-Gordon (LSG) mod8|4], where the periodicity is broken by a coupling
term between two layers each of which is described by a scalar field. All generalizations of
the SG model discussed here belong to a wider class of massive sine-Gordon type models
for two coupled Lorentz-scalar fields, which form &{2) “flavour” doublet, i.e., which
are invariant under a global rotation in the internal space of the field variables, though
not necessarily periodic. All Lagrangians investigated here contain self-interaction terms
which are periodic in the field variables, but this periodicity is broken by the mass terms.

Regarding the phase structure, it is known that the massless sine-Gordon (SG) model
for scalar, flavour singlet together with the two-dimensional XY model and Coulomb gas
belong to the same universality class. For the two-dimensional Coulomb gas, the absence of
long-range order, the existence of the Coleman fixed point and the presence of a topological
(Kosterlitz—Thouless) phase transition have been proven rigorously in[Beid]. It was
shown that the dimensionful effective potential becomes a field-independent constant in
both phases of the SG mod&D].

The joint feature of the massless and massive SG models is the presence of a self-
interaction potential which is periodic in the various directions of the internal space. This
makes it necessary to treat these models in a manner which avoids the Taylor expansion of
the periodic part of the potential. Hence, the renormalizgtidn-14] of these models can-
not be considered in the framework of the usual perturbative expafis@inThe massive
SG models open a platform to investigate the effect of a broken periodicity in the internal
space. For the flavour singlet field, periodicity is broken entirely by a mass term, and the
ground state is characterized by a vanishing field configur§tiop

For the flavour doublet, one possible way to realize a partial breaking of periodicity
is given by a single nonvanishing mass eigenvalue. Alternatively, two eigenvalues of the
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“mass matrix” that enters the Lagrangian may be nonzero. We here investigate the effect
of entire and partial breaking of periodicity in the internal space on the ultraviolet (UV)
scaling laws and on the existence of the Coleman fixed point. We shall restrict ourselves to
various approximations of the RG flow equation for the blocked potential.

The LSG model, because of its layered structure, has a connection to solid-state
physics. In particular, it has been used to describe the vortex properties of high transition-
temperature superconductors (HT$83—20] The real-space renormalization group (RG)
analysis of the LSG model, invariably based on the dilute vortex gas approximation, has
been successfully applied for the explanation of electric transport properties of HTSC
materials[16,18,20,21] New experimental data are in disagreement with theoretical pre-
dictions, and this aspect may require a more refined analysis as compared to the dilute gas
approximatiorf21,22]

There exist connections of the generalized sine-Gordon models to fundamental ques-
tions of field theory. For instance, a special case of the massive SG-type models is just
the bosonized version of the massive Schwinger model, which in turn is an exactly solv-
able two-dimensional toy-model of strong confining forf&4]. The flavour singlet field
can then be considered a meson field with vanishing flavour charge (“baryon number”),
while the flavour doublet field models “baryons” with “baryon chargelz’. Here, we re-
strict ourselves to the investigation of the vacuum sector with zero total flavour charge
(“baryon charge”]23,24] Of fundamental importance is the following question: are there
any operators, irrelevant in the bare theory, which become relevant for the infrared (IR)
physics? Our investigations hint at some interesting phenomena which are connected with
cross-over regions in which UV-irrelevant couplings may turn into IR-relevant operators,
after passing through intermediate scales. The IR-relevant “confining forces” would cor-
respond to the interactions among the “hadrons” in our language. In the case of QCD, the
much more serious problem of the determination of the operators relevant for confinement
(i.e., for building up the hadrons) may, in principle, carry some similarities to the model
problems studied here.

Our paper is organized as follows. In Sect@yrwe give a short overview of all classes
of massive generalized sine-Gordon models, of the flavour-doublet type, which are relevant
for the current investigation, including the LSG and the MSG models. Segftiocludes
the basic relations used for the Wegner—-Houghton (WH) RG md2&jdn the local po-
tential approximation. In Sectiofy we start with the outline of various approximations to
the WH RG used in the present paper. The UV scaling laws for the massless and massive
models are found analytically in Sectiof and 4.3respectively. In Sectiof.3, the exis-
tence of the Coleman fixed point in massive SG models is also discussed on the basis of the
UV scaling laws for various special cases, with entire and partial breaking of periodicity,
for flavour-doublet and flavour-singlet fields. In Sectibd, the UV scaling laws are en-
hanced by keeping the subleading nonlinear terms in the mass-corrected RG flow equation
for the blocked potential. In this approximation, the numerical determination of the RG
flow is presented for the LSG model, and the existence of a cross-over region from the UV
to the IR scaling regimes is demonstrated to persist after the inclusion of the subleading
terms. Finally, the main results are summarized in Sed&ion
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2. Two-flavour massive sine-Gordon model

In this article, we investigate a class of Euclidean scalar models for the flav@)r
doublet

(%) ®

in d = 2 spatial dimensions. The bare Lagrangians are assumed to have the following
properties:

(1) The Lagrangians has the discrete symmetry —¢ (G-parity).

(2) The flavour symmetry; <> ¢; leaves the Lagrangian invariant.

(3) The Lagrangian contains an interaction td¥itys, ¢2), periodic in the internal space
spanned by the field variables,

21 21
Ulpr.v2) =U( g1+ = o2+~ |, )
1 b2

with b; = const (fori = 1, 2). As shown below, we may even assubie= b, without
loss of generality.
(4) The Lagrangian contains a mass te}@ngg, where the symmetric, positive semi-

definite mass matriMiZj (i, j =1, 2) has the structure

M2 —J
m?=("1 detM? >0, 3
wr= (Y gp) eut )
with M2, M2, J > 0. Flavour symmetry imposes the further constraifit= M», but
initially we will prefer to keep an arbitraryf, and M» in the formulas, for illustrative
purposes.

We will call a general Lagrangian having the above properties a gemeselavour mas-
sive sine-Gordon mod€2FMSG).

Various specializations will be discussed below. Invoking the completeness of a Fourier
decomposition, we see immediately that the general structure of the bare action of a
2FMSG model is

1 1
Ly=5(007)00) + 59 M%
o0
+ Y [fum COAnb191) COSMb202) + gum SiN(nb1901) SiN(Mb2¢2)]. (4)
n,m=0
Here, all couplings,,,, andg,,,, are dimensionful (the dimensionless case will be discussed
below).
Some of the Lagrangians we will consider actually depend on one flavour only. For

these, the flavour symmetry requiremé2itis not applicable.
An orthogonal transformation

0= ( cosy smy) 5)
="\ —siny cosy
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of the flavour-doubletﬁ — QQ, transforms the model into a similar one with transformed
period lengths in the internal space,

Brt\ ([ cosy siny ) (bit ©)
Byt) ~\=siny cosy J\n;1)
There exists a particular orthogonal transformation, the rotation by the angle
b1 — bz)
= arcta , 7
Y12 I’( b1 T b (7)

which transforms the periodic structure to the case of equal pefipgss, = 8,

1 1
£=5(0¢")(0) + ¢ M

2 I
+ D [unm COBp1) COAMBP2) + v SIN(MB@1) SIN(MBe2) - (8)
n,m=0

For the sake of simplicity, we did not change the notations for the transformed (rotated)
field and mass matrix. However, the couplings are now denoteg,aandv,,,,. The scal-
ing laws do not differ qualitatively for the modél, (see Eq(4)) with different periods
in the different directions of the internal space on the one hand, and {eee Eq(8))
with an identical periog8 in both directions of the internal space on the other hand. The
global O (2) rotation in Eq.(5), which connects these bare theories, does not mix the field
fluctuations with different momenta, so that the same global rotation connects the blocked
theories at any given scale. Without loss of generality, we may therefore restrict our con-
siderations below to the models with identical periods in both directions of the internal
space.

For the model given by the Lagrangiaghof Eg. (8), the positive semidefinite mass
matrix has the eigenvalues

M2 =

2 2 2 2
Mi+M;  [(Mi=M;

2 2
we may now distinguish the following cases:

2 1/2
) +J2] =T+D>0, 9)

e case (i): two vanishing eigenvalugs? =0,
o case (i)):M2 =0, butM? =2M? =2J > 0,
e case (iii): two nonvanishing eigenvaluw@_t #0.

Case (i) occurs forM? = M22 = J = 0 and represents thmassless two-flavour SG
model(ML2FSG). Case (ii) is relevant fo? = M2 = J # 0, and case (jii) occurs for
M2M?2 > J2. In case (i), the periodicity in the internal space is fully respected by the en-
tire Lagrangian (not only by its periodic part, see E)). By contrast, cases (ii) and (iii)
correspond to explicit breaking of periodicity either partially or entirely, respectively. This

is because one could have diagonalized the mass matrix in the latter case by an appropri-
ate O (2) rotation, in which case one would have arrived at a Lagrangian of the form of
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Eq. (4) for which the mass term would break periodicity either in a single direction, or
both (orthogonal) directions in the internal space.

In the bare potential, we will assume a simple structure for the periodic part (which is
the part which containing the,,,’s andv,,,’s in Eq.(8)). Indeed, we will restrict ourselves
to only one nonvanishing Fourier mode with indidesm) = (1, 0) in the periodic part of
the bare potential in the Lagrangi@n By choosing a particular angular phase for the field
variable, we can restrict the discussion to thenode and ignore the-mode. Note that
because of flavour symmetry, we could have chagem) = (0, 1) as well,u10 = uos.
Applying this special structure, we recover various models of physical interest:

(1) Respecting global flavour symmetpy <> ¢, the choicer = M22, together with
the restriction to only one Fourier mode, results in #yenmetric 2FMSG model
(S2FMSG). The Lagrangian reads

1 2 1 2
LsoFrmsG= §(3</)1) + E(BW) — Jo192

1
+5M 2(¢% + ¢3) + u[cosBy1) + cogBy2)]. (10)

Here, the notation3/? = M7 = M2 andu = uo1 = uyo are introduced. The mass
eigenvalues ar¢/2 = M2+ J > 0 (because we assume a positive semidefinite mass
matrix). ForM% = M? £ J > 0, the S2FMSG model belongs to case (iii).

(2) We now specialize the S2FMSG model to the cése M? = M% with mass eigen-
valuesM?2 = 2J > 0 andM2 = 0. This yields the layered sine-Gordon model (LSG),
which belongs to the case (ii) in the above classification, and the Lagrangian reads

1 1 1
Lisc= 5(8%)2 + é(amz + 57 01— 92)% + u[cos 1) + cosBy2)]. (11)

The LSG model has been used to describe the vortex properties of high-transition tem-
perature superconductors (HTS[p—22] Typical HTSC materials have a layered
microscopic structure. In the framework of a (layered, modified) Ginzburg—Landau
theory of superconductivity, the vortex dynamics of strongly anisotropic HTSC mate-
rials can be described reasonably well by the layered XY or layered vortex (Coulomb)
gas models, which in turn can be mapped onto the LSG model. The adjacent lay-
ers are treated on an equal footing, and the mass %e%m(q;l — ¢2)? describes the
weak interaction of the neighbouring layers. The paramgisrrelated to the inverse-
temperature of the layered syst¢b8].
The particular choice g8 = 2,/7 for the LSG represents the bosonized version of the
two-flavour massive Schwinger model (éfppendix A).

(3) Eq. (10), for M = J = 0, represents thenassless two-flavour sine-Gordon model
(ML2FSG). Periodicity in the internal space is fully respected.

(4) The Lagrangian in Eq10), with J = 0 and M? = M? % 0, M2 = O gives the La-
grangianlysg of the (one-flavourjnassive sine-Gordon moddlSG),

1 1
Lmsc = E(awz + §M2¢2 + ucosfy). (12)
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For the other massless scalar field, a massless theory results. It is well known, that the
MSG model for8 = 2,/7 is the bosonized (one-flavour) massive Schwinger model
[26—28] In the language ofppendix A the one-flavour model would correspond to

Eq. (A.1) with the sum over restricted to a single term.

3. Wegner—Houghton RG approach in local potential approximation

The critical behaviour and phase structure of the LSG-type models have been inves-
tigated by several perturbative (linearized) methods (see, [d,46—19,28), providing
scaling laws, which a priori are valid in UV. Here, our purpose is to go beyond the lin-
earized results and to obtain scaling laws for specializations of the 2FMSG model, the
validity of which is extended from the UV region towards the scale of the mass eigenval-
ues.

We apply a differential RG in momentum space with a sharp cut-ofhe so-called
Wegner—Houghton RG approach to the general 2FMSG model. In principle, this method
(in its nonlinearized, full version) enables one to determine the blocked action down to the
IR limit £ — 0. The blocked actioi§;[¢] at the momentum scaleis obtained from the
bare actionS,[¢] at the UV cut-off scaleA by integrating out the high-frequency modes
of the field fluctuations above the moving cut-bffPerforming the elimination of the high-
frequency modes successively, in momentum shglls Ak, k] of infinitesimal thickness
Ak — 0, the following integro-differential equation is obtained:

koeSilp) = — lim Tik Tr'InS/ [¢]. (13)
The WH equation is a so-called exact RG flow equation for the blocked action. The trace
Tr’ on the right-hand side has to be taken over the modes with momenta in the momen-
tum shell[k — Ak, k]. We shall assume bare couplings for which the second functional
derivative matrix
82Sk[g]
3¢i dp;
remains positive definite in the UV scaling region, so that the flow equéti®jdoes not

lose its validity due to the so-called spinodal instability. Blocking generally affects physics
which is reflected in the scale-dependence of the couplings of the blocked action.

The WH RG equatiorf13) has to be projected onto a particular functional subspace,
in order to reduce the search for a functional (the blocked action) to the determination
of the flow of coupling parameterghat multiply functions of the field variables (see also
Appendix B. Here, we assume that the blocked action contains only local interactions and
restrict ourselves to the lowest order of the gradient expansion, the so-called local potential
approximation (LPAJ11,13], according to which the fields remain constant over all space.
We assume that the Lagrangian of the blocked theory is of the same form as that of the
bare theoryC of Eq. (8), but with scale-dependent parameters.

We introduce the dimensionless blocked poteriﬁa(kol, ©2) = k~2Vi (@1, ¢2), dimen-
sionless mass paramete¥§’ = k~2M,’ and couplingsi;; = k~2u;;. All dimensionless

¢ gl = (14)
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guantities will be denoted by a tilde superscript in the following. We recall thdt-in2
dimensions, the fields have carry no physical dimension, sathap.

As already emphasized (see HS)), throughout this article we assume that the di-
mensionless potential; is the sum of the dimensionless mass term (proportional to

ngz(k)g) and of the dimensionless periodic potentiakg1, ¢2),

~ 1 ~2 -
Vi(pr, 92) = 59T M"(0)p + Uk(gr, 92). (15)

In the language of Eq13), we obtainS,ij =68 + V/, and the following equation (again
for d = 2, see Ref[20]):

(2+ kdy) Vie (g1, 92)

~ ~ ~ 2
= —azIn([14 Vo1, 02)][1+ V(1. 02)] — [Vi(91. 92)]). (16)

where the notation
VY (01, 92) = 8,8, Vi (91, 92) 17)

is used for the second derivatives with respect to the fields in(E). The numerical
constantv; = 1/(4r), is a specialization of the general form

24
_ 18
% =55 (18)
to the casel = 2. Here
27412
24 = 19
=T (19)

is thed-dimensional solid angle.

We recall that in the LPA, the blocked potentil{(¢1, ¢2) is a function of the real
variables (constant field configurationg) (i = 1, 2). The scale-dependence is entirely
encoded in the dimensionless coupling constants of the blocked potential. Inserting the
ansatz(15) into the WH RG equatiorf16), the right-hand side turns out to be periodic,
while the left-hand side contains both periodic and nonperiodic parts. The nonperiodic part
contains the mass term, and we obtain the trivial tree-level evolution for the dimensionless
mass parameteﬂ@izj k),

- N k\ 2
20y — 12
and the RG flow equation

2+ ko) Uk (1, 92)
= —a2In([1+ Vo1 02 |[1+ V(p1. 02)] — [ViF(e1. (02)]2), (21)

for the dimensionless periodic piece of the blocked potential. Hence, the dimensionful
mass parameteml?j = kle?j (k) remain constant during the blocking. It is important to

note that the RG flow equatiq21) keeps the periodicity of the periodic pietg of the
blocked potential in both directions of the internal space with unaltered length of geriod
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4, RG flow
4.1. Orientation

We wish to concentrate on the scaling laws in the UV region and their extension toward
the scale of the largest eigenvalue of the mass matrix. First, we determine the UV scaling
laws for the corresponding massless models. For this purpose, the RG-flow ed@ajion
is linearized in the full potential, by expansion of the logarithm,

2+ kd) Uk (1, 92) = —a2(VH + V). (22)

The linearization is valid provided the inequalitiBZ;fﬂ <« 1 hold. This approximation is
applicable in the UV, because the dimensionlé,é’sare obtained from the dimensionful

ast” by a multiplicative factok —2. The solution of Eq(22) provides the correct scaling

laws for massless models like the ML2FSG. The mass terms enté2Epnly via ak-

dependent, but field-independent term on the right-hand side and do not influence the RG

flow of the coupling parametefs,,, andv,,, that enter the periodic part of the potential.
Second, we determine the UV scaling laws for the massive models. We assume

01+ 0B+ 0((7))?)| <1+ 72 3% =t M, + detit?,, (23)
and expand the logarithm in the right-hand side of €4),
in[1+ 22+ O+ 02+ 0((%)?)]
0ll+ 022+ O((VU)Z)
~ | 1 k k k In(1 ~2
n( + 1732 )+n( + 1)
= F1(U0) + Fo(Up) + -+ + In(1+ ). (24)

The termsF1(Uy) andF(Uy) represent the linear and quadratic terms in the second deriv-
atives of the periodic potential, respectively, obtained by expansion of the logarithm. These
terms are given explicitly in E¢27) below. Note thati? > 0 holds for a positive semi-
definite mass matrix. In view of the structure of the two-flavour WH equdfai one can
add and subtract, on the right-hand side, a field-independent, but pdssibpendent term
without changing the RG evolution of the coupling constants. This term may be chosen as
In(1+ 22), because of the trivial RG evolution of the mass terms in(E@).

The mass-corrected RG flow equation

2+ k3 Ur (91, 92) = —a2[ Fr(Ux) + Fo(Uy) + - -] (25)

is obtained. The mass corrections help in extending the range of validity of the UV scaling
laws of the general 2FMSG model towards the séateO(M. ). A better approximation

can be achieved by using both the linear and the quadratic tEHs,) and Fo(Uy)
instead of the linear terms only. Because of the tree-level evol(@@ni — O fork — oo,

and thus, the mass corrections vanish in the UV. All of these approximation schemes are
illustrated in the following.
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4.2. UV scaling laws for massless models

As argued above, the UV scaling laws of the massive models in the extreme UV limit,
A~ k> M4, are asymptotically equivalent to those of the corresponding massless mod-
els. The UV scaling laws of the ML2FSG model are obtained by solving the linearized
RG equation(22), which results in decoupled flow equations for the various Fourier am-
plitudes. Their solutions can be obtained analytically:

20,2 2
(u (k)) _ ( k )2“’2" o) (u (A)) (26)
Uam (k) ) \ A Unm(A) )
Here, i, (A) andy,, (A) are the initial values for the coupling constants at the UV cutoff
A, and we recall thatrp, = 1/(47) has got nothing to do with a coupling constant (see
Eq. (18)). We immediately see that the linearized RG flow predicts a Coleman-type fixed
point for the ML2FSG model with a single Fourier mode=£ 0, m = 1) of the potential
at the critical valuqﬁ’c2 = 8x. A similar fixed point was found in the massless sine-Gordon
model[10,29] For the ML2FSG model with infinitely many Fourier modes of the periodic
potential, all the Fourier amplitudes,, (k) and o, (k) are UV irrelevant forg? > g2,
while for g2 < /33, at least one of the Fourier amplitudes becomes relevant. However, one
should remember that on the basis of the linearized RG flow equation, it is hardly possible
to make any definite conclusion regarding the existence of a Coleman-type fixed point for
massive sine-Gordon type models, since the linearized RG flow equation takes into account
neither the effects of the finite mass eigenvalues, nor those of the nonlinear terms which
couple the various Fourier amplitudes of the blocked potential. We therefore cannot use
Eqgs.(22) or (26) for a description of the phase structure of the massive models, although
the mass-corrected flof25) reproduces the massless fl®2) in the “extreme UV”, which
might be called the “XUV region” in some distant analogy to the corresponding short
wavelengths of light.

4.3. Mass-corrected UV scaling laws for massive models

In the case of general 2FMSG models, the mass paramgtersi (k) and Mz (k) are
always relevant in the IR (see E@Q)). This means that the argument of the logarithm in
Eqg. (21) will always increase for decreasing scaleegardless of the choice of the initial
conditions for the coupling constants. Consequently, the linearizgR)mecessarily loses
its validity with decreasing scalg irrespective of the value ¢@. This observation suggests
that one has to turn to E@R5), in order to extend the scaling laws towards the s¢ale
O(M,). By contrast, for the ML2FSG model there are no mass terms, and the linearization
may remain valid down to the IR limit (8% > g2).

The detailed evaluation of the terms in the right-hand side o{Es).gives:

F1(Op) = rOP + r02% - 2r U2, (27a)
~ 1 5r~1172 1 5r~05002 " 151D 11~
Fal = - ZrHOPT - 53102 - (6 + 2201 - POP07

+ 2r1r Ukll(jklz + 2ror 01{22012, (27b)
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with
-1 ~
$=(1+M2) ) rZSM%Za
ri=£(1+M3,), ra=£(1+M%). (27¢)
Fgr the remainder of the derivation, we will restrict our attention to the linear term
F1(Ur) on the right-hand side of E¢R5) and equate the coefficients of the corresponding

Fourier modes on both sides of the equation. We will assume a Lagrangian of the general
structure

1 1
L=5090*+ 5092)* = Jg102
1 1
+ 5 ME9E + 5 M3¢5 + ulcosBer) + cosBy2)], (28)
which is almost equivalent to the S2FMSG model as defined ifHx), but we keep two
different masses/, and M, for illustrative purposes.

One finally arrives at the following set of equations for the scale-dependent Fourier
amplitudes:

o) = (s ) (). e

Here, the differential operat®; = 2 + kd;, and the coefficients are

a_ QA MDm2+ At MPn? 2nmJ
A+ MHA+ MR -2 A+ MDA+ ME) - T2
We see that modes given by different pairs of integers:) decouple due to the lineariza-

tion, but the corresponding cosine and sine modes mix. The set of(Ejsdecouple
entirely when the functions

(30)

ﬁinm == ’an + f)nm (31)
are introduced,

Dic P = 028%(A F B) F . (32)
The solution is easily found to be

5 . k\ 2

F:tnm (k) — F:tnm (A) (_) 1_[ [R)L (k)]utnm'f')n(ﬂnmiynm) (33)

A
A=+
with the variables
k% + M2
R, (k) = A 34

The dimensionful mass eigenvalues (no tiI(Méﬁ, with A = &£, are given in Eq(9), and
the exponents are

2
Opm = %(”2 + mZ),



478 I. Nandori et al. / Nuclear Physics B 725 [FS] (2005) 467-492

asf(M2 — M?)(m? — n?)
8D ’

IBnm =

aoB2nmJ
2D
The exponents are constant under the RG flow (they involve the dimensionful mass para-
meters which do not run). The quantify is defined in Eq(9), and the flavour symmetry
(which entailsM1 = M>) leads to the corresponding symmeiry-> m in Fourier space
(Bum = 0). For flavour symmetry, the invarianee< m is preserved under the RG flow.
Note thatw,,,, should not be confused witky,; as defined in Eq(18). The solution for the
original Fourier amplitudes is

1 k -2 o Nnm
()= Triprar==Jou(22) o0

A=%1

(35)

VYnm =

with the transformation matrix

cosh,,, sinhé,,, _
Oum = (Sinhsnm Cosmnm) . Bum = Yam ék In Ry, (k). (37)

Equation(36) contains the general expression for the mass-corrected UV scaling law for a
2FMSG-type model.

If we restrict the 2FMSG model to only one nonvanishing Fourier magieof the
periodic potential, as it is suggested by the structure of the bare Lagrgd@gthen we
see that no other modes are generated by the RG flow corresponding to the mass-corrected
UV scaling laws:

fiork)\ _ (dioa(A) (k)72 a2p? [ Ry (k) 128" Mi=M3)/@D)
(ﬁlo(k))_<ﬁ10(A)><X> [ReGOR-(0] [R(k)] '
(38)

For the S2FMSG model with the only nonvanishing coupliags = iig1(k) = it10(k), the
scaling laws reduce to

k2 w
ﬁ(k):ﬁ(A)(Z) [Ry(OR_(K)] 2%/, (39)

We now specialize to the LSG model, inserting one vanishing mass eigemvale0,
and using¥2 > 0, to obtain

K\ 2+ 32 agh?
ﬁ(k):ﬁ(A)(Z) [Ry(K)] % . (40)

Finally, for the ML2FSG model with two vanishing mass eigenvalues, one recovers the
particular case of E(26),

foak)\ _ ((iioa(A)) (k)2
(ﬂlo(k)> o <ﬂ10(A)> <A> ’ (42)
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without any mass corrections.

We now discuss the consequences of the mass-corrected UV scalin(B&viar the
particular cases as listed in E38){41). For the general (S)2FMSG model with positive
definite mass matrix, we find that according to [E8g), there is no Coleman-type fixed
point irrespective of the value of the parameger

A Coleman-type fixed point can in principle only be obtained for models where one or
both of the mass eigenvalues vanish, as it is the case for the LSG and the ML2FSG models.
Having transformed the mass matrix to diagonal form by an appropriate global rotation in
the internal space, these models exhibit explicit periodicity in one or both of the indepen-
dent orthogonal directions in the internal space. According to(8®), an expression of
the structurgk/A)~2+", with  depending om, m, andB, appears in the UV scaling laws
if and only if at least one mass eigenvalue vanishes. The teym) 2" starts to dom-
inate the flow of the couplings whenapproaches the scaM, . If one extrapolates the
UV scaling laws toward the IR region, a Coleman-type fixed point is predicteq o,

i.e., for some critical valug? = ,BCZ. A positive definite mass matrix corresponds to break-

ing periodicity in both independent orthogonal directions of the internal space and results
in the removal of the Coleman fixed point, as compared to the massless case (unbroken
periodicity).

For the LSG model with a single nonvanishing mass eigenvMﬁe,é 0, periodicity
is broken only in a single direction of the internal space, and this results in the shift of
the Coleman fixed point lying gt? = 87 (for the massless case) g3 = 167, as shown
explicitly below. A similar fixed point has been found for the massless one-flavour sine-
Gordon mode[10,29] For the one-flavour massive sine-Gordon model, this fixed point
disappears, as we shall discuss below. In general, the increasing number of flavours opens
various ways of breaking periodicity explicitly in a subspace of the internal space, and this
affects the existence and the position of the Coleman fixed point.

4.3.1. S2FMSG model
For symmetric initial conditions at the UV scalg, the relationi = iig1 = ii19 holds
throughout the evolution, and ER9) can be recast into the form

i ) K\"2/ (k2 1+ M?)2 — g2 \%2F?/4
u(k):u(A)(Z> (((A2+M2))2—J2> : (42)

We recognize immediately that fér— oo (i.e., k ~ A), this flow is equivalent to the
massless flow41), and that the corrections to the massless flow are of avtferk2, and

J2/k?, as it should be (based on dimensional arguments, and because the corrections have
to vanish ask — o0). It is reassuring to observe that the solut{d?) is also consistent

with the UV scaling law(26) of the symmetric massless ML2FSG model for general
andm. For scalesk approaching the mas¥_, however, the Fourier amplitudgk) be-
comes relevant, independent of the choicg®f This is a very important modification of

the linearized result in Eq§26) and (41)not only is the Coleman fixed point is gone, but

the mass-corrected flog42) also suggests the existence of a cross-over region where the
UV irrelevant couplingi turns to a relevant one. One thus expects the existence of a sin-
gle phase for the general S2FMSG model with two nonvanishing eigenvalues of the mass
matrix.
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4.3.2. LSG model
We recall the mass-corrected soluti@®), which is equivalent to Eq$39) and (42¥or
the case/ = M,

k —2+012/32/2 k2+2J 112/32/4
i(k) = ii(A)| — — . 4
(k) =i ( )(A> <A2+2J) (43)

A graphical representation can be foundFig. 1. For 87 < 82 < 16, the solution fori
has a minimum akmin = [J (4 — a282)/(a28% — 2)1Y/2.

If p2 > B2 = 167, the Fourier amplitudéi remains an irrelevant coupling constant
even in the IR region. This suggests that the LSG model may exhibit two phases, separated
by the Coleman fixed point. The coupling which plays the role of the fugacity of the
layered vortex gas has a completely different behaviour in these two phases. The critical
value (critical temperature) for the layered systﬁfn: 16m persists; this critical value
holds irrespective of the mass eigenvald@ = 2/, the only criterium being thats?
should be nonvanishing.

By contrast, if we set/ = 0 explicitly, we arrive at the symmetric massless ML2FSG
model with the critical valueﬂc2 = 8n (see Eq(41)). The limit J — 0 is in that sense
nonuniform, and the phase structure is also nonuniform, because an entire symmetry gets
restored forJ = 0 (periodicity in both directions of the internal space).

For the LSG model, a preliminary phase diagram, as suggested by the mass-corrected
flow, is plotted inFig. 2 To this end, we have to assume that the mass-corrected UV
scaling law(43) holds at least qualitatively in the IR region. This conjecture is supported
by numerical calculations, based on the nonlinear tefn@;) in Eq. (25), as described
below in Sectiort.4. Preliminary numerical results, based on the full WH RG equdadh
which goes beyond the subleading nonlinear term analyzed in Sdcfiaiso support this
conjecture (the latter calculations will be presented in detail elsewhere).

For the LSG, the broken periodicity in one direction of the internal space leads to

o the existence of two phases with different IR fixed poitits; oo for g2 < g2 and
it — 0 for 2 > g2, respectively, and

e anintermediate region in the phase diagram where the UV irrelevant vortex fugacity
becomes relevant in the IR scaling regime, after passing a cross-over regime.

In Fig. 1(regions | and Il1), the overall scaling behaviour of the vortex fugacity is the same
as that for the symmetric ML2FSG model, and in particular, no cross-over regime appears
in the flow of . The cross-over regime will be of particular interest for further numerical
calculations, based on the full WH RG equat{@i).

4.3.3. MSG model

It is enlightening to discuss the mass-corrected UV scaling laws for the (one-flavour)
MSG model, another particular case with entire breaking of periodicity in the internal
space. Formally, the UV scaling laws for the MSG model can be obtained frof8&Q.
by settingM? = M2, M3 = J =0, which implies thatD = M?2/2 in Eqg.(35). In this case,
flavour symmetry would be broken, but the two flavours actually decouple, and thus we
restrict the discussion to a single flavour. We also restrict ourselves to a single Fourier
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Fig. 1. Scaling of the dimensionless coupling constarfior ﬁ2 =127 (in the top) and forﬂ2 =18z (in the
bottom), according to E¢43), for the LSG model. In the figure (top), the solid line represents the UV scaling law
obtained according to E¢26), and the dashed, dashed-dotted and the dotted lines illustrate the mass-corrected
UV scaling laws for various values df=0.002 0.01, 0.03, respectively. For the computations, the UV scale has
been chosen ag = 1.

mode in the blocked potential witth = 1, m = 0) and the amplitudé& = ii10. The UV
mass-corrected RG evolution reads

_ ~ k -2 k2+M2 012,32/2
u(k)zu(A)<Z> (m) . (44)



482 I. Nandori et al. / Nuclear Physics B 725 [FS] (2005) 467-492

u

—~

Fig. 2. Phase diagram of the LSG model based on the mass-corrected UV scali#g)la¥s there is no evolution

for B2 in d = 2 in the LPA, the RG trajectories lie in planes of const@ht The arrows indicate the direction of

the flow & — 0) in which the dimensionless mass eigenvalug 2 k—22J increases. In th¢i, 82) plane, the

phase diagram of the ML2FSG model £ 0) is depicted where the dashed Iineﬁ&t: 8r separates the two
phases. For the LSG, one finds two phases separated by the pl@&&alten (indicated by the dotted lines).

In the phase withg? < 16, two (sub-)regions can be recognized. In region |, the trajectories have the same
tendency as fod = 0: in particular,i remains a relevant (increasing) parameterfes 0. In region II, the UV
irrelevant (decreasing) becomes a relevant (increasing) parameter after a cross-over region. In the phase with
,32 > 16x (region lll), the Fourier amplitudé remains irrelevant during the RG flow.

This reproduces the UV behavio(26) of the corresponding massless model for scales
M < k ~ A, whereii(k) is irrelevant (relevant) fop? > 8r (< 8r). However, the mass-
corrected UV scaling law44) of the MSG model to the IR limit predicts a cross-over at
scalesk? ~ O(M?) (even) forp? > 8r below which the coupling (k) becomes relevant
(seeFig. 3). Thus, irrespective of the choice pf, the couplingi (k) is suggested to be IR
relevant according to the (extrapolation of) the mass-corrected UV scalin¢4ivinto
the IR region.

The mass-corrected UV scaling law in H44) accounts for the explicit breaking of
periodicity in the (one-dimensional) internal space via the nonvanishing mass term and
results in the removal of the Coleman fixed point, as compared to the massless case.

4.4, Extended UV scaling laws for the LSG model

In Sections4.3.1, 4.3.2, and 4.3,3ve restricted the discussion to the linear corrections
F1(Uy) as listed in Eq(25). Here we investigate a further modification of the UV scaling
laws toward the lower scales, by taking into account the nonlinear fexii;) quadratic
in the potential on the right-hand side of Eg5). For the sake of simplicity, we restrict
ourselves to the LSG model. We would like to demonstrate that the nonlineafiim)
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Fig. 3. Scaling of the dimensionless coupling consiaof the MSG model fo2 = 12r. The solid line repre-

sents the UV scaling la{26) for the massless SG model. The dashed, dashed-dotted and the dotted lines depict
the mass-corrected UV scaling last) for the MSG model, for various values f2 = 0.0036 0.0144 0.0324,
respectively. In the IR, the mass-corrected RG flow is drastically and qualitatively different from the massless
flow, even for small mass parameters, due to the broken internal symmetry.

(i) does not change the phase structure obtained on the basis of the mass-corrected UV
scaling law(36), but (i) may have a significant effect on the effective potential obtained

for k — 0. Thus, one is inclined to suggest that the mass-corrected UV scaling laws enable
one to obtain the correct phase structure, although the nonlinearities as implied by the
full WH equation(21) play a decisive role in the cross-over region, and for a detailed
guantitative analysis of the IR region and the effective potential.

Equating the coefficients of the corresponding Fourier modes on the both sides of
Eq. (25), one arrives at the set of equations for the scale-dependent Fourier amplitudes.
For the first few Fourier amplitudegi = @10, 411 andv11, the nonlinear RG equations
read

F2 Lo Lo
(2 + kdp)itor = a2B%Fiior + 012,34[<7 + Gz>u01u11 - 2FGM01U11] , (45a)
(2+ kdy)iing = app?[2Fiin1 — 2G11] + 2B G2, ], (45b)
(2+ k) D11 = a2p?[2F 11 — 2Giiaa], (45c)
using the notations
k% +J J
= — ", = —_=\ 46
k2+2J k2427 (46)

The nonlinear terms generate “higher harmonics”. Specifically, we have the situation
that even for vanishing initial values of the couplings of the higher-order Fourier modes
at the UV scaleA, their nonvanishing values are generated by the fundamental modes
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u

B/
Fig. 4. Schematic phase structure of the MSG model based on the analytic s(dfiois in Fig. 2 the results

are obtained in the local-potential approximation, where there is no evolutigitfand the RG trajectories are

always parallel to the72 = J axis. The arrows indicate the direction of the RG flow—¢ 0). The WH RG
equation(16) gives a trivial scaling for the couplingf2(k) = J (k) « k2 (see Eq(20)), so that the mass para-
meters remain relevant couplings during the whole RG flow. l]'maz plane corresponds to the phase diagram

of the massless SG modefll(2 = J =0). The dashed line separates the two phases of the SG (but not the MSG)
model. The linearization of the WH equati¢?2) would predict the same two phases for the MSG model with

the same critical valug? = 87 . However, the mass-corrected RG treatment modifies this picture and shows only
one phase for the MSG model. In region |, the trajectories have the same tendency as in the massless theory;
i =gy is a relevant (increasing) parameter in the UV and in the IR domain as well. In region Il, the UV irrele-

vant (decreasing) becomes a relevant (increasing) parameter in the IR limit, after a crossover region, according
to Eq.(44).

(1,0) and (0, 1) due to the nonlinear term proportionl’agl, which can be found on the
right-hand side of Eq(45b). Higher-order Fourier modes with nonvanishing couplings
appear in general during the blocking of the LSG model due to the nonlinearities incor-
porated in the logarithm on the right-hand side of E2L). The general ansa{8) for the
blocked potential was motivated by this mixing of the modes and by symmetry considera-
tions.

According to Eq.(43), the couplingio1(k) decreases monotonically with decreasing
scalek, but its logarithmic slop@ Iniig1(k)/d Ink is predicted to change from2 + a2
for J <« k? < A% to —2 + app?/2 for k? <« J. The couplings of the higher harmon-
ics should be irrelevant in the UV: botii11(k)|, and|v11(k)| should be proportional to
f—2t2e2p?, Eq.(43)also predicts thati11(k)|, and|v11(k)| should become relevant in the
IR region, following essentially the tree-level scaling 2.

As shown inFigs. 5-7 these basic features are not modified by the nonlinear terms.
Numerical solutions of Eqi45) are found for initial conditions which are chosen so that
lio1(A)| > |ii11(A)| and |iig1(A)| > |911(A)| at the UV scale, an@? assumes the val-
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Fig. 5. The scaling of the dimensionless coupling consigatof the LSG model is represented graphically
for two different temperature parametg#d = 12 (top) andg? = 18z (bottom). The interlayer coupling is
J =0.001 in both cases. The dotted line represents the solution according t@&snd (43)which is obtained
by considering the linear terty (U in Eq. (25). The solid line shows the solution of the RG flow including (in
addition toFy (Uy)) also the nonlinear teri, (U ) in Eq.(25), which leads to the system of equati@ds). Both
curves almost overlap, which demonstrates that the flow of the fundamental coigpirgalmost independent
of the nonlinear corrections mediated by thg term.

ues of 1Z and 18r (seeFigs. 5—7. The scaling of the fundamental mod&g (k) is
only marginally influenced by the nonlinear terntsg. 5. The situation is somewhat
different for i11(k) and v11(k). If the nonlinear terms are added, then the couplings
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Fig. 6. The scaling of the dimensionless coupling congtant (“higher harmonic”) of the LSG model is shown
for g2 =12r (top) andg? = 18r (bottom) andJ/ = 0.001. The solid and dotted curves are obtained with and
without the nonlinear terms, as kig. (5), but for a different coupling parameter4(; instead ofiig1), and with

an initial conditionii11(A) = 10~4 at the UV scaled = 1. The solution foriq11, including the nonlinear terms
(see Eq(45)), changes sign neadr~ 7 x 1072 (so that Ini11| — —o0), whereas the flow with linear mass
corrections predicts no change of sign (dotted line).

ii11(k) and v11(k) change sign in the cross-over region. The flow diagrams reflect the
same phase structure as obtained on the basis of the mass-corrected UV scaling laws.
In particular, the fact that the couplings1(k) and v11(k) follow the tree-level scaling

in the IR region & k—2) means that the dimensionful couplings (obtained via multipli-
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Fig. 7. The same dsig. 6for the dimensionless coupling constéit; | (LSG model). In the UV, the two solutions
with and without nonlinear terms overlap. In the IR, the two solutions appear to follow similar scaling laws, with
approximately equal double-logarithmic derivativds |011(k)|/d Ink.

cation by k?) tend to nonvanishing finite constants in the lirkit> 0. For 2 < g2,

the fundamental dimensionful coupling; behaves similarly, whereas f@#° > g2 it

tends to zero. Thus, one expects—in both phases—a nonvanishing periodic piece of
the effective potential, as opposed to the massless SG model when the periodic ef-
fective potential should be a trivial constant due to the requirement of convdXty

29].



488 I. Nandori et al. / Nuclear Physics B 725 [FS] (2005) 467-492
5. Summary

The differential renormalization group (RG) in momentum space with a sharp cut-off
(Wegner's and Houghton’s method) has been applied in the local potential approximation
(LPA) to a general two-flavour massive sine-Gordon (2FMSG) model, as defined in Sec-
tion 2. The ansatz used for the blocked potential contains a mass term and a contribution
which is periodic in the different directions of the internal space (se€ ). The bare
Lagrangians under study have only one nonvanishing Fourier mode (s€&8BgParticu-
lar attention has been paid to the layered sine-Gordon (LSG) model, as definedid)Eq.
which is the bosonized version of the multi-flavour Schwinger model. In general, we con-
sider models with two flavours (two interacting scalar quantum fields) with an interaction
periodic in the internal space spanned by the field variables.

For the massive SG-type models, the usual perturbative approach to renormalization is
not applicable. One should preserve the symmetry of the periodic part keeping the Tay-
lor expansion of the potential intact. “Polynomial” self-interactions proportiona#to
obtained by the Taylor expansion of the periodic potential, should be summed up and con-
sidered as one composite operator (which might be of the forigB¢ds This can only be
achieved in the framework of nonperturbative renormalization group methods.

It has been shown that the dimensionful mass matrix remains constant in the LPA, under
the RG flow. The explicit breaking of the periodicity by mass terms modifies the properties
of the scaling laws and the periodic blocked potential significantly. UV scaling laws for the
massless SG models exhibit a Coleman fixed point. For massive models, the determination
of the UV scaling laws has to include mass corrections (see Sehtigvhen periodicity is
partially broken, with one nonvanishing mass eigenvalue, the Coleman fixed point is found
to be shifted. With an entirely broken periodicity, we find a complete disappearance of the
Coleman fixed point.

For the particular case of the LSG model, periodicity is only partially broken, and the
existence of two phases is suggested by the RG flow. The fundamentaligodéthe
periodic potential is irrelevant and relevant in the IR scaling region, depending on whether
B? > 16w or B2 < 16w, respectively. The RG flow of the UV irrelevant amplitude of
the fundamental mode may pass a cross-over region{@? < 16r), before becoming
relevant in the IR regime. The mass-corrected RG flow is beyond the “dilute gas approxi-
mation” which would correspond to the flow given by Eg2).

In view of our analysis of the S2FMSG (Sectidi3.]), of the LSG (Sectiong.3.2
and 4.4 and the MSG model (Sectiof.3.3, we may suggest that the Coleman fixed
point disappears, when periodicity is explicitly broken by mass terms in both independent
directions of the internal space. Thus, one expects the existence of a single phase for the
MSG model (sed-ig. 4). Of course, a final and definite conclusion would require a full
numerical solution of the flow equatigi21) for these models. However, we are in the
position to remark that preliminary numerical results appear to support the results based on
the mass-corrected UV RG flow, as reported in the current article. The interesting cross-
over region, as shown iRigs. 2 and 4suggests that the numerical determination of the
effective potential can provide operators, which are relevant for IR physics although they
are irrelevant at the UV scale.



I. Nandori et al. / Nuclear Physics B 725 [FS] (2005) 467—-492 489

The subleading nonlinear terms in RG flow have been analyzed in Sdcfjomhich is
a step toward the full solution of the WH equati(1). The nonlinear terms are quadratic
in the periodic blocked potential. Due to the nonlinearity of the flow, higher-order Fourier
modes, normally suppressed at the UV cut-off, appear in the periodic blocked potential.
For the LSG model, it has been demonstrated that the quadratic nonlinear terms play a
negligible role for the RG evolution of the fundamental couplifag, provided the higher
harmonics are suppressed at the UV scale (as it should be in view of the given structure of
the bare Lagrangians). However, the nonlinear terms play an important role in the behav-
iour of the UV irrelevant couplings of the higher harmonics in the cross-over region.

Another rather surprising aspect concerns the structure of the effective potential for the-
ories with a nonvanishing mass matrix as opposed to their massless counterparts: namely,
for the “massive” case, one expects a nonvanishing periodic of the effective potential, as
opposed to the massless SG model, where the simultaneous requirements of periodicity
and convexity result in a field-independent effective potential.
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Appendix A. Bosonization of the multi-flavour Schwinger model

In this section, we dwell on the fact that the MSG mo@d&l) and the LSG moddll11)
are the theories obtained by bosonization from the massive Schwinger nibdellf-
dimensional QED) obeyind/(1) and SU(2) global flavour symmetries, respectively.
The multi-flavour Schwinger model has not been studied as extensively as the massive
Schwinger model, the case with(1) flavour symmetry. The latter proved to be interesting
since it shows confinement properties. However, the relative ignorance toward the multi-
flavour Schwinger model is perhaps not fully justified as it shows more resemblance to the
4-dimensional QCD, because the model features a chiral symmetry breaf@lown

Two-dimensional QED with aisU(2) internal symmetry can be characterized by the
Lagrangian

- 1
L= Ui —m—efypi — ZFuF". (A1)

i=1,2

Here A, is the vector potential of the photon field. Thie (i = 1, 2) denote arSU(2)
flavour-doublet of fermions. Furthermore, the field-strength tensor is givefr, hy=
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oA, —dyA,, andm ande are the bare rest mass of the electron and the bare coupling con-
stant, respectively. The mod@l.1) was shown to be capab]é] of describing materials

with a zero net charge, but with a nonzero flavour charge, interpreted as ‘baryon num-
ber’ density, a kind of matter in neutron stars. Bosonization of the m@d#&) proceeds
according to the following ruleg6—28}

Wit — —emM COiZ\/ﬁqﬁi), (A.2a)
Wiysyi: — —emM Sin(Zﬁd)i), (A.2b)
- 1

”ﬂi]ﬁtlpi: — ﬁguvaufbiv (A.ZC)
:¢ﬂ¢¢w—>%wa¢n? (A.2d)

wherei =1, 2, and there is no sum anHere,N,, denotes normal ordering with respect to
the fermion mass:, andc = exp(y)/2x with the Euler constant. In the case of an equal
mass and opposite charges of the two fermions, the bosonized form of the theory becomes

_ 1 5, 1 5, 1 2, 1 2
H= Nm|:2171 + 2172 + 2(31¢>1) + 2(31¢>2)

2
— cm? co2y/T$1) — em? cog2v/T h2) — 26—7_[(¢1 - ¢2)2}- (A3)

The theory defined by the HamiltonigA.3) is identical to the LSG mod€lL1) under an
appropriate identification of the coupling constants of the two mogls=(4x).

Appendix B. Some notes on the Wegner—Houghton equation

As has already been mentioned in Sectipithe WH RG equation has to be projected
into a particular functional subspace, in order to reduce the search for a functional (the
blocked action) to the calculation of an appropriate function. Here, we assume that the
blocked action contains only local interactions. We use the approach outlir&d, i8],
expand itin powers of the gradients of the fiegdsand¢,, and keep only the leading-order
terms; thus we arrive at an ansatz for the blocked action. Indeed, farth2 LSG-type
models with two scalar fields; and¢,, the blocked action reads:

1 1
Sy = / dzx[5(8¢1>2 + §(a¢z>2 + Vi(o1, ¢2)}- (B.1)

The evolution of the blocked potenti&} in the direction of decreasirigis supposed to be
satisfying the following generalized WH RG equation for two interacting fields+n2,

k2 [kz + Vkll] [k2 + Vk22] _ [Vk12]2
ko Vi = ™ In o ,

(B.2)

where

VI = 34,94, Vi (B.3)
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We recall thatV; is a function of functiong;, so that the differentiations with respect to
the ¢; and to thek need to be carefully distinguished. E&.2) is nonperturbative as it
does not imply an expansion &f in powers of its argumenig; and¢». The derivation

of the (generalized) EqB.2) for two-component models has been inspired by techniques
outlined forO(N)-symmetric model§l2].

One actually has a certain freedom in constructing the WH equation, which becomes
apparent when adding to the Euclidean actio(Birl) a field-independent term. This free-
dom generates a class of WH equations characterized by the structure

2 2 119172 22 1272
koL Vi = _k_ln([k + VeIl + Viesl — [Vl )
Q)

4

with the requirement that dirfi(k) = dimk?#, and this freedom gives us the possibility to
discard the term Ifl + 12) on the right-hand side dP4). The WH RG equatioriB.2),
rewritten in terms of dimensionless quantities, yields @6).

The dimensionless WH RG equati¢ib)is applicable for the LSG type models defined
in Section2, and one can solve it for a particular field-theoretical model by projedting
onto a particular space of functions, with appropriate UV boundary conditions for the RG
evolutions. Of course, the functional ansatz for the blocked potential should be rich enough
in order to ensure that the RG flow does not leave the chosen subspace of blocked poten-
tials, and it should preserve all symmetries of the original model at the UV cutoff scale
k = A. For example, the blocked potential for the LSG model should be invariant under the
exchange of the field variableg; <> ¢2 because the layers are physically equivalent, and
it should also preserve the symmetrigs— —¢; and¢; — ¢; + 2 /8 which are present
in the bare Lagrangian. In the cases of interest for the current study, all these requirements
are fulfilled by the ansat@) for the dimensionless blocked potential.

(B.4)
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