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DECOUPLED DYNAMICS FOR CONTROL AND ESTIMATION

S. N. Balakrishnan

University of Missouri-Rolla

Abstract

Decoupling of the dynamical equations in polar
coordinates is used to develop a control scheme for use
in target-intercept problems with passive measure-
ments. By defining a pseudo control variable in the
radial coordinate, the radial dynamics is made inde-
pendent of the transverse dynamics. After solving for
the radial control, the transverse control is determined
through solutions to a two-point boundary value
problem. . Numerical experiments are presented with a
six degrees of freedom simulation.

I Introduction

Major difficulties in obtaining better perfor-
mance with a modern control based homing guidance
have been due to the nonlinearity of the dynamic/
measurement process. In an inertial system either the
dynamics and/or the measurements are always nonli-
near. The most widely used method to solve the target-
intercept problem has been the extended Kalman
filter! with an ‘optimal’ linear guidance law? formu-
lated in a set of rectangular Cartesian coordinates. The
state space usually consists of the relative positions,
relative velocities, and the target accelerations3-.
However, the importance and the advantages of a polar
coordinate based formulation has been stressed in a
few studies recently4'7. The existing studies3-6 have
been limited to the formulation of the filtering problem
in the polar coordinates. In this study, however,
solutions to the ‘optimal’ guidance problem has been
attempted in polar coordinates. This paper has been
organized as follows: the formulation and solitions of
the optimal guidance problem in a set of polar coor-
dinates is described in Section II. The system model
and the measurement model are presented in Section
HI. The numerical experiments and the results are
described in Section IV. Conclusions aré summarized
in Section V.
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II.  Optimal Guidance in Decoupled Polar
Coordinates

The dynamics of the target-intercept problem is
a coupled nonlinear problem in an inertial -polar
coordinate system. In a three dimensional geometry it
is stated as

R - RIZ2 = ap_ - ay (1)
and R R ‘
Ré + 2R6 = aTa - aMa (2 )
= - 3
z aTz aMz (3)

where R is the relative range between the target and
the missile, 4 is the bearing angle and ay, and ap
are the target acceleration components in Bie line-of-

sight and transverse directions, respectively. Similarly,

apg, and ayg, are the missile commanded accelera-
tions'in the line-of-sight and the transverse directions,
respectively. Dots denote differentiations with respect
to time.

Radial (Line-of-sight) Acceleration

It can be observed that Equations (1) and (2)
are coupled. In order to decouple the dynamics, a
pseudo-control, aMR ! is defined as

- - 2

aMRl ‘ aMR RO (4)
Note that this definition decouples the transverse
coordinate from the radial coordinate. Now we can
define a state space, y, in the line-of-sight direction as
y=[R,R, aTR]T and describe the dynamics as

Y1 =Y (5a)




Y3 = AR Y3 (5¢)
AR is the time constant or the exponential correlation
constant in a linear model.

The optimal guidance law in the radial direction
is obtained as a solution to minimizing the performance
index, J1, where

te
Jq = ! S 2 + 1 a 2 dt
1= 3 SRe¥1g T 3 5 T aMp,
(6)
where Sg . is the weight on the terminal miss distance

and v is tixc weight on the control effort, and t¢ is the
time-to-go. The time-to-go, tg, is approximated as
| R|/R assuming constant relative velocity along the
line-of-sight. The control, MR . which minimizes
Eq. (6) is given by 1

tr

aMRl(t) = ;— A, where (7)

1
Xl = Sf(yl + tf yZ + ——; aTR
AR
{exp(-)Rtf) + Agte - 1]/

3
(1 + teSe/37) (8)

X 1 is the Lagrangian multiplier which is used to
adjoin Eqn. (5b) to the performance index in Eq. ©).

The commanded acceleration along the line-of-
sight can be obtained as

apg (t) = aMRl(t) + R252 (9)

Note that the relative range and the range rates can
be obtained through integration of Eq. (5)
ya(t) = yao + (t2 - 2tgt)dg/2v

- y3g(exp(-Agt)-1) /iR (10)
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yi(t) = y¥10 + t Y20
+ y3o(exp(-Agt) + Agt - 1) /Ag?

+ (£3 - 3tgt2)ag/6y (11)

Transverse Acceleration

The equation of motion in the transverse
direction given by Eq. (2) can be rewritten as

8 = -2R0/R + (12)

1 1

R 2Te TR Mg
Since R and R are known through Eq. (9) and (10)
they can be treated as functions of time only. Con-
sequently, Eq. (11) is expressed as

£(t)s + g(tlap, - 9g(t)am,

8 =
(13)

Where f(t) = -2R/R and g(t) = VR. By using a state
spacez = [0, 0, aT 0 ]T, Eg. (13) becomes
27 = 2o (13a)
z, = f(t)zy + g(t)zg - g(t)aMa

(13b)
and z3 = -XgZ3. (13c)

In Eq. (13c), ) 4 is the time constant. The transverse
control acceleration, apg, is found as a solution to the
minimization of the cost gmction, Jq, where

te
5 1 2 1 I
e z a—
1 2 £y “2f 2 %

2 2
(v122 + 728M0) dt (15)
where S¢ 9 v1,and yqare the weights.

The line-of-sight rate, z,, is kept small so as to

help the intercept. The optimization process for J4
results in a two-point boundary value problem. This is

described by
[ f(t)
-v1

]

-g2(t) /12
-f(t)




l:zz } . [g(t) Z3geXp(-dgt) ]

Xy 0
: (16)

with z5y known and A ¢ = S In Eq. (15) X,
represents the Lagrangian muleipli which is used to
adjoin Eq. (13b) to the performance index, Jll' This
system is solved by using a shooting method*. The
transverse control can be calculated from the optimal-
ity condition as

ap, (t) = xag(t)/v2 (17)
Vertical Acceleration

The commanded acceleration in the vertical
direction is obtained in exactly the same manner as the
radial acceleration.

III.  System and Measurement Model

For the simulations, the system and the measu-
rement models have been formulated in an inertial
Cartesian frame so as to obtain closed form solutions
between the measurement updates.

The target and the observer are represented as
point masses in the tracking simulation. The target is
assumed to move with a constant velocity. However, in
the filtering process, its acceleration has been modeled
as a stochastic process to reflect the observer’s lack of
knowledge about the target motion. The system model
is given by

%x(t) = Fx(t) + b(t) + w(t) (18)

where x = [XR, YR, ZR, XR, yR, ZR, ar, aT y aT{]T,
with the first three variables representidy the relafive

positions, the second three representing the relative
velocities, and the last three denoting the target
accelerations along x, y and z axes, respectively.

0 I 0
F=110 0 I (19)
0 0 Ag

with each partition representing a 3x3 matrix. The
quantity ) - is given by ‘
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A¢ O 0

Aqp = 0 g O (20)
0 0 - Ag

Note that when X is zero, the target motion is a

Brownian motion process. The nine-element vector b

is given by

b = [0,0,0,ay,, aMy.aMz.O.O,?]f)
2

where apg , a\g , app are the components of the
observer atceleration fn the x, y, and z directions,
respectively. The nine-element noise vector w has only
three nonzero components wr , W , and wr in the
target acceleration dynamics il the¥, y, and % direc-
tions, respectively.

The measurement model shown in Figure (1) is
given by

213 = tan"l(yg,/¥g;) + Vii (223)
tan’l(-zRi/lxRi2 + YRiz)

i

Z2i

where zq; and zy; are the discrete measurement at
stage i and xR ., YR., and zg. are the corresponding
relative positiohs. The noises Vq; and Vy; are white,
random sequences, with mean zero and variance V.

Because of the linearity of Eq. (18), the mean
states can be propagated in a closed form as

t
x(t)=¢(t,to)xo+j¢(t,'r)b('r)d'r
to (23)
where
1 00a 0043 0 0]
0100a 00 Ay 0
00100a 0 0O 4,
00010040 O
¢(t,7)=]0 000100 Ay O
0000010 0 A,
0000O0O0A3 0 O
0000000 a3 0
_0000&'00 0 As]
(24)
a = t=7




A = (exp[-\g (E-T) 1A (t-T) -1
At
1
Ay = - — [exp(-Ag(t-7))-1]
At
DAy = exp(-dg(t-7)]
IV. Numerical Results

A six degree-of-freedom computer program
which simulates the interception of a maneuvering
target by a bank-to-turn, short-range, air-to-air homing
missile has been used to test the control scheme
developed in Section II. The launch geometry used in
this analysis is described in Figure 2. For this inertial
system, the zj axis is directed towards the earth’s
center, the xy axis is aligned parallel with the missile’s
initial launch direction, and the yy axis'is chosen to
make the inertial system right handed. The engage-
ment geometry is characterized by the initial condi-
tions: range, 3000 feet; altitude, 10,000 feet; aspect
angle (6 ,), and off-boresight angle (81,). The states of
the filter on board the missile are the positions and
velocities with respect to the target and the target
acceleration. In the simulation, the target initiates a
nine-g maneuver 45° up and to the right relative to its
reference frame. This maneuver continues till the
time-to-go, defined as the ratio of the relative range to
range rate reaches one second. At this epoch, the
target rolls 180° and pulls 9-g’s till the engagement is
concluded. However, in the filters, the target acceler-
ation is modeled as a first-order Markov process.

The diagonal elements of the initial state
covariance are 107 ft2 for the relative positions, 100
ft2/sec? for the relative velocities, and 10 ft2/sect for
the target accelerations. The off-diagonal elements are
zero. The fower spectral density of the process noise
is 50000 ftZ/sec? in all the directions. In all cases, the
initial range between the target and the missile is 3000
ft.

In this study, two types of comparative analyses '

are made. In the first case, deterministic models of the
engagement are used and the present scheme is
compared with the linear optimal guidance law? which
uses an inertial rectangular coordinate frame. The
second type deals with the stochastic case where the
inputs to the guidance law, namely, the states of the
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system are provided through an extended Kalman
filter2 with the system model as described in Section
IIL.

Representative results of both cases are pro-
vided in Table I and Figures 3-12.

It can be seen from Table I that the results using
the decoupled polar control (DPC) results in smaller
miss distances as compared to the Cartesian based
control (CBC). The advantage of using the decoupled
control becomes clearer in scenarios where the missile
has to make a tighter turn as when the initial off-
boresight angle is 40° and the aspect angle is 120°.
With the DPC, in the transverse coordinates, the
designer is able to exercise control on the line-of-sight
rate (within the autopilot limits) through the weight in
the cost function and therefore, able to control the
relative geometry better than in the case of a CBC.

The engagement histories of the DPC and the
CBC for an initial range of 3000 ft, aspect angle, 120°,
and off-boresight angle of 40° are presented in Figures
3 and 4, and 5 and 6, respectively. While the CBC
based missile misses the target totally (the range rate
becomes positive) at 1.32 seconds, the DPC based
missile is able to capture the target with a miss distance
of 2 ft.

The results of the stochastic cases are presented
in Figures 7 through 12. The error histories in the
magnitudes of range, range rate, and the target
acceleration for boresight angles of 60° and 120° are
presented in Figures 7-9 and 10-12, respectively. The
initial peak values in the range errors are due to the
high values of the state covariance matrix elements
which are 107 ft2/sec2. The errors diminish when
information becomes available. After the second
target maneuver of nine g’s takes place, the correla-
tions of errors are no longer valid and therefore, the
error histories again show increases. However, they
show decreasing trend again since the closing geometry
is highly observable. The spikes in the values of the
errors at the end of the geometry are due to the
observation residuals at the end of the engagement and
are not meaningful to the working of the filter or the
control.

V. Conclusions

An optimal control law based on the decoupling
of a set of polar coordinates has been developed in this
paper. Numerical results from a six degree-of-freedom
simulations which use the decoupled control indicate




that it is better than the completely Cartesian coordi-
nate control for most of the cascs. The decoupled
control, though, is obtained iteratively through a
two-point boundary value problem and hence, is more
computationally intensive. The extension of this work
to the filters is under way.

References

L

Bryson, A. E. and Ho, Y. C,, Applied Optimal
Control, Waltham, Mass., Blaisdell, 1969.

Fiske, P. H., "Advanced Digital Guidance and
Control Concepts for Air-to-Air Tactical
Missiles," Final Report, AFATL-TR-77-130,
November 1977.

Sammons, J. M., Balakrishnan, S. N., Speyer,
J. L., Hull, D. G., "Development and Compari-
son of Optimal Filters," Final Report, AFATL-
TR-79-87, October 1979.

Balakrishnan, S. N. and Speyer, J. L., "A
Coordinate Transformation Based on Filter for
Improved Target Tracking," Journal of Guid-

ance, Dynamics, and Control, November-
December 1986.

Balakrishnan, S. N. and Speyer, J. L., "Assumed
Density Filter with Application to Homing
Missile Guidance," Journal of Guidance
Control, and Dynamics, January-February 1989.

Balakrishnan, S. N., "Observability Results and
Improved Performance with a Tracking Filter
Using Passive Measurements,” Journal of
Guidance, Control, and Dynamics, January-
February 1990.

Cloutier, J. R, Evers, J. H., and Feely, J. J., "As
Assessmeiit of Air-to-Air Missile Guidanee atid
Control Technology,” 1988 Ameiican Control
Conference, Atlanta, GA, Juhé 1988, pp.
133-142.

Table I

Launch Range = 3000 ft.

Engagement  Off

Aspect Miss Dist. (ft)
No. Boresight  Angle DPC CBC
Angle
1 0 60° 25 13
2 0 120° 13 17
5 40° 120° 2 1866
6 40° 150° 662 731
7 40° 180° 243 259
3 0 150° 26 8ft
4 0 180° 2 1ft
f’ Missile Position

f l

-z

[Target Position

Y;
Figure 1. Intercept Geometry and Measurement
Angles.
-ZI
/,_Missile Position
4

'{ " ‘rarget Position
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Figure 3. DPC Used Trajectories in x-y Plane. Figure 6. CBC Used Trajectories in x-z Plane.
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Figure 4. DPC Used Trajectories in x-z Plane. Figure 7. Range Error History, R = 3000 ft,

Ga=60°,8b=0°.
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Figure 5. CBC Used Trajectories in x-y Plane. Figure 8. Range Rate Error History, R = 3000 ft,

8,=60°,0,=0°.
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Target Acceleration Error(F T/SEC ~ 2
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Figure 9. Target Acccleration Error History,
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Figure 10. Range Error History, R = 3000 ft,
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Figure 11. Range Rate Error History, R = 3000 ft,

oa=60°,0b=0°.
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Target Acceleration Error (FT/SEC~ 2)
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Figure 12. Target Acceleration Error History,
R =3000ft 6, = 60°,8y, =0°.




	Decoupled Dynamics for Control and Estimation
	Recommended Citation

	Decoupled dynamics for control and estimation

