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USE OF TIME VARYING DYNAMICS IN NEURAL 
NETWORK TO SOLVE MULTI-TARGET CLASSIFICATION 

S.N. Balakrishnan and Jeffrey Rainwater 
University of Missouri-Rolla 

Rolla, MO 

ABSTRACT 

Several types of solutions exist for 
multiple target tracking: multiple 
hypothesis testing, probability data 
association techniques, clustering 
techniques, etc. However these techniques 
are computation-intensive and in some 
cases very difficult to operate on-line. 
In the current study, a back-propagation 
neural network has been successfully used 
to identify multiple moving targets using 
kinematic data (time, range, range-rate 
and azimuth angle) from sensors to train 
the network. Preliminary results from 
simulated scenarios show that neural 
networks are capable of learning target 
identification for three targets during 
the time-period used during training and a 
time period shortly after. 

INTRODUCTION 

Currently, there are several 
methods[l-3] that can be used for the 
classification and tracking of multiple 
target systems -- multiple hypothesis 
testing, probability data association 
techniques, clustering techniques, etc. 
Figure (1) shows the data flow of a 
clustering technique from earlier 
published work of the first author[l]. It 
is clear that this process is computation- 
intensive since with the arrival of new 
data the entire process must be repeated. 

This paper investigates the use of a 
neural network using a back-propagation 
algorithm for multiple target trackingt4- 
5). Back-propagation networks have been 
shown to be very effective in pattern 
classification problems such as character 
recognition and fault-diagnosis. These 
problems deal with static systems. 

Unlike these cases, the viability of 
using a back-propagation network for 
classification in dynamic systems using 
kinematic data obtained from sensors is 
investigated in this study. 

The goal of the classification 
project is to correctly identify a target 
from a set of data for a specified number 
of targets using current sensor data 
(time, range, range-rate, and azimuth 
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angle). The network is trained to 
classify the different targets using 
previously classified trajectory data. 
Several different network structures and 
training parameters are compared in order 
to find an optimal network. 

NETWORK STRUCTURE AND TRAINING 

The network being used is a 
conventional feed-forward network trained 
by the method of back-propagation. The 
input layer consists of four processing 
elements [PE's] each corresponding to one 
of the trajectory inputs -- time, range, 
range-rate, and azimuth angle. 

The network has a single hidden 
layer made up of several PE's -- the 
number varying from 5 to 50. The output 
layer is made up of one PE for each target 
to be classified -- in most cases three. 
The network is trained so that, ideally, 
each output node's response will be unity 
for the object it is trained for but zero 
for all other objects present in the 
training data. For example, with a three 
output network (corresponding to the 
classification of three objects), if 
object 1 data is processed, the ideal 
output for the network will be 1, 0, 0 for 
outputs 1, 2, and 3 respectively. Or if 
object 2 data is processed, the ideal 
output will be 0, 1, 0. The error in 
classification can be measured by the 
variance from these ideal outputs. 

The network simulation program for 
this project has several parameters which 
can be used to affect the network 
training. These parameters include the 
learning rate, a momentum term and two 
iteration parameters -- the number of 
iterations to perform on each set of 
inputs in the data file and the number of 
iterations to perform on the entire data 
file. 

The data file consists of sixty 
points -- twenty points for three targets. 
The Range-Rate data field is shown in 
Figure (1). Each column of the data (one 
for each kinematic input) was normalized 
to the range -1 to 1 by dividing the 
entire column by the absolute value of the 



largest occurrence in that column. The 
data file is ordered so that the 
observations for the targets at a specific 
time are together. 

The network is trained with the 
first ten points for each target being 
tracked. The network is trained with a 
particular observation of an object a 
specific number of times before moving to 
the next observation in the data file. 
The number of iterations chosen for each 
observation is fixed at twenty, the 
minimum needed for good network response. 
The entire data set is trained with an 
outer loop consisting of 5000 to 10000 
iterations. 

NUMERICAL ANALYSIS 

At the end of the training phase, a 
production run is made with a set of 
twenty data points for each object -- the 
first ten being the trained data and the 
last ten being flight data taken after the 
training data in time. 

Data produced during the network 
training phase showed that the learning 
curve appeared to be somewhat 
discontinuous or stair-stepped. Figure 
(9), the learning curve for the reference 
case, shows the stair-stepped learning 
process. This pattern has been previously 
shown in much simpler systems[6]. One 
interesting feature is that Output 1 has 
only 1 drop where Outputs 2 and 3 have two 
drops. These sudden decreases in error 
can allow efficient training of networks 
since training algorithms could easily 
detect such a drop and cease to train the 
network shortly after the drop to minimize 
training time. There is one difficulty, 
however. The different outputs may have 
different or more than one step before 
reaching the minimum. 

The decreased training iterations 
does not seem to significantly affect the 
performance of the network in untrained 
data. Two networks, one with momentum and 
one without, were trained with 6000 
iterations instead of 10000. There is 
very little difference between the 6000 
iteration trained networks' performance 
and their counterparts trained with 10000 
iterations. 

The first parameter to be 
investigated is the number of PE's in the 
hidden layer. Runs were made with 
5,1,15,20, and 50 PE's in the hidden 
layer. The fifteen PE structure was found 
to be the best and so a 4 input node, 15 
hidden node and 3 output node network 
structure trained with a 0.5 learning rate 
for 10,000 iterations became the reference 

case. The response for each output is 
shown in Figures ( 2 ) ,  (3) and (4). 

There are a few notable trends in the 
response of the network. First, the 
network performs almost flawlessly in all 
three outputs for data in the training 
time-period. As untrained observations 
that are farther.away from the trained 
data are processed, the observations are 
not classified as well and the performance 
of the network degrades. Two types of 
degradations are seen to occur. In the 
first, the output PE continues to classify 
"its" object correctly but starts to 
increase its response to other objects as 
well. This degradation can be seen in 
Figure (4). In Figure (4), output 3 ofthe 
network correctly identifies the object 3 
observations but begins to increasingly 
respond to object 1 observations in object 
3's output node. 

The second type of degradation is 
shown in Figure (3). Output 2 starts to 
decrease its response to object 2's 
observations. The second output node 
(corresponding to object 2) will 
continuously decrease its response to 
object 2 observations. 

Both degradations start to occur 
almost immediately after all training data 
has been completed in the production phase 
(training data was observations from time 
index 0.2 to 0.245 with non-trained 
observations after 0.245.) All tests 
made, no matter what network structure or 
training parameters, have the same 
degradation patterns in varying degrees. 

The effect of the momentum term on 
the performance is also examined. A 
momentum term of 0.8 accelerates the 
learning process considerably. This can 
be seen in figure (5). Figure (5) 
compares three sets of weight values --the 
reference case after complete training 
(10000 outer iterations), the case of an 
identical structured network using a 0.8 
momentum term after complete training, and 
the same momentum case after only 3000 
outer iterations of training. 

Although the momentum term 
accelerates learning, it alters the system 
performance. This can be seen in figures 
(6), (7) and (8) -- the response of the 
momentum trained network. Compared with 
the response of the reference network 
(figures (2) - (4)), the degradation is 
greater in two of the three output node 
responses, and thereby, 
the useful classification period is 
limited even more than the reference 
condition. 
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The factor that affects the 
performance the most is the presence of 
the time input into the network. A 
network was trained with three input 
values, leaving the time index out. The 
response of this network is shown in 
Figures (lo), (11) and (12). Not only is 
response degradation much larger than the 
reference case, but abnormalities exist in 
the trained area also. The network cannot 
adequately classify the moving targets 
with only space data (position and 
velocity). Time as an indexing parameter 
is very effective. 

There is one theory on the cause of 
the degradations. In reference [ 7) , the 
author describes how a back-propagation 
network- splits the nth dimensional space 
(corresponding to n input fields) into 
hyper-planes. The combination of these 
hyper-planes produces distinct 
classification regions for the different 
objects being classified. Figure (N), 
(M), and (0) shows the response each 
output node in the reference network over 
the entire normalized range of the Range 
and Range-Rate fields. Figures (N-0) shows 
these distinct classification regions with 
very definite boundaries. 

Misclassification occurs when an 
object’s data point is outside the proper 
classification region. Misclassification 
occurs in static systems because the 
samples used in training may not encompass 
the entire region for that object or data 
points of two objects may be very close 
together. However, in static systems, 
there is no danger that as a whole an 
object ’ s data will move outside these 
fixed regions. 

This is not the case for dynamic 
systems. In dynamic systems, an object’s 
data points continue to move through the 
n-dimensional space. However, the 
classification regions a;e fixed in the n- 
dimensional space at the end of the 
training-phase. This problem can be 
intensified by object data paths crossing 
such as in figure (2) showing the range- 
rate data field verses time. 

To have a truly useful target 
tracking and classification system, the 
system must be able to classify an unknown 
number of targets, knowing when an object 
leaves the theater or when a new object 
appears. Multiple output networks are at 
a disadvantage because in order to add 
another output, the old network must be 
abandoned and a new network must be 
t r a ined . 

One solution might be to have a 
series of single output networks instead 

of one multiple-output network. This 
would allow a new network to be started 
for a new object without destroying the 
training of the other networks. To this 
end, three single-output networks were 
trained with the same data as was used in 
the previously discussed networks. Each 
network was trained to respond to only one 
object each. 

The performance of the three 
networks, shown in Figures (13), (14), and 
(15) was very similar to the reference 
case. Networks 1 and 2 corresponding to 
the first two outputs of the reference 
network performed slightly less than the 
reference network. The third network, 
however, did much better. It had a 
flawless performance for all data tested. 

Although the current networks cannot 
perfectly classify all observations in 
untrained areas, a satisfactory 
classification tracking system could be 
implemented using the back-propagation 
networks and a “smart” logic system. The 
system could look at the outputs of the 
different networks and make certain 
judgement values. 

For instance, at a time instance at 
t = 0.29, if the system looked at the 
Network 1 response (Figure 13) it would 
see a conflict between Object 1 and Object 
3 data so it would table Object 1 
classification. Next, it would examine 
Object 2 and seeing no clear 
classification, would table Object 2 
classification also. Looking at network 
3’s output however it could definitely say 
the object 3 observation is classified as 
Object 3. It could then return to Network 
1 and resolve the conflict by removing 
Object 3 data from the possibilities. 
Since Object 1 data has a higher response 
than Object 2 data, the object 1 
observation could be categorized as 
Object 1. That would leave object 2 data 
to be classified as Object 2. Using this 
type of logic all three objects could be 
categorized correctly. 

FuTuRe STUDY 

As mentioned earlier, the 
introduction of new objects into the 
tracking presents a unique challenge to 
the use of back-propagation networks in 
classification of dynamic systems. Future 
study will focus on the response of 
networks to previously unknown object 
observations. Work will also be done on 
expanding the multiple network idea to 
classifying an unknown number of objects. 
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The presence of the response 
degradations in networks of different size 
and training methods points to certain 
inherent deficiencies in the conventional 
back-propagation network for classifying 
dynamic systems. Future investigation 
will focus on the use of less-traditional 
network structures such as radial-basis 
function networks[7]. 

CONCLUSIONS 

For dynamic systems, a conventional 
back-propagation network can correctly 
classify objects for short periods of time 
after training with very few trained data 
points. 

This effective classification period 
can be extended by the use of networks in 
coordination with "smart" logic systems. 
Less traditional networks, such as radial- 
basis networks or an adapted dynamic back- 
propagation network show even more 
promise. 

The systems not only have potential 
in systems with a fixed number of objects, 
but in systems with an indeterminate 
number of objects. 

These and other improvements are 
being investigated in order to improve the 
possibilities for neural network 
classification of dynamic systems. 
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