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Coherent excitation of the singlet-triplet mixed 1s4f state of helium

J. B.Wang, ' J. F. Williams, ' A. T. Stelbovics, J. E. Furst, ' and D. H. Madison
Centre for Atomic, Molecular and Surface Physics, Physics Department, University of Western Australia, Perth 6009, Australia

School ofMathematicaL and Physical Sciences, Murdoch University, Perth 6150, Australia
Laboratory for Atomic and Molecular Research, Missouri Rol-la University, Rolla, Missouri 65401

{Received 15 December 1994)

In this paper, we present a detailed theoretical description for the coherent electron-impact excitation,
the subsequent time evolution, and the cascading decay process of the singlet-triplet mixed 1s4f state of
helium. The excitation amplitude and phase of each sublevel of this state are related to measurable coin-
cidence intensities and polarizations of the emitted photons. It is found that the intensity and polariza-
tion of the emitted photons are time modulated due to the singlet and triplet mixing in the ls4f state.

PACS number(s): 34.80.Dp

I. INTRODUCTION

The study of electron-atom collisions aims for a com-
plete determination of all observables in the collision pro-
cess, i.e., all quantum-mechanical excitation amplitudes
and phases. The observation of coincidences between
two or more of the outgoing particles (electrons and pho-
tons) from a collision complex is a prerequisite for obtain-
ing such information. The associated theoretical work
consists of two major parts. First, one solves the
Schrodinger equation for a full description of the interac-
tions between the projectile electron and the target atom;
second, one establishes the time evolution of the excited
atom after the collision and the subsequent decay pro-
cesses.

Considerable progress has been made in approaching
an accurate solution of the Schrodinger equation for
describing particle collision processes, although it cannot
be solved exactly even for the simplest collision systems.
Many approximation methods have been developed over
the past two decades, such as close-coupling theory in-
cluding the R-matrix method, the optical-potential
method in momentum space and the Kohn variational
method; and perturbation theory including the plane-
wave Born approximation, the distorted-wave Born ap-
proximation (DWBA), and the eikonal Born approxima-
tion. Examples of recent progress are the convergent-
close-coupling calculation of Bray and Stelbovics [1], the
second-order DWBA calculation of Madison, Bartschat,
and McEachran [2], and the intermediate energy R
matrix calculation of Scott and Burke [3].

These theories are able to describe most measurements
at small scattering angles in atomic hydrogen and helium
when applied to the appropriate energy regions. As a
general rule, the close-coupling theory works better for
lower incident energies especially near threshold, while
the perturbation theory provides good results for incident
energies well above threshold. In this investigation, we
have selected a particular incident energy of 100 eV, for
which we would expect the first-order DWBA method to
be quite accurate in calculating the amplitudes for the
coherent excitation of 1s4f states of helium.

The time evolution and the sequential decay of the ex-
cited states can be modeled by using the general density-
matrix theory developed by Fano and Macek [4] and
Blum [5]. This theory provides a well-formulated
description of the angular and polarization correlations
for any electron-atom scattering experiments. For a few
special cases, explicit formulas have been derived based
on this theory, which directly connects the theoretical ex-
citation amplitudes with experimental observables such
as the intensity and polarization of the emitted photons
[6—9]. These formulas are required in order to determine
the optimum set of parameters to be measured in the
minimum time and to make the most sensitive tests of
atomic scattering theories.

However, studies have been limited to examining the
excitation of the lowest few angular-momentum states.
The main reasons for this limitation lies in the increased
complexity of characterizing atoms with higher L. It be-
comes apparent when one begins to derive correlation
functions for excitations beyond L = 1 states that the ex-
pressions become rapidly intractable to analytic evalua-
tion by conventional methods. This is due to the vast
number of Clebsch-Gordan coefficients that comprise the
correlation and polarization expressions, each of which is
summed over several angular-momentum quantum num-
bers.

To illustrate the problems that can arise from this com-
plexity, we consider the recent work for the angular
correlations in electron-impact excitation of atomic hy-
drogen from the ground state to the n =3 states. In or-
der to understand the excitation process of these states,
coincidence measurements of (e, y&), (e, yz), (y&, yz), or
(e, y&, y2) are needed. Here y, is the Balmer-a photon
emitted in the decay of the 3S and 3D states and y2 is the
Lyman-cz photons emitted from the 2P states. The report
of the first study of the fluorescence from the decay of the
3 D and 3 S by Chwirot and Slevin [10] contained
several errors in the derivation of angular correlation
functions, which were corrected recently by Stelbovics,
Kumar, and Williams [11]. The correction required sub-
stantial time and effort in cross-checking the angular-
momentum algebra to ensure a correct final expression.
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The study of even-odd parity coherence of n =2 states of
hydrogen provides another example, for which Chwirot
et al. [12] stressed that the most tedious part of the work
involved algebraic manipulation of the correlation func-
tions.

For the helium target, there is a further complication.
The lowest angular-momentum states (L ~2) can be de-
scribed adequately by the pure Russell-Saunders coupling
scheme and their singlet and triplet states are well
separated in energy. Detailed studies of the excitation
processes to such states have been carried out by means
of coincidence measurements [13—15]. However, for
states with angular momentum L ~3, the LS coupling
scheme breaks down. The physical reason for this can be
seen in the following way. Consider singly excited
configurations of helium atoms where one electron stays
in its ground state. When the angular momentum of the
helium atom increases, the excited electron moves further
away from the nucleus and from the other electron. As a
result, the exchange interaction between the two elec-
trons decreases and the spin-orbit coupling becomes com-
paratively more important. Consequently, the total spin
S is no longer a good quantum number and the use of a
pure LS coupling scheme is invalid.

Nevertheless, since the pure LS-coupled eigenfunctions
can be readily computed with existing computer
softwares, the wave functions describing these mixed
states are often described in terms of a linear combination
of these LS-coupled eigenfunctions. For example, the
ls4f state of helium can be represented as a mixture of
the singlet 4'FJ and triplet 4 FJ states. This state has
shown rather different properties from those of the lower
states with pure LS coupling as observed in ion-atom col-
lisions [16,17]. It is worth noting that the total orbital
angular momentum L of the atom equals that (l) of the
excited outer electron and therefore is a good quantum
number for singly excited helium atoms.

Parish and Mires [18]calculated the mixing coefficients
for various states of helium using the Breit-Pauli Hamil-
tonian, which takes into account the Coulomb interac-
tion, spin-orbit, spin-other-orbit, and spin-spin interac-
tions between the two electrons. More sophisticated
descriptions, which include relativistic and mass-
polarization effects, were given by Cok and Lundeen
[19,20] and Sims and Martin [21]. Experimental studies
on the helium ls4f state were carried out in proton-
impact excitation by Kaiser, Liu, and von Oppen (see [17]
and references therein) and in He-He and Na-He excita-
tions by Liu et al. [22]. Their measured structure pa-
rameters, such as the level splitting and mixing
coefBcients, agree reasonably well with theoretical
findings.

To our knowledge, however, little work has been done
on the dynamics of the collision process involving excita-
tion to the helium ls4f state, particularly for electron-
impact excitation. A complete understanding of such
process would require measurements and calculations of
the density matrix elements of this state, i.e., the popula-
tion and interference of its magnetic sublevels, for various
scattering angles and incident energies. The experimental
limitations are (i) an electron energy resolution of about

0.1 eV is required to separate the n =4 and 5 levels, (ii)
the photons emitted in the decay of the ls4f state to the
3 'D and 3 D states are 1870 and 1869 nm, respectively,
which are not detectable by present single-particle count-
ing photon detectors, and (iii) the long lifetime of about
67 nsec for the ls4f state [23] also makes measurements
difficult.

The purpose of this paper is to provide a definitive
analysis of the density-matrix elements for the electron-
impact excitation of the ls4f state and subsequently to
give some illustration of their applications. Thus, in the
first part of this work, explicit formulas describing the in-

tensity and polarization of the emitted photons in terms
of the state multipoles of the excited ls4f state are de-
rived. In the-second part, these state multipoles are eval-
uated using the DWBA method and finally some of the
observables from coincidence measurements are modeled.
These calculations aim to provide guidance for optimum
experimental settings of the detectors for accessing the
most efficient and revealing measurements.

HHO+Hgp+HMp+H

where the Schrodinger Hamiltonian Ho is about M„/m,
times larger than the other terms, including
H

p
H +H +H„ for spin-orbit, spin-other-orbit,

1 2

and spin-spin interactions, HMp for mass polarization
effect, and H„, for relativistic corrections; M„and m, are
the mass of the nucleus and the electron, respectively.
Parish and Mires [18] neglected the HMp and H„& terms
in the system Hamiltonian and took the LS-coupled wave
function (P „P —p P — i and P:o) as the basis

states. They obtained

+k k, i P, =1++k,00,=0 +k, —10,= —1+ k(t', =0

(2)

where the superscript t (s ) indicates triplet (singlet) char-
acter and the indices k =1,2, 3 correspond to the nominal
"triplet" states with total angular momenta
J=L —1,L,L + 1 and k =4 refers to the nominal
"singlet" state with J=L.

For the states with J=L+1 (i.e., k =1,3), only triplet
LS eigenfunctions contribute. The associated coefficients
ak, - are then equivalent to the Clebsch-Ciordan
coefficients C(L =3,S= 1,J;mL msmz ). Therefore

~4 F~ )—:~(L=3,S=1)J=2,mq)=~4 F2

~4 F4 ) —= ~(L=3,S=1)J=4, m)=j4 F4 ),
(3)

(4)

where

4 +'Fq ) = g C(L =3,S,J;mrmsmJ)

X ~L =3,m~;S, ms ),

II. THEORY

A. Definition of the 1s4f state mnltipoles

The Hamiltonian for a two-electron system may be
written as
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=(14 'F; &+col4 'F; & )/V'1+co', (6)

l4 'F, &—:I(L =3,X=1)J=3,m~ &

the superscript o denotes the pure I.S coupled states, and
the spin index S—=S in these two cases.

For states of k=2, 4, the single and triplet levels are
mixed and the calculated admixture coefBcients are listed
in Table VIII of Ref. [18]. van Raan and Heideman [24]
made a considerable simplification to the wave functions
for these states and gave them in the following form:

l4'F3 &
—= I(L =»S=o)J=3,mJ &

tially in their ground state ~So=ms =0& and the in-

cident electrons have fixed momentum po but are unpo-
larized in spin (m, o). The density matrix of the combined
system of electron and atom is p;„=—,

' g ~ m, o & {m, o ~,
eo

where quantum numbers with fixed values are sup-
pressed. After the collision, the density matrix becomes
p,„,= Tp;„T . If the scattered electrons are detected for
fixed momentum p but no spin (m, ) analysis is per-
formed, the density-matrix elements are

g {(LS')J'mmmm, ~p,„,~(LS)J m, &

m

=( —co~4'F' &+ ~4 F3 &)/+1+o) m, m 0

{(LS')J'm Im, I
T

I m, o &

4'F
I
F3

3
F2

3F4

3F
3

3D 3D

I

I

IE

I

1S

2P
E

o yl 2'S

In this way, only one admixture coeKcient ~, instead of
over 50 as listed in Ref. [18], is required for characteriz-
ing the mixed states. They estimated that co=0.4335
based on the results of Parish and Mires [18]. It is impor-
tant to note that (LS)J does not refer to the Russell-
Saunders pure L,S coupling, but rather the intermediate
coupling as defined by Eqs. (6) and (7). The state is large-
ly a triplet state when the spin index S=1, whereas the
state is largely a singlet state when S=0. Figure 1 shows
the energy-level diagram of helium and the relevant de-
cay schemes. The 2'S state is not shown because the
2 'P ~2 'S transition is very weak compared with
2 'P~1 'S and it provides essentially the same informa-
tion.

In electron-impact excitation experiments, the four
states ~4 F2 &, ~4 F3 &, ~4 F4 &, and ~4'F3 & are

in general indistinguishable with an average energy differ-
ence of -235 MHz [16] and their magnetic sublevels are
degenerate in the absence of external fields. As a result,
the 1s4f state is a statistical mixture of the sublevels
denoted as ~(LS )Jmz &. Suppose that the atoms are ini-

X {m, ~T ~(LS)Jm m, &

f((LS')J'm J,m, m, o}f ((LS )Jmz, m, m, o},
m, m

O

where the excitation amplitudes for the mixed states, ac-
cording to Eqs. (3)—(7), are

f((L,S=0)J=3,mjm, m, o}

= [fo (Jm g m m o ) +ctif i (Jm Jm e m eo ) ]/+ 1 + co

(9)

f((L,S=1)J=3,mjm, m, o)

= [ —cofo(Jmzm, m, o)+f, (Jmzm, m, o)]/V 1+co2,

(10)
(11)f((L,S=1)J=2,4, mmmm, m, o}=fi(Jmzm, m, o),

J'
I

mJ, mJ
mJ —mJ

m, m
O

where fo(Jmzm, m, o) and f, (Jmzm, m, o) are, respective-
ly, the pure singlet and pure triplet amplitudes for transi-

InoLomLoSomso k om o&
- l4"+'+g, , k, m, &

k,o and k, are the momentum vector of the incident and
scattered electrons, I.o and So are the orbital and spin an-
gular momenta of the initial atomic state, mLO and m+0
are the corresponding z components, no is the principle
quantum number of the initial state, and J and m J denote
the total angular momentum and its corresponding z
component of the excited atomic state. These amplitudes
are summed over the spins (m, o, m, ) of both incident and
scattered electrons and no electron-spin analysis is per-
formed.

For calculations in relation to the angular and polar-
ization correlations of the radiation field emitted by the
excited atom, it is most convenient to use the state-
multipole description defined as [5]

(T((LS')J'(LS)J)xg &

FIG. 1. Energy-level diagram and the relevant transition
schemes.

Xf{(LS')J'mmmm, m, o}

Xf '{LS)Jmzm, m, o) (12)
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because of the inherent symmetry in the excited atom.
The notation E=&2IC + 1 is used here and in the follow-
ing.

From the above definition of state multipoles, we have

& T((LS )J (.LS}J}.', &*

=( —1) +( ( T((LS )J(LS')J')Ir g & . (13)

From Eqs. (13) and (15), we have

( T((LS')J'(LS )J )~g &

=( —1)J ~+ (T((LS)J(LS')J')xg&' .

A further symmetry

(16)

In addition, the interaction of the electron-atom collision
possesses reAection invariance in the scattering p1ane and
thus the scattering amplitudes defined in the collision
frame must satisfy the condition [25]

f((LS)Jmzm, m, p) =( —1)

Xf((LS)J—mJ —m, —m, o) .
(14)

( T((LS')J(LS )J )xg &
= ( T((LS )J(LS')J)xg & (17}

is also found when J'=J, which is due to summing over
both fina1 and initial electron spins in the state multipoles
as defined by Eq. (12).

B. Evaluation of the transition amplitudes

This gives

( T((LS')J'(LS )J )~~& &

= ( —1) +~( T((LS')J'(LS )J )Ir (15)

ln order to obtain the values for the ls4f state mul-

tipoles defined by Eq. (12), we first calculate the pure
singlet and triplet excitation amplitudes in the DWBA
[26]

fs(Jmjm m p)= (k m FJ Tlk p mp Jp=—mj 0&

X C(LSJ'mLmsmz)C(S SY ms—m 'ms )~k Lml lTlk. o Lo mL, , 0&s&s, irz~
mL, mg

ST,ms
T

where T is the standard T matrix operator, C( ) are the
Clebsch-Gordan coefficients, ST denotes the total spin of
the target plus projectile electron system, and m& is its z

T
component. These excitation amplitudes depend on the
collision dynamics, the energy of the incident electron,
and the angular momentum transferred to the atom, as
well as the spin states of the continuum electron. It is
usually assumed that, in the case of light atoms, there are
no spin-dependent forces in the T operator and no rela-
tivistic forces for the continuum electron. Therefore, the
total spin ST and its z component m& are conserved after

T
the collision.

The heart of the task is to calculate the transition ma-
trix elements in the above equation, where each basis
state is of Russell-Saunders coupling scheme. The
DWBA transition matrix elements are [27]

( ke, Lml l
T

l kepy Lo —mL —0 & s

=&2& yi (0)q.~,(1)I I'lyo+(0)yi, (1}&&s,o
' 1/22S+ 1

( )s
2

1.2

CO

0.8
O

U
Q)

0.4

C5

Q)

0
CL
O

(Q -3

4f

(a)

10

&«4, ( I )@„...(0) I I'l@p+(0)@„(1)&, (19)

where Po and P, are the spatial parts of the incident and
scattered distorted waves with appropriate boundary con-
ditions, 1(p and 1(„L are coordinate-space single-particle
wave functions of the ground and excited state of the

FIG. 2. (a} Target radial wave functions for the Is and 4f or-
bitals and (b) the corresponding excited-state static potential
shoran as rUf.
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lines, singlet state S=O; dashed
lines, triplet state S= 1.
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helium atom, and V is the full interaction potential be-
tween the continuum electron and the atom. The first
and the second term refer to the direct and the exchange
amplitude, respectively.

The distorted waves are solutions of the equation

(V' +k —U)/=0, (20)

where k is the energy of the incident electron and U is
the distorting potential obtained from the charge distri-
bution of the atomic wave functions. The spatial atomic
wave functions obtained from the Hartree-Fock program
of Froese Fisher [28] are shown in Fig. 2(a). According
to Bartschat and Madison [27), the best agreement with
experimental data was obtained when both the initial-
and the final-state distorted waves were calculated using
the excited-state potential Uf, which is shown in Fig. 2(b)
as rUf. In Fig. 3 we display the calculated results
for the partial cross sections defined as o.

L=
~ ( k„LmI ~

T
~ k,oL& =ml o =0 )s ~

. The calculations
were done for the electron incident energy of 100 eV and
various scattering angles. The integrated total cross sec-

tion is found to be 1.1 X 10 ao for excitation to the pure
4'F'state and 6.0X10 ao to the pure 4 E'state.

The values of the transition matrix elements
(k„Lml ~T~k, Lo&= mL=O)s were then used to com-

0

pute the excitation amplitudes f((LS)JmJ) and the cor-
responding state multipoles ( T((LS')J'(LS )J )x& ),
which characterize the coherently mixed 1s4f state im-
mediately after electron-impact excitation. Equations
(18), (9)—(11), and (13) are applied for such computations.
The results are listed in Tables I—V for (T(S3S3)x&)
= ( &((LS')J'(LS)J)x~ ) ~L =z =J 3 with ranks K ~2.
The calculations were done for two cases with the admix-
ture coef5cient m=0 and 0.4335, respectively. Note that
( T(S3 =O, S3 =1)xt& ) —=0 in the case of co=0.

C. Time evolution of the state multipoles
and the subsequent decay process

After collision, the excited atom evolves under its sys-
tem Hamiltonian and decays at some finite time to a
lower state while emitting a photon with specific wave-
length. This procedure repeats until the atom decays to

TABLE I. Calculated values of the state multipoles ( T(S3 =S3 =0)z& ) for co =0.0.

Angle
(deg)

10
20
30
40
50
60
70
80
90

TOO

16.8
11
2.23
0.293
0.062 3
0.038
0.030 5
0.023 7
0.017 5

T10

—2.45I
1.19I
0.473I
0.129I
0.042 6I
0.020 4I
0.013 9I
0.011 3I
0.009 23I

T20

—2.84
1.96
0.469
0.023 1

—0.027 4
—0.029 6
—0.025 3
—0.0197
—0.014 2

T21

—11
—5.05
—0.763
—0.054 3

0.004 2
0.004 75
0.003 75
0.003 28
0.002 75

T22

—6.83
—6.88
—1.46
—0.179
—0.032 6
—0.021 8
—0.018 6
—0.013 9
—0.008 9
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TABLE II. Calculated values of the state multipoles ( T(S3 S3 1)+0 ) for ro=O. O.

Angle
(deg)

10
20
30
40
50
60
70
80
90

TOO

0.074 7
0.11
0.09
0.041 7
0.015 2
0.005 21
0.001 77
0.000 631
0.000 28

T10

—0.005 65I
0.0102I
0.0132I
0.006 23I
0.001 93I
0.000 435I
0.000 046 8I
0.000 00I
0.000 0176I

T20

—0.047 2
—0.0174
—0.003 16
—0.002 29
—0.001 87
—0.001 03
—0.000 416
—0.000 131
—0.000 043 9

T21

—0.031 8
—0.067 5
—0.053 2
—0.024
—0.008 45
—0.002 7
—0.000 82
—0.000 24
—0.000 077 8

T22

0.005 75
—0.006 61
—0.0144
—0.007 51
—0.002 62
—0.000 81
—0.000 233
—0.000 072 3
—0.000 045 4

TABLE III. Calculated values of the state multipoles ( T(S3 =S3=0)~t& ) for co=0.4335.

Angle
(deg)

10
20
30
40
50
60
70
80
90

TOO

14.2
9.32
1.89
0.253
0.054 9
0.032 8
0.026
0.020 1

0.0147

T10

—2.06I
1.0I
0.4I
0.11I
0.036 2I
0.0172I
0.0117I
0.009 5I
0.007 77I

T20

—2.4
1.65
0.394
0.019

—0.023 3
—0.025 1
—0.021 4
—0.0166
—0.012

T21

—9.27
—4.26
—0.651
—0.049 5

0.002 2
0.003 57
0.003 03
0.002 72
0.002 31

T22

—5.75
—5.79
—1.23
—0.152
—0.027 8
—0.018 5
—0.015 7
—0.0117
—0.007 5

TABLE IV. Calculated values of the state multipoles ( T(S3 =0 S3 = 1)i+0 ) for co=0.4335.

Angle
(deg)

10
20
30
40
50
60
70
80
90

TOO

—6.1
—3.99
—0.78
—0.091 6
—0.0172
—0.012
—0.010 5
—0.008 42
—0.006 27

T10

0
0
0
0
0
0
0
0
0

0.089 1I
—0.43I
—0.168I
—0.044 9I
—0.014 8I
—0.007 28I
—0.005 07I
—0.004 12I
—0.003 36I

T20

1.02
—0.721
—0.172
—0.009 25

0.009 31
0.0104
0.009 09
0.007 13
0.005 17

T21

1.82
0.259

—0.011 1
—0.004 62
—0.002 72
—0.001 67
—0.001 28
—0.001 03

T22

2.49
2.51
0.529
0.062 5
0.0109
0.007 65
0.006 69
0.005 03
0.003 23

TABLE V. Calculated values of the state multipoles ( T(S3
=S3 = 1)zo ) for r0=0.4335.

Angle
(deg)

10
20
30
40
50
60
70
80
90

TOO

2.72
1.84
0.428
0.081 4
0.022 7
0.0104
0.006 32
0.004 28
0.003

T10

—0.392I
0.196I
0.085 9I
0.025 7I
0.008 36I
0.003 59I
0.002 24I
0.001 78I
0.001 48I

T20

—0.489
0.295
0.071 5
0.001 72

—0.005 9
—0.005 54
—0.004 36
—0.003 22
—0.002 29

T21

1077
—0.856
—0.166
—0.028 8
—0.006 45
—0.001 52
—0.000 096

0.000 316
0.000 37

T22

—1.08
—1.09
—0.244
—0.034 6
—0.007 35
—0.004 12
—0.003 13
—0.002 25
—0.001 45
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Two or more signals in

t ime coincidence

Elect ron
Detector

Photon 1

Detect or
Photon 2
Detect or

Photon 3
Detect or

Kn
~ = ~e

(T(L = 3)» 0 ) = (T(L=2)»0 ) =(T(L=))»tg ) (T(L = 0)ip)

t=o
Atom excited to n=4
states by electron impact

decay to
n=3 states

t2

decay to
n=2 states

decay to
1S ground state

FIG. 4. Time evolution of the excited atom and sequential
cascading scheme.

its ground state. The angular distribution and polariza-
tion of the emitted photons are fully determined by the
state multipoles of the excited atom immediately after
collision. In this section, we aim to establish such rela-
tionships.

The time evolution of the excited atom and the cascad-
ing decay processes are depicted in Fig. 4. Also shown
are the possible observations of a variety of coincidence
events. The electron-impact excitation of the ls4f state
takes place at t =0. After the collision, the excited atom
described by ( T((L3S')J3 (L3S )J3 )» g ) evolves with

3 3

time until t = t, . It then decays to either
the 3 'D or the 3 D state represented,
respectively, by ( T((L =2,S=0)Jz )» g ) and

(T((L=2,S=1)JzJ2)» g ). The 3'D [3 D] state
evolves further with time until the second photon is emit-

ted at t = t2 and the atom decays to the 2 'P 2 P
state represented by (T((L=l,S=O)J, )» g )
[(T((L =1,S=1)J',J, )» g ) ]. Finally, the atom emits

1 1

the third photon at t=t3 and decays to the monopole
state 1'S [2 S].

An analysis of this sequential cascade process requires
three basic equations. The first equation describes the
time evolution of the excited atom, the second equation
gives the spatial distribution and polarization state of the
emitted photon from such a state, and the third equation
provides the configuration of the lower state of the atom
immediately after emitting the photon. The derivation of
these three equations is given below, which follows close-
ly the general density-matrix theory presented by Blum
[51.

The density matrix of the excited ls4f state immedi-
ately after the collision is

p(0) =
I I I

3 3' 3' 3

K3, Q3

(T((L3pS3)J3(L3yS3)J3)» g )

(22)

where U(t)=e ' ' " is the time evolution operator and
H is the system Hamiltonian of the target atom. We then
obtain the time dependence of the ls4f state multipoles
as

X T((L3y S3 )J3 (L3S3 )J3 )» g (21)

The excited atom evolves with time in the total angular
momentum space

~ Jmz ) and the corresponding time-
dependent density matrix is

p(t)= U(t)p(0)U(t)

(T((L3S3)J3(L3S3)J3&t)k q )

=Tr[p(t)T((L3S3)J3(L3S3)J3)k q ]

( T((L3S3 )J3 (L3S3 )J3 )» g )Tr[ U(t )T((L3S3 )J3(L3S3)J3 )» g U(t ) T((L3,S3 )J3(L3S3 )J3 )k q ], (23)
3' 3

where

(L 5 )J
Tr[ ] —=G((L3S3 )J3(L3S3)J3,'t ) =e ~»3k&~g3q3 (24)

is the time evolution coefficient, (EI E, ) are the ene—rgy splitting of the four sublevels of the ls4f state, and y3 is the
t t

radiative decay rate of this state.
The next step is to derive the density matrix of the first photon (y, ) emitted at t = ti, which will contain all informa-

tion about the spatial distribution and polarization state of this photon. In dipole approximation, this is

p(A, ', A, ,n „t,) =C(co, )

K3,q3, Q3
—I

( T((L3$3 )J3 (L3$3 )J3;t, )» g
)"D (08,y, ) 'g

XTr[r &, T((L3 S3)J3(L3S3)J3)» q
r

1

(25)

where A, , co, and n =(O,y) denote the helicity, frequency, and Euler angles of the emitted photon,
C(co)=e co dQ/2rrc fi, and lab refers to the laboratory frame in which 8 and y are defined. The trace in the above
equation is
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1 1 1 L3
]=X(—1) ' ' '&3

g ~ 'J J J '(J2) J3J3I(LzllrllL3&l'
J2 1 1 93 3 3 2

'I
2 J2 0 L, 2 J2

I., 1

0 I 2 J2 1 I.,
J3 L3 1

(26)

(T((L2S2)J2J„t, )x g
&" —C(~1)

K3,q3'~3'q2
p — —I

where co1z=aP1q=0, coI z=coI 4=1, co03=coI 3=1/+1+co, and co03= —c013=co/')/1+ct3 . The lower state 3'D
7

[3 D ] of the atom immediately after the emission of the first photon can be represented by its state multipoles

(T((L3S3)J3(L3S3)J3)t1)Q Q & D( 08,y, ) q'g

where the trace

XTr Ir, T((L3S3 )J3 (L3S3 )J3 )Q q
1

&«', T«L2S2)J2J2)x, q ] 'D'(0~1m1)q, 'g,
1

(27)

TrI .
] =( —1) ' "+"+"&,&3(J2)'J3J3I(LzllrllL3&l'

Jz 0 Lz Jz 0 L2 J2 1 Lz Jz 1

E3

J3 1 J2

b E b 1 1
Z, br,

Xg(2b+1) (~, ~ ) (~ ~, )b 93 1 1 l2 1 1

Detailed calculations of the various traces [Eqs. (24), (26), and (28)] are given in the Appendix. The above equations
also apply to the subsequent time evolution and decay of the atom, except that the lower states are well represented by
the pure LS-coupling scheme and the traces will have simpler forms. The density matrix of the second photon (yz) is,
in the dipole approximation,

p(A, ', A, ,n, , A, 'A, n;t, , t )=C(co ) g (T((L S )J'J;t, )f
g &"'D(0e,q, ),'

I

J2,J~

where

XG((L2S2)J2J2;(tz —t, ))Tr[r ~, T((L2S2)J2J2)x, r
2

(29)

1 E2 1 1 K2[.. .
]
—y( 1) 1 2 2

JI J2 J2 J1

1.1 J1 S1 I.1 J1 S1
x(J1)'J2J2 J L 1 J, L 1

5ss l&L1llrllL2&l'

and the state multipoles of the 2 'P [2 P ] state immediately after the emission of the second photon is

& T((L1S1)JIJ1 tlt2)K1g1&

(30)

=C(~2) & T((L2S2)JzJ2't1)~, (3, &'"D(0()2V 2), 'q G((L2S2)JzJ2'(tz —t1))

where

XTrIr z, T((LzSz)JzJz), r 2 T((L1S1)J1J1)x, I
'D*(08 p 2) 1'2&q (31)



52 COHERENT EXCITATION OF THE SINGLET-TRIPLET MIXED . . ~ 2893

2 2

L, Ji S,
&s, s, I & L I llr IIL2 & I'

O' K,
X g (2b'+ 1)

b'

O' 1 1

(A,2
—

A,2)

E2 O' K,
(32)

Finally, the density matrix of the third photon (y3) is

P(~l~l~li~2~2~2&~3~3223' lq 2&t3) C(c03) g & T((LISI )JIJI,'tlt2)x g &""D(083')3),' G((L,S, )JIJI)(t3 t2))
1 1 qlQ)

K),q ),Q)
lJ, ,J,

XTr[r, T((LISl)JIJl), r z j
3 K)q (

(33)

where

TrI . . ]—:$(—1)Jo+J ) +X3

Jo

1 1 Ei
X ', 'kl(Jo) JIJ,

tween the scattered electron and the three cascading pho-
tons for a set of polarization and angular correlations.
However, detection of quadruple coincidences will have
to await further advance of experimental techniques and
it is unlikely to become feasible in the foreseeable future.
Nevertheless, we are able to attain most information on
the ls4f state, especially the mixing characteristics of
this state, by measuring and analyzing one or two of the
transitions shown in Fig. 1.

Lp Jp Sp

J L 1

I 0 Jp Sp
P

Ji L( 1

A. Explicit formulas for the ls4f ~3 'D
transition

»s, s, I & Lo Ilr IIL I & I' . (34)

The atom then decays to the monopole 1 'S [2 S] state.

III. CASE STUDY

A complete determination of all ls4f state multipoles
up to rank 6 mould require measurements and analysis of
the three-photon density matrix given by Eq. (33). This
can be achieved by measuring the coincidence rates be-

As discussed earlier, the excited ls4f state decays,
after some finite time, to either the 3 'D or the 3 D state.
Photons emitted from these two transitions (with wave-
lengths of 1870 and 1869 nm, respectively) are not corre-
lated in time or phase, because they are related to two
separate lower states. Nevertheless, both photons reflect
the mixed nature of the ls4f state. In other words, the
intensity and polarizations of either photon are functions
of the admixture coe%cient co.

For simplicity, we consider the transition ls4f ~3 D,
where 5 =0 and J =J ' =I. =2. The explicit density
matrix of the emitted photon can be readily obtained by
substituting Eq. (26) into Eq. (25),

P(A, 'IA, In, ; t ) =CI g ( —1) 'k3

l
S3,S3

1 1 K3 1 1 E3
0 0

Q3 J3 J3 J2 3 3

X & T((L3S3)J3(L3S3)J3)x &
&" D(OOI+, )~'& e 'cos[(E-, Es )t/A'], —(3&)

where C, =( —1) ' '(J2J3I&L2llrllL3&l) C(co, ). Note that in this case the trace in Eq. (26) is nonnzero only if
J3 =J3 =L3 =3.

The coincidence intensity and the Stokes parameters are defined as the various combinations of the two-photon densi-
ty matrix. They are evaluated using an algebraic package written in MATHEMATICA [29]. The results are
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I(Og), t)=p(A, ', =1,1,, =1)+p(Ai= —1,A, , = —1)

=C& g co-, co+ 3e
' cos[(E, E—

z )t/fi]
S3 S3

S3,S3

X —( T(S3S, )00) + —(1+3cos28)( T(S3S, )zo)
3 7 10+21

1/2
1 2+—
5 7

[cos2y sin 8( T(S3S3 )2~ ) —cosy sin28( T(S3S3 )~) ) ) . , (36)

IP, (Oy;t)= —[p(A, ', =l, A, , = —1)+p(A, , = —1,A, , =1)]
=C, g co . coos -3e

' cos[(E-. Es )—tlfi]s,
S3,

1X ~ ——
5

1/2
3

7

1/2

sin 8( T(S3S3 )zo) ——— cosy sin28( T(S3S3 )2, )

5+14
—cos2y(3+cos28)( T(S3S3 )zz) (37)

IP2(Oy; t ) = i [p—(AI =1,A, , = —1)—p(A
&

= —1,A
&

= 1)]

=C& g co-, co+ 3e
' cos[(E-. Ez )t/fi—]S3 S3

S3S3

IP3( Oy; t ) =p(A, ', = —1,k, = —1)—p(A, ', = 1,1,, = 1)

1/2

7
[sing sinO( T(S3S3 )z& ) +sin2y cosO( T(S3S3 )22) j,

(38)

=C& g co, aP& 3e
' cos[(E, Ez )t/fi] ——I

—cosO(T(S3S3)&0) —&2sinysinOIm(T(S353)&&)] .
S3,S3

(39)

For brevity, a few indices are not written out in the above
equations, e g. , 8=8„p=y„and —( T(S3S3)~g )
= ( T((LS')J'(LS)J)~g )" ~L=J =g 3—

Shown in Fig. 5 are the time spectra of
I( 8=y =m /2; t ), IP ) ( 8=y =~/2; t ), IP2 ( 8=

q&
=m. /2; t ),

l

and IP3(O=q&=m. /2;t) computed for two cases of co=0
and 0.4335 using the state multipoles listed in Tables
I—V. In the case of co =0, the pure I.S coupling scheme is
assumed to be valid and there is no mixing between the
singlet and triplet states. Consequently, only the 'F3

5 0, 0

M Q
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FIG. 5. Time spectra of I(B=y=m/2;t),
IP, (B=y=m/2;t ), IP2(6=a=m. /2;t ), and
IP3(B=y=~/2;t) of the first photon in arbi-
trary units. The electron incident, energy is
100 eV and the scattering angle (B, ) is 10.
Dashed lines, co=0; solid lines, co=0.4335.
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state decays to the 3 'D state and the time spectra are
simple exponential curves. However, in the case of
co=0.4335, both the 'F3 and I'3 states can decay to the
3 'D state because both of them have mixed singlet and
triplet character. The energy difference between these
two states is 704 MHz, which results in time modulations
in their decay curves.

Finally, we calculate the integrated polarization for the
ls4f ~3 'D transition. In the classic paper of Percival
and Seaton [30], a list of formulas was given for the in-
tegrated polarization of the photons emitted from transi-

tions between the lowest few angular-momentum states of
helium, which are well I.S coupled. Since we have al-
ready derived the formulas for the total intensity and the
Stokes parameters, the integrated polarization for the
ls4f ~3 'D transition can be obtained readily by in-
tegrating Eqs. (36) and (37) over time t and photon angle
yz. Note that the contribution from the off-diagonal ele-
ments (S'AS ). By ignoring the off-diagonal terms,
which is thousands of times less than the diagonal ones in
this case, we obtain

P'"i'( 8r= 90' }=f IPi(8 =90',y )dy f I(8 =90,y )dy

3(4go+3gi+3Q i 5Q3 5Q 3)

24go+23gi+23Q, +20Q2+20Q 2+ 15Q3+ 15Q
(40)

where

Q = f IIf((L=3,S=O)J=3,m~)I

+~21f((L =3,s =1)J=3,m, ) I'Id8,

and f((LS )Jm J ) are the excitation amplitudes of the
mixed I(LS)Jmz) state as defined by Eqs. (9)—(11). A
similar integration gives P'2"' =P3"' =0.

B. Explicit formulas for the cascade 1s4f~3 'D ~2 'P
transitions

As illustrated in the preceding subsection, measure-
ments of the first photon emitted from the ls4f +3 'D—
transition would provide coherence information between

I

I

the I4'F3 ) and I4 F3 ) states. Unfortunately, theJ J
present experimental technology does not allow a direct
analysis of this photon due to the ineKciency of photon
detectors in the infrared region. The same applies to the
photon emitted from the ls4f ~3 D transition.

An alternative choice is to analyze the cascading pho-
ton emitted from the subsequent 3 'D —+2 'P transition,
which has a wavelength in the visible region where
efBcient photon detectors exist. The expressions for
describing the angular distribution and polarization of
this photon can be derived in the following way. Substi-
tuting Eqs. (27), (28), and (30) into Eq. (29), one obtains
an explicit expression for the density matrix describing
the two photons (y„y2) emitted from the cascading tran-
sitions 1s4f~3 'D ~2 'P,

P(~1~in 1 tl ~2~2+2 t2 }

K2, Qp, 92,K3, Q3, 03,b

J3 =J3 =3;S3,S3

( —1) ' ' "k (E )b2ioo too e ' ' ' ' ' cos[(E- —&- )t &&]3 2 S'J' S3J3 S3 S3

1 1 K2 E3

(k2 —
A, 2)

b 1 1

(A, i
—

A, 'i) A, 'i

J2 J2

E3 b

Ji q3 (A, ', —A, , ) —
q2

K2

J2 ( T((L3S3 )J3 (L3S3)J3 )» g
)""

J2

XD (082P2) ~,
'

~
D (08,y, )q

'
t2 D '(08,y, )q

'
g (42)

where C2 is similar to C, of Eq. (35) and contains all the
terms that can be factored out of the summation.

Because the first photon y& is not measured, we in-
tegrated the above expression over the angles of (8„y, )

and over the time ti (0&ti &t2). This gives the reduced
photon density matrix for coincidence measurement of

f f D(08iy, ) '& D*(08,y, } '& sin8d8dy

8 2

2Z +1 5 5
3

(43)

I

(e, y2). The orthogonality relation of the rotation matrix
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was used to simplify Eq. (42) before further calculations.
The total intensity and the Stokes parameters for the

second photon y2 are

IPz(glp) = —i
A, )=A,)=+1

[p(kz= l, kz= —1)

—p(l, z= —l, k,z= 1)), (46)

I(gq2) =
A2=A2=+1, A,

)
=A, )

=+1
p( A, 1A, 1tt 1 Ap z11 z ) (44) IP3 (gq2) =—

A, )=A, (=+1
[p(iz= 1,lz= 1)

—p(Az= —1,Az= —1)] . (47)
IP, (glp) =—

A, )
=A.

)
=+1

[p(Az= l, l2= —1)

+p(iLz= —l, hz= 1)], (45)

I

Evaluation of these expressions showed that they are
identical to Eqs. (36)—(39) except that C, is replaced by
C2, L9= 02, y= @2, and the time-dependent part is now

e ' ' '[bE sin(bE tz)+(yz —y3)cos(bE tz)] —(1'z —1'3)

e ' '[(r z )'—3)'+bE']
(48)

where gE =E- —E- . This suggests that the angular distribution and polarization correlations of the second photon
S3 S3'

provide essentially the same information as the first photon. Shown ln Flg 6 are the time spectra of
IP ( g =&

—~/2 t ) Ip ( g = q1 =2r/2; t 2 ), and IP3 ( gz =
q2z = 2r /2; t z ) of the second photon for

~——0 and 0.4335. The time variations in the solid curves (co=0.4335) are clearly visible, although they are somewhat
smeared by the integration.

C. Explicit formulas for the complete cascade ls4f ~3 'D ~2 'P ~ 1 'S transitions

Substituting Eqs. (23), (24), (27), (28), (31), (32), and (34) into Eq. (33), we have the complete density matrix for for
describing all three cascading photons,

p(~1~]tt 1 t1 ~z~zrtz tz ~3~3t23 t3 )

t
1'~1' 2'q2'~2'ql

3'q3'~3'q2'b, b

( 1) 3 2 zl 3 't2g (g g bb )2 0 0 r3 1 r2 2 1 rl 3 2SJe33 33

Xcos[(E, Es )t, /A']-
S3

3

x,
A3 (A3 A3) J) J) J0

E2 b' E1b' 1 1

q z (A.z
—

A, z) —q, (Xz —
A,z)

J2 1 J1

J2 1 J1

X
q3 (X', —A, , ) —

qz

b 1 1
K3 b E2

J3 1 J2

X( T(( L3S)3J(3LS3)3J )3' ) D(0831p3)2 2
D( z pz)q g

X (T((L3S3) J(3L3 S3)J3) xg ) D(083lp3) / D(08zlpz) I
3 3 3 3' 1

(49)

where C3 is similar to C1 and Cz of Eqs. (35) and (42) and
contains all the terms that can be factored out of the
summation.

Considering the recent success of triple coincidence
measurements in He 3 'D [31], similar measurements in
He ls4f will be feasible in the near future. In He 3 'D,
one measures the coincidence rates between the scattered
electron with energy loss of -23. 1 eV and the two pho-

tons with wavelength of 668 nm (visible) and 58 nm (uv).
In He ls4f, the scattered electron with energy loss of
-23.8 eV is measured in coincidence with the second
and third cascading photons, which have the same wave-
lengths of 668 and 58 nm, respectively. Such measure-
rnents will provide information about the ls4f state mul-
tipoles up to rank 4.

For this reason, we derived the corresponding coin-
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cidence intensities and the Stokes parameters for all pos-
sible arrangements of the two photon detectors for the
Is4f state using Eq. (49). Again, since the first photon y,
is not measured, Eq. (43) was applied to simplify the
three-photon density matrix. The explicit expressions ob-
tained are too long to be listed here and
readers can write to the authors (electronic address:
wang@earwax. pd. uwa. edu. au) for the detailed informa-

I

tion if required.
For illustration, we present our results for two special

experimental arrangements. In the first case, both pho-
ton detectors are perpendicular to the incident electron
beam with the uv detector perpendicular to the scattering
plane and the visible detector in the plane, i.e., 82=+/2,
yz=O, 83 =n /2, and qr3 = m /2. The coincidence intensity
and the Stokes parameters are found to be

S, S,
S3,S3

X —,', [ —182&7( T(X'qr3 }too) +32&21( T(s'3, s3)20) —v 154( T(s'3s3)40) + 14' 55 ( T(s'3s3)~) ], (50)

3
S3S3

X —,', [ —14&7( T(S3S3)00)+56&21(T(S3S3)qo) —72&14( T(S3S3)2~)
—7&154( T(S3S3)40)+8&385(T(S3S3)42)—14&55( T(S3S3)44)], (51)

S3
S3,S3

X [ —60+7( T(S3S3 )2, ) +3@'385(T(S3S3)qi ) —7V'55( T(S3S3)q3)],21
(52)

3 3
S3,S3

X &2[4+7 Im( T(S3S3 )» ) —Im( T(S3S3)» ) ++15Im( T(S3S3)33)] . (53)

In the second case, we chose 82=@ /2, qrz=O, 83=m /3, and f3=sr/2 and the coincidence intensity and the Stokes pa-
rameters are

3
S3,S3

X —„', [ —728&7( T(S3S3 }DO ) +80&21( T(S3S3 )20) +&154( T(S3S3 )~o )

—48&14( T(S3S3)2~)—4V 385( T(S3S3)t42)+42&55( T(S3S3)44)], (54)



2898 WANG, WILLIAMS, STELBOVICS, FURST, AND MADISON 52

S3 S3
S3,S3

X —„', [ —56M 7( T(S3S3 )oo) + 176' 21( T(S3S3 )po) —23''154( T(S3S3 )4o)

—336v'14( T(S3S3 )2tq ) +28V385 ( T(S3S3 )42 ) —70V'55 ( T(S3S3 )44) ],
S, S,

S3,S3

X —', [ —60&42( T(S3S3)2))+3@2310(T(S3S3)4) ) —7/330( T(S3S3)~3)],
Q Q r3~, —r, [~2 —

~& ~
—r [~ —

~2 ~IP3=C3 g co-, , cps z e ' ' ' ' ' ' ' ' cos[(E-, Es )—t&/A']
33 33 3 3

S3,S3

X —,'[4v 421m( T(S3S3)&&) —+61m( T(S3S3)3&) +3~101m( T(S3S3)33)] .

(55)

(56)

(57)

It can be seen the measurements at different angles re-
veal different components of the ls4f state multipoles.
Accordingly, we know from the full formulas the best po-
sitioning of the photon detectors for measurement of
each state multipole. This provides guidance for op- .

timum experimental design to ensure the most e%cient
and revealing measurements.

IV. CONCLUSION

In this paper, we have presented a general framework
for treating the time evolution and the cascading decay
process of helium ls4f state, which has mixed singlet and
triplet characters and its sublevels are coherently excited
by electron impact. Explicit formulas for the coincidence
intensity and Stokes parameters associated with measure-
ments of (e, y&), (e, y2), and (e, yz, y3) are derived. The
excitation amplitudes are calculated using the first-order
DWBA method for incident energy of 100 eV. It is
found that the intensity and polarization of the first pho-
ton from the ls4f ~3 'D transition are time modulated
due to the singlet and triplet mixing in the ls4f state.
Quantum beats also appear in the time spectra of the cas-

I

I

cade photon from the subsequent 3 'D ~2 'P transition.
The transitions considered in this work are ls4f

~3 'D —+2'P~1 'S, which reveal coherent information
between the ~4'F3) and ~4 F3) levels. For coherent in-
formation between all four levels of the ls4f state, i.e.,
~4 'F3 ) and ~4 F2 3 „), an analysis of the transitions
ls4f ~3 D —+2 P~2 S is required, which will be the
topic of a separate paper.
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APPENDIX

The details of derivation of the trace expressions aris-
ing from the density-matrix computation are given for
completeness in this appendix.

1. Derivation of Eq. (24)

The time evolution coefBcient is

G((LS')J'(LS )J; t )

=Tr[ U(t )T((LS')J'(LS )J)«U(t ) T((LS')J'(LS )J ) tk j

( (LS )Jm
~
U( t )

~

(LS")J"m ") ( (LS")J"m "~ T((LS' )J'(LS )J )xg ~

(LS')J'm ' )

X ((LS')J'm'~ U(t) ~(LS"')J'"m"')((LS'")J"'m'"~T((LS')J'(LS)J)tkq ~(LS)Jm )

where the various terms are

((LS)Jm ~U(t)~(LS")J"m")=e

( (LSI)JI I~ U( )t~(LSIII )JIII ~ II ) (Ls')j'

( (LS")J"m "~ T((LS')J'(LS )J)« ~

(LS' )J'm ' ) = ( —1 )
J J' K
m —m' —Q

J J' k
((LS"')J"'m"'iT((LS')J'(LS)J)kqi(LS)Jm ) =(—1) ~ k .

Note that



52 COHERENT EXCITATION OF THE SINGLET-TRIPLET MIXED. . .

J J' K J J' k

m —m' —Q m —m' —
q

and the final result is thus

G((LS )J (LS )J.t ) e (Ls)J (Ls')J'

1
Kk Qq

2. Derivation of Eq. (26)

The trace is calculated in the complete basis of the lower states

Tr fr z, T((L3S3)J3(L3S3)J3)Q q
r

1

&(LzSz)Jzmzlr k, 1(L3S3)J3m3 &

I
J2, m&, m3, m 3

x & «3S3 )J3m 3 I T((L3s3)J3(L3s3 )J3)~'.q. 1(L3s3)J3m3 & & (L3s3)J3m3 lr —k, l(Lzsz) Jzm2 &

I
J2, m2, rn3, m 3

( 1 )
2 2

J2 1 J3
&(L2S2)J21lrll(L3S3)J3 &

J3 K3 J3

where

&(L2S2)Jzllrll( 3S3)J3 & = &(L2S2)Jzllrllcog, , (L3 3 ~g~ I 31)J3 &

33 33

J2 1 J3
') ' '&3 ~ ( —1) ' '

g &(LzS»Jzllrll(L3S3)J3
m3 q3 m3 m2 1) m3

1 1 E3 1 1 K3
=X(—1) ' ' '&3

~ ~ ~ &(LzSz)Jzllrll(L3S3')J3 &&(LzSz)Jzllrll(L3S3)J3&*
J2 I 1 q3 3 3 2

I 2 J2 1

J2J3 &L211rIIL3 & ~ ' ' J L 1
~s 1+3J3 J3 L(3 ] 2 ~3J3

&«zS»Jzllrll«3S )J3&'=&(L2S2)Jzllrll&g', J «30)J3+~g', (L31)J3&'

L2 J2

J3 L3

0
~S,O

L2 J2 1 L2 J2 0
zll"IIL3&' ~g, I J L 1

|'Szl ~S I J L 1 (3S0

and io( 2=co( 4=0, A@I z=coI 4=1, coo 3=(oI 3=1/+1+co, and coo 3= —coo 3=co/+1+(o .

3. Derivation of Eq. (28)

This trace is calculated similarly to that above:

Tr[r (T((L3S3)J3(L3S3)J3)a q
r k T((L2S2)JzJ2)a q

1

I I
m2, m2, m3, m3

I I
m2, m2, m3, m3

& (LzSz )Jzmz I
r k, 1(L3S3 )J3m 3 & & (L3S3 )J3m 31T((L3S3)J3(L3S3 )J3 )I; q 1(L 3S3 )J3m 3 &

j

X & (L3S3 )J3m 31r —k, I(LzSz )Jzm z & & (LzS2)Jzm z I T( Jz Jz)I(.-,q, l(LzSz )Jzmz &

J J2 1 J3

&(L2S2)J211rll(L3S3)J3 &

J3 E3 J3 I I

X( —1)" 't, , ( —1)"
m3 q3 m3

J2
—m'

2 1

J3

m3

J2 K2 J2
X &(LzSz)Jzllrll«3S3)J3 &'( —1) ' z&2 —m2 q2 m2
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I{'zI{'3& (I 2~2 )J2 II
r

II ( I'3 ~3 )J3 ) & (I 2~2 )I2 II
r

b K2
X( —1) ' 'g(2b+I)

(ki —
A, i)

E3 b E~

J3 1 J2

J3 1 J2

Note that the contraction rule

c f i a d g d e f g h i

y P v a 5 p 5 E (t p

has been used.

=Q (2b+1)
b

a b c b e h

a p y p
g h i

[1]I. Bray and A. T. Stelbovics, Phys. Rev. A 48, 4787 (1993).
[2] D. H. Madison, K. Bartschat, and R. P. McEachran, J.

Phys. B 25, 5199 (1992).
[3] M. P. Scott and P. G. Burke, J. Phys. B 26, L191 (1993).
[4] U. Fano and J. Macek, Rev. Mod. Phys. 45, 553 (1973).
[5] K. Blum, Density Matrix Theory and AppL'cations (Ple-

num, New York, 1981).
[6] H. B. van Linden van den Heuvell, G. Nienhuis, J. van

Eck, and H. G. M. Heideman, J. Phys. B 14, 2667 (1981).
[7] J. Burgdorder, Phys. Rev. A 24, 1756 (1981).
[8] E. L. Heck and J. Gauntlett, J. Phys. B 19, 3633 (1986).
[9] J. B. Wang, A. T. Stelbovics, and J. F. Williams, Z. Phys.

D 30, 119 (1994).
[10]S. Chwirot and J. Slevin, J. Phys. B 20, 3885 (1987).
[11]A. T. Stelbovics, M. Kumar, and J. F. Williams, J. Phys. B

26, L237 (1993).
[12] S. Chwirot, S. Legowski, J. Slevin, and J. Zaremba, J.

Phys. B 22, 1411 (1989).
[13]N. Andersen, J. W. Gallagher, and I. V. Hertel, Phys.

Rep. 165, 1 (1988}.
[14]J. A. Slevin and S. Chwirot, Comments At. Mol. Phys. 26,

11 (1991).
[15]A. G. Mikosza, R. Hippler, J. B. Wang, and J. F. Willi-

ams, Phys. Rev. Lett. 71, 235 (1993).
[16]G. von Oppen, Phys. Scr. T26, 34 (1989).
[17]D. Kaiser, Y. Q. Liu, and G. von Oppen, J. Phys. B 26,

363 (1993).

[18]R. M. Paris and R. W. Mires, Phys. Rev. A 4, 2145 (1971).
[19]D. R. Cok and S. R. Lundeen, Phys. Rev. A 19, 1830

(1979).
[20] D. R. Cok and S. R. Lundeen, Phys. Rev. A 23, 2488

(1981).
[21]J. S. Sims and W. C. Martins, Phys. Rev. A 37, 2259

(1988).
[22] Y. Q. Liu, W. Simons, F. Walachowicz, and G. von Op-

pen, J. Phys. B 26, 381 (1993).
[23] G. A. Khayrallah and S. J. Smith, Phys. Rev. A 18, 559

(1978).
[24] A. F. J. van Raan and H. G. M. Heideman, J. Phys. B 7,

L216 (1974).
[25] F. Nienhuis, in Coherence and Correlation in Atomic Col

Iisions, edited by H. Kleinpoppen and J. F. Williams (Ple-
num, New York, 1980), p. 121.

[26] K. Bartschat and D. H. Madison, J. Phys. B 20, 5839
(1987).

[27] K. Bartschat and D. H. Madison, J. Phys. B 21, 153
(1988).

[28] C. Froese Fischer, Comput. Phys. Commun. 4, 107 (1972).
[29] J. B. Wang and J. F. Williams, Comput. Phys. Commun.

75, 275 (1993).
[30] I. C. Percival and M. J. Seaton, Philos. Trans. R. Soc.

London Ser. A 251, 113 (1958).
[31]A. G. Mikosza, J. F. Williams, J. H. Flexman, R. Hippler,

J. B.Wang, and P. A. Smith (unpublished).


	Coherent Excitation of the Singlet-triplet Mixed 1s4f State of Helium
	Recommended Citation

	Coherent excitation of the singlet-triplet mixed 1s4f state of helium

