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Communication: Rigorous quantum dynamics of O + O2 exchange
reactions on an ab initio potential energy surface substantiate
the negative temperature dependence of rate coefficients
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The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated
on a recently determined accurate global O3 potential energy surface using a time-dependent wave
packet method. The agreement between calculated and measured rate coefficients is significantly
improved over previous work. More importantly, the experimentally observed negative temperature
dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This neg-
ative temperature dependence can be attributed to the absence in the new potential energy surface of
a submerged “reef” structure, which was present in all previous potential energy surfaces. In addi-
tion, contributions of rotational excited states of the diatomic reactant further accentuate the negative
temperature dependence. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894069]

It has been more than thirty years since the discovery
that heavier ozone (O3) isotopomers are preferentially en-
riched in the atmosphere.1 Also found in laboratories,2 this
so-called mass-independent fractionation (MIF) in the forma-
tion of ozone has stimulated much experimental and theoret-
ical work.3–6 It is well established that ozone in the atmo-
sphere is produced through the Chapman cycle, in which the
metastable O3* formed by collision between O and O2 is sta-
bilized by energy loss to a third collision partner. While a
complete explanation of the strong and surprising isotope ef-
fect has not been achieved yet,7 it is reasonably certain that
it has a quantum mechanical origin associated with the zero-
point energy differences among various O2 isotopomers.8

A closely related isotope effect has also been observed
for the O + O2 isotope exchange reactions,9 which com-
petes with the formation of O3. Interestingly, the rate coef-
ficients of the exchange reactions have been found to pos-
sess a negative temperature dependence,10, 11 signifying the
absence of a reaction barrier. However, this negative tem-
perature dependence has been notoriously difficult to re-
produce theoretically,11–14 despite the fact that the poten-
tial energy surfaces (PESs) used in previous calculations
are barrierless.15, 16 In an insightful study, Schinke and co-
workers11, 12 pointed out that the temperature dependence of
the exchange rate coefficients is sensitive to a submerged
“reef”-like feature in the O + O2 entrance (and exit) chan-
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nel of the O3 PES, which has been found in most of previous
ab initio calculations.17–20 They showed that if the PES was
adjusted to remove the “reef,” interestingly, the calculated rate
coefficients then took on a negative temperature dependence
and agreed better with experiment.12

We have attempted to resolve this controversy by map-
ping out the ozone formation PES with high-level ab initio
approaches. It has recently been shown by Dawes et al.21, 22

that the “reef”-like saddle point present in many previ-
ous ozone PESs is an artifact of the electronic structure
model used to generate the PESs. The new Dawes-Lolur-
Li-Jiang-Guo (DLLJG) PES, obtained with a dynamically
weighted23, 24 explicitly-correlated multi-reference configura-
tion interaction25–27 approach with the Davidson correction28

and spin-orbit correction (DW-MRCI-F12+Q), is “reef”-
free, thus qualitatively different from all previous ozone
PESs.16, 20, 29 The disappearance of the “reef” structure essen-
tially results from the employment of a large basis set, larger
active configuration spaces, and dynamical weighting of ex-
cited states. Further evidence for the absence of a reef was
provided by Tyuterev et al., who found improved agreement
with experiment for the highest lying known vibrational lev-
els when a “Dawes correction” to remove the reef was ap-
plied to their PES.29 In our recent work, quantum statistical
model (QSM) calculations on the DLLJG PES have already
produced a negative temperature dependence for the O + O2
rate coefficients.22 However, this QSM-based conclusion is
tentative as the O + O2 exchange reactions are known to
have a strong non-statistical character,30–32 which prevents an
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accurate description of the kinetics with any form of statisti-
cal theory. To provide a conclusive assessment of the DLLJG
PES, we report here an extensive quantum dynamics investi-
gation, which computes the rate coefficients and their temper-
ature dependence from state-to-state and initial-state selected
integral cross sections.

Our quantum scattering calculations focused on the fol-
lowing exchange reactions:

16O + 32O2 → 16O + 32O2 (R1)

16O + 36O2 → 18O + 16O18O (R2)

18O + 32O2 →16O + 16O18O (R3)

The state-to-state calculations, which employed a reactant Ja-
cobi coordinate-based quantum wave packet method,33 min-
imize the errors at low collision energies due to the incom-
plete absorption of the wave packet in asymptotes. The wave
packet was propagated using an efficient high-order split oper-
ator method,34 which allows a large time step of 120 a.u. The
PES used in the calculation is that of Dawes et al.,22 which
includes an analytical form developed by Lepers et al.35 to
better describe the asymptotic regions. An absorbing potential
was applied at the end of both R and r grids to impose outgo-
ing boundary conditions. All partial waves up to J = 94 were
included. More details of the quantum scattering calculations
and the associated parameters are found in the supplementary
material.36

The state-to-state integral cross section (ICS) at col-
lision energy Ec was obtained from the S-matrix element
SJ
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where the wavevector is defined as κυ
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2μEc with μ as
the translational reduced mass. All necessary helicity chan-
nels, up to 2J/3, labeled by the projection of the total angular
momentum J on the body-fixed axis (K), were included.31

The initial state-specified thermal rate coefficients were
obtained by Boltzmann averaging their ICSs:
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where kB and T are the Boltzmann constant and temperature
in Kelvin, respectively. Qel is the electronic partition function
for the exchange reaction, which is given by37

Qel = 3[5 + 3e−227.6/T + e−325.9/T ]. (3)

The thermal averaged rate coefficient k(T) can then be ob-
tained by a Boltzmann average over the initial ro-vibrational

states:
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where Eυ
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and Qυ
i
j
i

are the reactant ro-vibrational energies
and corresponding partition functions, respectively.

Since 18O and 16O have I = 0 nuclear spin, there are no
even rotational states for 32O2 and 36O2, because of nuclear
spin statistics.38 As a result, only odd initial rotational states
of the reactants (ji) for R1, R2, and R3 should be considered.
However, the number of initial wave packets needed is pro-
portional to 2ji+1. To minimize the computational costs in
state-to-state calculations, we evaluated a strategy of using the
(forbidden) ji = 0 initial state to obtain the cross sections and
the initial state-specified rate coefficients for these reactions.
This approximation is reasonable as O2 has a large moment of
inertia, and the initial rotational level typically has little im-
pact on reactivity of complex-forming reactions, at least for
the lowest few rotational states.39 As shown in the supplemen-
tary material,36 the total reaction probabilities and ICSs for ji
= 0 and 1 are almost identical for R1. As a result, all state-
to-state quantum calculations reported below for R2 and R1
used the ji = 0 ro-vibrational state of the O2 reactants. The ef-
fects of higher ji states were investigated for R3 with selected
initial states of (υ iji) = (0,5), (0,9), and (0,21). The ICSs of
other reactant rotational states were obtained by interpolating
those of the three initial rovibrational states, according to the
following equation:
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where jl and js are the rotational quantum number larger (l) or
smaller (s) than ji, respectively. On the other hand, the effect
of vibrationally excited O2 is negligible as its vibrational fre-
quency is about 0.19 eV. Finally, we note that the nuclear spin
statistics of the product such as 32O2 was not explicitly con-
sidered either, since it hardly affects the total integral cross
sections and rate coefficients, as argued using the state-to-
state results in the supplementary material.36

The calculated integral cross sections (σ (Ec)) for R1,
R2, and R3 with ji = 0 are presented in the upper panel of
Figure 1 as a function of collision energy. It is clear that these
excitation functions decay monotonically at low collision en-
ergies, consistent with the barrierless reaction pathway. This
behavior is drastically different from the excitation functions
computed on older PESs with a “reef” structure, where the
ICS typically increases with Ec.11, 13, 14 Significant isotope ef-
fects are also apparent: R2 has the smallest reactivity, fol-
lowed by R3, while R1 is most reactive. This ordering is in-
triguing as R1 is thermoneutral and symmetric with respect
to the exchange of the three oxygen atoms, while R2 and R3
are endothermic and exothermic, respectively. Some oscilla-
tions are present in the excitation functions, which presum-
ably stem from resonances near the reaction threshold. The
analysis of these resonances, which are relevant to MIF in
ozone formation, will be presented in a future publication.

In the lower panel of Figure 1, the ICSs of R3 for rota-
tional states ji = 1, 3, . . . , 21 are displayed. It is observed that
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FIG. 1. (a) Comparison of initial state specified total integral cross sections
of R1 (black), R2 (red), and R3 (blue). (b) Comparison of total integral cross
sections with different initial rotational states of R3 obtained on the DLLJG
PES.22

at low collision energies, the ICS decreases with the increas-
ing rotational quantum number of the initial state. As a result,
contributions from rotationally excited O2 should be included
in computing the thermal rate coefficients.

In the upper panel of Figure 2, the rate coefficients of
R1, R2, and R3 with the ground ro-vibrational state (ji = 0)
are presented as a function of temperature. Also plotted in
the same figure are the rate coefficients with ji = 0 calcu-
lated on the modified Siebert-Schinke-Bittererova (SSB) PES
of Babikov et al.15, 16 It is clear that rate coefficients on the
SSB PES are significantly smaller than those obtained on the
DLLJG PES. More importantly, the negative temperature de-
pendence of the calculated rate coefficients on the DLLJG
PES is apparent, while a slightly positive temperature depen-
dence was found for the rate coefficients calculated using the
SSB PES. This can be readily understood as the “reef” struc-
ture in the modified SSB PES serves as a bottleneck and lower
the reactivity.31

In the lower panel of Figure 2, the R3 rate coefficients
including all allowed reactant rotational states up to ji = 21
are displayed. In the temperature range shown, it is observed
that the rate coefficient decreases with the increasing rota-
tional quantum number. As a result, the inclusion of higher
rotational states of the reactant steepens the negative temper-
ature dependence of k(T). This conclusion is also confirmed
with quasi-classical trajectory calculations in the supplemen-
tary material.36
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FIG. 2. (a) Comparison of initial state specified with ji = 0 rate coefficients
of R1, R2, and R3 obtained on the DLLJG22 and modified SSB15, 16 PESs. (b)
Comparison of initial state specified rate coefficients and thermal averaged
rate coefficients of R3 obtained on the DLLJG PES.22

In order to compare with experiment, we have empiri-
cally corrected the thermal rate coefficients of R1 and R2 with
ji = 0, using the scaling factor between k(T) and kυ

i
j
i
=00(T )

for R3. The resulting rate coefficients for all three reactions
are shown in Figure 3, along with the available experimental
results. The negative temperature dependence of the calcu-
lated rate coefficients for all three reactions is apparent, al-
though the agreement with experimental data is still imper-
fect. We also note that the rate coefficients obtained on the
DLLJG PES are in much better agreement with the experi-
mental values than those on the SSB PES, further suggesting
the improved accuracy of the new PES. In addition, the cal-
culated kinetic isotope effect (k3/k2) at 300 K is 1.53, which
is in line with the experimental value of 1.27.9, 11 The suc-
cessful reproduction of the experimentally observed negative
temperature dependence for all three isotope exchange reac-
tions using a dynamically exact quantum method provides the
strongest evidence to date in support of the global accuracy of
the DLLJG PES, validating the absence of the “reef” structure
in the entrance and exit channels of the PES.

The remaining discrepancy with experiment may have
several possible origins. First, there may still be inaccuracies
in the PES, due to internal contraction40 and high-order elec-
tron correlation. Second, there might be non-adiabatic inter-
actions in the asymptotic region amongst the 27 electronic
states that are coupled by spin-orbit couplings,35, 41 although
a 2D study mentioned in our previous investigation predicted
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FIG. 3. Comparison of thermal rate coefficients of R1, R2, and R3 obtained
on the DLLJG PES.22 The available experimental data are also presented for
comparison.

this to be negligible.21 At the same time, there are large ex-
perimental uncertainties in the measured rate coefficients.

To summarize, an extensive quantum wavepacket study
has been carried out for several O + O2 isotope exchange
reactions on the most dynamically accurate global ozone
PES to date. The calculated thermal rate coefficients are
in much better agreement with experiment than those ob-
tained previously on less accurate PESs. Perhaps most signif-
icantly, the experimentally observed negative temperature de-
pendence of these rate coefficients is reproduced, which can
be mostly attributed to the absence of a “reef” structure on
the new PES, accentuated by the excited reactant rotational
states.

Because the accuracy of PESs is a pre-requisite for accu-
rate quantum dynamical calculations, errors in the PES could
lead to false dynamical predictions. There is a large body
of dynamical calculations based on the existence of such a
“reef” structure in the ozone PES, including some on the MIF
of ozone formation.42–46 As a result, the impact of the artifi-
cial “reef” structure in earlier PESs on these dynamical cal-
culations needs to be carefully reassessed. Our new PES is
expected to provide a much more reliable platform for un-
derstanding both the bimolecular exchange reaction and uni-
molecular ozone forming reaction, which holds the key to the
ultimate elucidation of the ozone MIF.

This work was supported by the Natural Science Foun-
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21133006 to Z.S.), National Natural Science Foundation
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nese Ministry of Science and Technology (2013CB834601 to
D.X.), National Science Foundation (CHE-1300945 to R.D.),
and NASA (11-EXO11-0107 to H.G.). We thank Beatrice
Bussery-Honvault for sending us her asymptotic potential for
O + O2.
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