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We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry

between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field

disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely

destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional

generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in

the symmetry-broken phase is described by a Sinai walk of the domain walls between two different

absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by

large-scale Monte Carlo simulations.
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Impurities, defects, and other types of quenched disorder
can have drastic effects on the long-time and large-distance
behavior of many-particle systems. For example, disorder
can modify the universality class of a critical point [1,2],
change a phase transition from first order to continuous
[3–5], or smear a sharp transition over an interval of the
tuning parameter [6]. Particularly strong effects arise from
disorder that locally breaks the symmetry between two
equivalent macroscopic states while preserving the sym-
metry globally (in the statistical sense). As this type of
disorder corresponds to a random external field in a mag-
netic system, it is usually called random-field disorder.
Recently, a beautiful example of a random-field magnet
was discovered in LiHoxY1�xF4 [7–9]. Random-field dis-
order naturally occurs when the order parameter breaks a
real-space symmetry such as in nematic liquid crystals in
porous media [10] and stripe states in high-temperature
superconductors [11].

Imry and Ma [12] discussed random-field effects at
equilibrium phase transitions based on an appealing heu-
ristic argument. Consider a uniform domain of linear size L
in d space dimensions. The free energy gain due to aligning
this domain with the (average) local random field behaves

as Ld=2 while the domain wall energy is of the order of
Ld�1 [13]. For d < 2, the system thus gains free energy by
forming finite-size domains that align with the random
field. In contrast, for d > 2, the uniform state is preferred.
Building on this work, Aizenman and Wehr [5] proved
rigorously that random-field disorder prevents spontaneous
symmetry breaking in all dimensions d � 2 for Ising sym-
metry and d � 4 for continuous symmetry. Thus, random
fields destroy an equilibrium phase transition in suffi-
ciently low dimensions.

In nature, thermal equilibrium is rather the exception
than the rule. Although equilibrium is an excellent approxi-
mation for some systems, many others are far from
equilibrium and show qualitatively different behaviors.
In recent years, phase transitions between different

nonequilibrium states have attracted considerable atten-
tion. Examples can be found in population dynamics,
chemical reactions, growing surfaces, granular flow, as
well as traffic jams [14–18]. It is therefore important to
study random-field effects at such nonequilibrium phase
transitions. Are these transitions destroyed by random
fields just like equilibrium transitions?
In this Letter, we address this question for a prominent

class of nonequilibrium phase transitions, viz., absorbing
state transitions separating active, fluctuating states from
inactive, absorbing states where fluctuations cease entirely.
We develop a heuristic argument showing that random-
field disorder which locally favors one of two equivalent
absorbing states over the other does not prevent global
spontaneous symmetry breaking in any dimension. The
random fields thus do not destroy the nonequilibrium
transition. In the symmetry-broken phase, the relevant
degrees of freedom are domain walls between different
absorbing states. Their long-time dynamics is given by a
Sinai walk [19] leading to an ultraslow approach to the
absorbing state during which the density of domain walls
decays as ln�2ðtÞ with time t (see Fig. 1). We also study the

FIG. 1 (color online). Time evolution of the generalized con-
tact process in the inactive phase (a) without (� ¼ 5=6) and
(b) with random-field disorder (�h ¼ 1,�l ¼ 2=3). I1 and I2 are
shown in yellow and blue (light and dark grey). Active sites
between the domains are marked in red (middle grey). The
difference between the diffusive domain wall motion (a) and
the much slower Sinai walk (b) is clearly visible (part of a
system of 105 sites for times up to 108).
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behavior right at the critical point where we find even
slower dynamics.

In the remainder of the Letter, we sketch the derivation
of the results, and we support them by Monte Carlo simu-
lations. For definiteness, we first consider the generalized
contact process with two absorbing states [20] in one
dimension. We later argue that our heuristic argument
applies to an entire class of absorbing state transitions.

The (simple) contact process [21] is a prototypical
model featuring an absorbing state transition. Each site
of a d-dimensional hypercubic lattice is either in the active
(infected) state A or in the inactive (healthy) state I. The
time evolution is a continuous-time Markov process with
infected sites healing at a rate � while healthy sites be-
come infected at a rate �m=ð2dÞ where m is the number of
infected nearest neighbors. The long-time behavior is gov-
erned by the ratio of � and�. If� � �, healing dominates
over infection, and all sites will eventually be healthy. The
absorbing state without any infected sites is thus the only
steady state. For � � �, the infection never dies out,
leading to an active steady state with a nonzero density
of infected sites. The absorbing and active steady states are
separated by a nonequilibrium transition in the directed
percolation (DP) [22] universality class.

Following Hinrichsen [20], we generalize the contact
process by allowing each site to be in one of nþ 1 states,
the active state A or one of n inactive states Ik
(k ¼ 1; . . . ; n). The time evolution of the generalized con-
tact process (GCP) is conveniently defined [20] via the
transition rates for pairs of nearest-neighbor sites,

wðAA ! AIkÞ ¼ wðAA ! IkAÞ ¼ ��k=n; (1)

wðAIk ! IkIkÞ ¼ wðIkA ! IkIkÞ ¼ �k; (2)

wðAIk ! AAÞ ¼ wðIkA ! AAÞ ¼ �; (3)

wðIkIl ! IkAÞ ¼ wðIkIl ! AIlÞ ¼ �; (4)

with k, l ¼ 1; . . . ; n and k � l. All other rates vanish. The
GCP defined by Eqs. (1)–(4) reduces to the simple contact
process if we set n ¼ 1 and ��k ¼ �k ¼ � (up to rescaling
all rates by the same constant factor [23]). The transition of
Eq. (4) permits competition between different inactive
states as it prevents different domains from sticking to-
gether. Instead, they can separate, and the domain walls
can move. We now set ��k ¼ �k and � ¼ � ¼ 1 to keep
the parameter space manageable [24]. This also fixes the
time unit. Moreover, we focus on d ¼ 1 and n ¼ 2.

The long-time behavior again follows from comparing
the infection rate � with the healing rates �1 and �2.
Consider two equivalent inactive states, �1 ¼ �2 ¼ �.
For small �, the system is in the active phase with a
nonzero density of infected sites. In this fluctuating phase,
the symmetry between the two inactive states I1 and I2 is
not broken; i.e., their occupancies are identical. If � is

increased beyond �0
c � 0:628 [20,25], the system under-

goes a nonequilibrium phase transition to one of the two
absorbing steady states (either all sites in state I1 or all in
state I2). At this transition, the symmetry between I1 and I2
is spontaneously broken. Its critical behavior is therefore
not in the DP universality class but in the so-called DP2
class which, in d ¼ 1, coincides with the parity conserving
class [26]. If �1 � �2, one of the two inactive states
dominates for long times, and the critical behavior reverts
back to DP.
We introduce quenched (time-independent) disorder

by making the healing rates �kðrÞ at site r independent
random variables governed by a probability distribution
Wð�1; �2Þ. As we are interested in random-field disorder
which locally breaks the symmetry between I1 and I2, we
choose�1ðrÞ � �2ðrÞ. Globally, the symmetry is preserved
in the statistical sense implying Wð�1; �2Þ ¼ Wð�2; �1Þ.
An example is the correlated binary distribution

Wð�1; �2Þ ¼ 1

2
�ð�1 ��hÞ�ð�2 ��lÞ

þ 1

2
�ð�1 ��lÞ�ð�2 ��hÞ (5)

with possible local healing rate values �h or �l [27].
To address our main question, namely whether the

random-field disorder prevents the spontaneous breaking
of the global symmetry between the two inactive states and
thus destroys the nonequilibrium transition, we analyze the
large-� regime where all healing rates are larger than the
clean critical value �0

c. In this regime, almost all sites
quickly decay into one of the two inactive states I1 or I2.
The relevant long-time degrees of freedom are domain
walls between I1 and I2 domains. They move via a combi-
nation of the process of Eq. (4) which creates an active site
at the domain wall and the process of Eq. (2) which allows
this active site to decay into either I1 or I2. Because of the
disorder, the resulting domain wall hopping rates depend
on the site r. Importantly, the rates for hopping right and
left are different because the underlying healing rates
�1ðrÞ and �2ðrÞ are not identical.
The long-time dynamics in the large-� regime is thus

governed by a randomwalk of the domain walls. Due to the
local left-right asymmetry, this random walk is not a
conventional (diffusive) walk but a Sinai walk [29]. The
typical displacement of a Sinai walker grows as ln2ðt=t0Þ
with time t [19] (t0 is a microscopic time scale), more

slowly than the well-known t1=2 law for a conventional
walk (see Fig. 1). When two neighboring domain walls
meet, they annihilate, replacing three domains by a single
one. Domain walls surviving at time t thus have a typical
distance proportional to ln2ðt=t0Þ. The domains grow with-
out limit, and their density decays as ln�2ðt=t0Þ. In the
long-time limit, the system reaches a single-domain state;
i.e., either all sites are in state I1 or all in I2. This implies
that the symmetry between I1 and I2 is spontaneously
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broken (which of the two absorbing states the system ends
up in depends on details of the initial conditions and of the
stochastic time evolution). The nonequilibrium transition
consequently persists in the presence of random-field
disorder.

It is important to contrast the domain wall dynamics in
our system with that of a corresponding equilibrium prob-
lem such as the random-field Ising chain (whose low-
temperature state consists of domains of up and down spins
[30]. The crucial difference is that the inactive states I1 and
I2 in our system are absorbing: active sites and new domain
walls never arise in the interior of a domain. In contrast,
inside a uniform domain of the random-field Ising chain, a
spin flip (which creates two new domain walls) can occur
anywhere due to a thermal fluctuation. This mechanism
limits the growth of the typical domain size to its equilib-
rium value dictated by the Imry-Ma argument [12], and
thus prevents spontaneous symmetry breaking.

To verify these heuristic arguments and to illustrate the
results, we perform Monte Carlo simulations [25] of the
one-dimensional GCP with random-field disorder. We use
system sizes up to L ¼ 105 and times up to t ¼ 2� 108.
The random-field disorder is implemented via the distri-
bution of Eq. (5) with 1:5�l ¼ �h � �. Our simulations
start from a fully active lattice (all sites in state A), and we
monitor the density � of active sites as well as the densities
�1 and �2 of sites in the inactive states I1 and I2, respec-
tively. Figure 2 presents an overview of the time evolution
of the density �.

We now focus on the curves with healing rates � * 1:0
for which both�h ¼ � and�l ¼ 2�=3 are larger than the
clean critical value �0

c. The inset of Fig. 2 shows that the
density continues to decay to the longest times studied for
all these curves. However, the decay is clearly slower than
a power law. To compare with our theoretical arguments,
we note that active sites only exist near domain walls in the
large-� regime. We thus expect the density of active sites

to be proportional to the domain wall density, yielding

�� ln�2ðt=t0Þ. To test this prediction we plot ��1=2 vs
lnðtÞ in Fig. 3; in such a graph the expected behavior
corresponds to a straight line. The figure shows that all
curves with �> 1 indeed follow the prediction over sev-
eral orders of magnitude in time.
In addition to the inactive phase, we also study the

critical point. To identify the critical healing rate �c, we
extrapolate to zero both the stationary density �st ¼
limt!1�ðtÞ in the active phase and the inverse prefactor
of the ln�2ðt=t0Þ decay in the inactive phase. This yields
�c � 0:80 (see inset of Fig. 4). At this healing rate, the
density decay is clearly slower than the ln�2ðt=t0Þ law
governing the inactive phase. This extremely slow decay
and the uncertainty in �c prevent us from determining the
functional form of the critical �ðtÞ curve unambiguously. If
we assume a time dependence of the type �ðtÞ � ln�xðt=t0Þ
we find a value of x � 0:5. Moreover, from the dependence
of the stationary density on the healing rate, �st�
ð�c ��Þ�, we obtain � � 1:5. The values of x and �
should be considered rough estimates. An accurate deter-
mination of the critical behavior of the GCP with random-
field disorder requires a significantly larger numerical
effort and remains a task for the future.
In summary, we have shown that the nonequilibrium

phase transition of the one-dimensional GCP survives in
the presence of random-field disorder, in contrast to one-
dimensional equilibrium transitions that are destroyed by
random fields. In the concluding paragraphs, we discuss
the generality and limitations of our results.
The crucial difference between random-field effects in

equilibrium systems such as the random-field Ising chain
and in the GCP is the absorbing character of the inactive
states I1 and I2 in the latter. The interior of an I1 or I2
domain is dead as no active sites and no new domain walls
can ever arise there. In contrast, in an equilibrium system,
pairs of new domain walls can appear in the interior of a

FIG. 2 (color online). Density � vs time t for several values of
the healing rate �. The data are averages over 60 to 200 disorder
configurations. Inset: The log-log plot shows that the density
decay is slower than a power law for all �.

FIG. 3 (color online). ��1=2 vs lnðtÞ for several values of the
healing rate �. The solid straight lines are fits to the predicted
behavior �� ln�2ðt=t0Þ.
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uniform domain via a thermal fluctuation. This limits the
growth of the typical domain size to the Imry-Ma equilib-
rium size and thus destroys the equilibrium transition (in
sufficiently low dimensions). We expect our results to hold
for all nonequilibrium phase transitions at which the
random-field disorder locally breaks the symmetry be-
tween two absorbing states. Other nonequilibrium transi-
tions may behave differently. For example, our theory does
not apply if the random fields break the symmetry between
two active states.

In the symmetry-broken inactive phase, the dynamics of
the GCP with random-field disorder is ultraslow. It is
governed by the Sinai random walk of domain walls be-
tween the two inactive states. This leads to a logarithmic
time decay of the densities of both domain walls and active
sites. Note that the Sinai coarsening dynamics has been
studied in detail in the equilibrium random-field Ising
chain [31] where it applies to a transient time regime
before the domains reach the Imry-Ma equilibrium size.

Although our explicit results are for one dimension, we
expect our main conclusion to hold in higher dimensions,
too. In the interior of a uniform domain of an absorbing
state, new active sites (and new domain walls) cannot arise
in any dimension. Moreover, the Imry-Ma mechanism by
which the random fields destroy an equilibrium transition
becomes less effective in higher dimensions. Indeed,
Pigolotti and Cencini [32] report spontaneous symmetry
breaking in a model of two species competing in a two-
dimensional landscape with local habitat preferences.
To further study this question, we plan to introduce random
fields into our simulations of the two-dimensional
GCP [33].

Finally, we turn to experiments. Although clear-cut real-
izations of absorbing state transitions were lacking for a
long time [34], beautiful examples were recently found in
turbulent liquid crystals [35], driven suspensions [36,37],

and superconducting vortices [38]. As they are far from
equilibrium, biological systems are promising candidates
for observing nonequilibrium transitions. A transition in
the DP2 universality class (as studied here) occurs in a
model of competing bacteria strains [39] which accurately
describes experiments in colony biofilms [40]. Random-
field disorder could be realized in such experiments by
environments that locally favor one strain over the other.
We thank M. Muñoz and G. Odor for helpful discus-

sions. This work has been supported by the NSF under
Grants No. DMR-0906566 and No. DMR-1205803.
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