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Kapitza resistance of Si/SiO2 interface

B. Deng (邓博文),1 A. Chernatynskiy,1 M. Khafizov,2 D. H. Hurley,2 and S. R. Phillpot1,a)
1Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, USA
2Department of Materials Science and Engineering, Idaho National Laboratory, Idaho Falls,
Idaho 83415, USA

(Received 8 January 2014; accepted 16 February 2014; published online 27 February 2014)

A phonon wave packet dynamics method is used to characterize the Kapitza resistance of a Si/SiO2

interface in a Si/SiO2/Si heterostructure. By varying the thickness of SiO2 layer sandwiched

between two Si layers, we determine the Kapitza resistance for the Si/SiO2 interface from both

wave packet dynamics and a direct, non-equilibrium molecular dynamics approach. The good

agreement between the two methods indicates that they have each captured the anharmonic

phonon scatterings at the interface. Moreover, detailed analysis provides insights as to how

individual phonon mode scatters at the interface and their contribution to the Kapitza resistance.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867047]

I. INTRODUCTION

The Kapitza resistance is the thermal boundary resist-

ance presented at the interface between two blocks of materi-

als. This resistance has two basic origins: the structural

disorder associated with the interface and the different prop-

erties of the heat carriers on the two sides of the interface.

One or other of the mechanisms is operative at all interfaces;

both are present at some interfaces.

In the case of electrical insulators, including most ioni-

cally bonded systems and many semiconductors, the domi-

nant heat carriers are phonons. As a result, the Kapitza

resistance is governed by details of the interfacial structure

and the availability of vibrational states on the two sides of

the interface. The Kapitza resistance is critical in the silicon

on insulator (SOI) technology in microelectronics, where

SiO2 has long been used as a dielectric. The SOI wafer struc-

ture is normally made up of a thin layer of insulating materi-

als (typically SiO2) separating single crystalline Si.1

However, the overall cooling of the electronics by thermal

conduction can be limited by both the introduction of the

low thermal conduction oxide layer and the Si/SiO2 interfa-

ces themselves. Previously, Hurley et al. have measured the

Kapitza resistance across a bicrystal interface of silicon.2

Using high resolution transmission electron microscopy,

they found a native 4.5 nm thick SiO2 layer was present at

the interface; they estimated the Si/SiO2 boundary resistance

by comparing experimental results with a continuum thermal

transport model.

There have been previous molecular dynamics (MD)

simulations of the Kapitza resistance of Si/SiO2 interfaces.

Mahajan et al.3 estimated the Kapitza resistance to be

�0.5� 10�9 Km2W�1 using an extended Stillinger-Weber

(SW) potential. Lampin et al.4 calculated the Si/SiO2 bound-

ary resistance to be 0.4� 10�9 Km2W�1 at 500K with the

Tersoff potential5 using the “approach-to-equilibrium molec-

ular dynamics” (AEMD) method. They found that this

boundary resistance is large enough to change the heat prop-

erties in the case of ultra-thin buried oxide layers. Chen

et al.6 focused on how the strength of the coupling across the

interface affects the Si/SiO2 interface resistance using non-

equilibrium molecular dynamics (NEMD). They found that

in the weak interfacial coupling limit, the boundary resist-

ance is sensitive to the details of the interfacial structure; in

the strong coupling limit the boundary resistance is not sensi-

tive to the details of the interface structure. In this strong

coupling limit, the Si/SiO2 boundary resistance was found to

be 0.9� 10�9 Km2W�1. While all of these theoretical esti-

mates give broad agreement as to the magnitude of the

Kapitza resistance, they do not provide any insights as to

which branches and wavelengths of phonons are involved.

In this study, we characterize the scattering of phonons

at the Si/SiO2 interface using the phonon wave-packet dy-

namics (PWD) technique. This approach has been exten-

sively used in the study of phonon scatterings in various

silicon microstructures.7–9 We also use the NEMD method

to determine the thermal resistance of the interface. While

most of the previous studies focused on the role of intrinsic

and extrinsic defects in silicon,7–9 here, we concentrate on a

detailed description of the phonon scattering at the Si/SiO2

interface. The rest of the paper is organized as follows: Sec.

II describes the simulation and analytical approaches we use;

Section III focus on the simulation results and their analysis

to characterize the energy transmission coefficient, phonon-

interface scattering events, mode conversion, and Kapitza re-

sistance calculation. Our conclusions are in Sec. IV.

II. SIMULATION METHOD

To investigate the thermal transport at the Si/SiO2 inter-

face, we set up our structure in a manner analogous to the

experiment,2 where a thin layer of SiO2 film is sandwiched

between two blocks of Si crystal. Here, the two Si crystals

have the same crystallographic orientation. This differs from

the experimental situation of Hurley et al. in which the two

Si crystals form a twist grain boundary. However, as we shall

see, due to the presence of the SiO2 layer, the presence or

a)Author to whom correspondence should be addressed. Electronic mail:
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absence of a misorientation between the two Si crystals does

not affect phonon dynamics; moreover, our structure allows

smaller cross sections to be used, which has a significantly

lower computational load. The simulation setups for the

wave-packet dynamics and NEMD simulations are sketched

in Figure 1. Note that the silicon crystals are extremely long

in the structure used for wave-packet dynamics so that we

can fully analyze the transmitted and reflected wave packets.

To build the sandwich structure, the blocks of crystalline

Si are fully quenched to very low forces and stresses; the lat-

tice constant in the cross-sectional directions during anneal-

ing is fixed to its bulk value. The SiO2 is prepared initially as

b-cristobalite and strained (about 1%) in order to fit the Si

lattices in the (001) plane. The structure used for PWD simu-

lations has 4� 4 silicon unit cells in the (001) cross-

sectional plane and is about 1600 nm long. Various thick-

nesses of the SiO2 layer, from 0.8 to 24 nm are used. We

chose the relatively small 4� 4 cross-sectional area of Si to

limit the computational power needed for a systems of such

great length. The b-cristobalite SiO2, a high temperature

phase, was chosen for the initial structure of the oxide layer

due to smallest mismatch with the Si lattice. However, we do

not expect that this particular choice of the initial SiO2 crys-

tal structure to is very important since the very thin oxide

layers considered here undergo partial amorphization upon

annealing. The entire system is then annealed, which

includes heating to 2000K to enable bonding at the interfa-

ces and a rigorous final quenching, so that all of the forces

are very small, less than 10�7 eV/Å per atom. This eliminates

any excess structural energy that could affect the phonon

scattering simulations. The same approach is applied in pre-

paring the structure used for the NEMD simulations, only

with much shorter Si blocks (about 50 nm).

We choose the extended Stillinger-Weber potential

developed by Watanabe et al.10 to describe the interatomic

interactions. This potential has proven capable of describing

the Si/SiO2 interface as well as its formation.11,12 In the

extended SW potential, the interaction function between Si

atoms is exactly the same as the original SW potential for

pure Si.13 As shown by the silicon phonon dispersion curve

in Figure 2, determined by lattice dynamics calculations, the

SW potential gives reasonably good representation of the LA

mode. We note that it is unable to reproduce the flatness of

TA mode near the band edge due to the short-range intera-

tomic interactions. However, as will be shown later, the

energy transmission coefficient for higher frequencies

(>6 THz) phonons is almost frequency independent; thus,

we believe this aspect of the dispersion curve will not signifi-

cantly affect our results. Further, the poor descriptions of the

two optical modes (LO and TO) is not crucial to our work

because they are thought not to be significant carriers of heat

in Si,14 a conclusion we confirm in our simulations.

The core idea of PWD is to form a wave packet of pho-

nons from a single branch with the frequency being a narrow

Gaussian distribution.8 The wave packet is generated as pre-

viously described,8 so that it is localized in both real space

and reciprocal space and with the kz direction corresponding

to [001] direction. The initial atomic displacement is gener-

ated according to Eq. (1), and a subsequent inverse discrete

Fourier transformation is used to obtain the normal coordi-

nates akk from Eq. (2)

uil ¼ Affiffiffiffi
m

p eikk0exp ik0 � Rl � R0ð Þ½ �exp � Rl � R0ð Þ2
g2

" #
; (1)

akk ¼
ffiffiffiffi
m

N

r X
il

uil � e�ikkexp �ik � Rlð Þ; (2)

where A controls the amplitude of the wave-packet and g
controls the width of the wave-packet; R0 is the center of the

wave-packet, uil and Rl denote the displacement vector of

the i-th atom in l-th primitive cell and the coordinates of the

l-th primitive cell. N is the total number of primitive cell and

m is the mass of atom i. akk is the amplitude of the phonon

with wave vector k and branch k, and eikk and e�ikk are the

corresponding eigenvector and its complex conjugate for

atom i, respectively. An alternative way to obtain the initial

displacement is through the normal coordinates

uil ¼ 1ffiffiffiffiffiffiffiffi
Nmi

p
X
kk

akkeikkexp ik � Rlð Þ: (3)
FIG. 1. Simulation setup for (A) wave-packet dynamics simulation; (B)

Non-equilibrium molecular dynamics simulation. The numbers in the figure

indicate the length of each block and are in the unit of nm.

FIG. 2. Phonon dispersion relation of silicon along [001]. Solid lines are

calculated from Stillinger-Weber potential from lattice dynamics using

GULP;15 dashed lines are reproduced from experiment.16
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The initial velocity, vil, can then be written as

vil ¼ 1ffiffiffiffiffiffiffiffi
Nmi

p
X
kk

akkeikkexp ik � Rlð Þixkk; (4)

where xkk is the phonon frequency. During the simulation,

the incident phonon wave packet is generated close to one

Si/SiO2 interface and is then launched towards it as a sum-

mation of propagating phonons. When the wave packet

reaches the oxide region, scattering events take place; as

indicated in Fig. 3, part of the wave packet is transmitted

through the SiO2 layer, while some is reflected back. By

determining the energy of each atom, the energy carried by

atoms at either side of the SiO2 layer is determined, from

which the energy transmission and reflection coefficients

through the interface are determined. The transmission coef-

ficient, a, is the fraction of phonon energy transmitted

through the interface, and similarly for the reflection coeffi-

cient, aR. A small part of the energy is trapped in the SiO2

layer, and slowly dissipates into the Si crystal on either side.

At the time at which the analysis is performed, less than 3%

of the energy is trapped. When calculating the energy trans-

mission coefficient, this trapped energy is assigned equally

to the transmission side and the reflection side. This is a rea-

sonable division since energy that is retained for this

extended period is likely to be transmitted or reflected

according to the diffuse mismatch model which predicts

50% transmission for this structure.

In order to calculate the Kapitza resistance from phonon

scattering at the Si/SiO2 interface, we sample the first

Brillouin Zone (BZ). In particular, the kx-ky planes are

sampled with an equal spaced mesh scheme (spacing of

0.25� 2p/a0) with the C point as the center of the mesh. The

kz direction is meshed with a 0.1� 2p/a0 interval at high kz,

but with a finer mesh close to the C point for TA and LA

modes. We thus sample at total of 57 crystallographically dis-

tinct k-points for the LA mode. Because LO modes have a

low group velocity, frequency space is divided into 1THz

intervals for a total of 33 crystallographically distinct k-

points. The first BZ sampling grids in all kx, ky, and kz direc-

tions are constructed based on the underlying symmetry of

the lattice. Because the diamond structure is an FCC lattice

with a two-atom basis, the shape of FCC first BZ is a

truncated-octahedron. Taking its symmetry into account, we

identified 11 irreducible points on kz¼ 0 plane as the red

points shown in Figure 4. The points K and W are not consid-

ered, as they are at the corner of the first Brillouin Zone. For

simplicity, the points simulated in kx and ky from 0 to 2p/a as
integers are labeled 0 and 4. Thus, for example, for the pho-

nons centered at kx¼ 0.25, ky¼ 0.5, are labeled as k12.

The total conductance, which is the inverse of resist-

ance, at the SiO2 junction can be calculated using the equa-

tion for an interface conductance by integration over the

first BZ17

r ¼ 1

2pð Þ2
ð
k

Xþ
k

�hxkkvz;kkakk
dn x; Tð Þ

dT
dk; (5)

where akk is the phonon transmission coefficient determined

from the PWD simulations for phonon branch k; x is the

phonon frequency, � is the reduced Planck constant, and n

(x, T) is the Bose-Einstein distribution function at tempera-

ture T. The integration over the first BZ is converted to a

sum over k-points, with the weighting factor, Wk assigned to

each point determined by the associated k-space volume,

determined by a Voronoi construction over all the k-points

r ¼ 1

2pð Þ2
X
k

Xþ
k

Wk�hxkkvz;kkakk
dn x; Tð Þ

dT
: (6)

III. SIMULATION RESULTS

A. Energy transmission coefficient

We start with the sandwich structure which has very

thin layer of SiO2 (0.8 nm in thickness). To develop an

FIG. 3. Illustration of a scattering event.

The vertical axis is the atomic displace-

ment along z axis; the horizontal axis

indicates the z coordination of the struc-

ture. The silica layer is located at around

Lz¼ 0 (dash line) and, in this simulation,

is only about 0.14a0 (0.8 nm) thick,

where a0 is the lattice constant of Si.

FIG. 4. First Brillouin Zone sampling points in kz¼ 0 plane. The area

delineated by the blue lines is the irreducible region.
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understanding of phonon mediated interfacial resistance

using the PWD method, we perform simulations with various

incident phonon wave-packets for all six branches. Figure 5

shows how the energy transmission coefficients of LA and

LO phonons for all available kxy components change as the

phonon frequency increases. We note from Figure 5 that

there is no qualitative change in the transmission coefficient

of the LO modes compared to the LA modes; that is, the

transmission coefficient is largely just a function of the fre-

quency regardless of the phonon symmetry. Moreover, we

can also see that the transmission coefficient is not strongly

sensitive to the phonon branch. This conclusion is reinforced

in Figure 6, which shows the energy transmission coeffi-

cients of only the k00 phonons for all four non-degenerate

phonon branches.

Klemens18 has determined the frequency dependence of

phonon scattering probability for various defects structures

by using perturbation theory. Within this approach the proba-

bility is a power function of the phonon frequency, with the

values of the exponent determined by the defect. Thus, we

also attempt to fit the reflection coefficient to frequency to a

power equation, as following:

R xð Þ ¼ axb; (7)

where R is the coefficient of reflection, x is the phonon fre-

quency, and a and b are coefficients to fit. As shown in

Figure 6, we obtain a reasonable good fit with a¼ 0.225 and

b¼ 0.515. Klemens’ theory18 predicts b¼ 0 for the ideal

grain boundary and b¼ 4 for point defects. Thus, b¼ 0.515

indicates a stronger scattering than an ideal grain boundary,

which we attribute to the disorder in the SiO2 layer.

We also vary the SiO2 layer thickness to determine the

energy transmission coefficients. The energy transmission is

further decreased with increased thickness of the SiO2 layer:

as shown in Figure 7, there is uniform decrease in energy

transmission as the SiO2 layer becomes thicker (lSiO2¼ 0.8 nm

to lSiO2¼ 10.9 nm). We will return to the effect of thickness in

Sec. III D.

B. Phonon scattering

The phonon launched at the SiO2 region are vibrational

modes of the Si lattice. Thus, scattering can only take place

at the interface and in the SiO2 block which has different

vibrational properties. Consequently, when the wave packet

frequency is low, i.e., its wavelength is larger than the space

dimensions of most defects, the phonon can easily travel

through the SiO2 region with very little reflection. A simple

calculation shows that a wavelength equal to the SiO2 layer

thickness of 0.8 nm corresponds to a frequency of �10 THz.

When the wavevector approaches the C point (the first

point of k00 line in Figure 5), the transmission coefficient

approaches unity; for these long wavelengths, the relatively

narrow SiO2 regions do not present a significant obstacle to

the phonon waves. However, as the incident phonon fre-

quency increases, its wavelength becomes more and more

comparable with the dimensions of the defected region,

yielding more intense phonon scatterings. This can be seen

in Figure 8, which shows how the transmitted phonon energy

of initially pure k00 phonons scatters into various kxy points.

As we can see, as the incident frequency increases, the trans-

mitted energy distribution in kxy is more widely spread. For

instance, in the f¼ 8 THz case, we no longer see the domi-

nant energy share in k00. To better quantify this dispersion

statistically, we introduced a weighted wavevector deviation

(dk) as defined in Eq. (8)

dk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

jkn � k0j2EnX
n

En

vuuuuut ; (8)

FIG. 5. Transmission coefficients for LA and LO branches as a function of

incident phonon frequency. Points on the left of the dashed line belong to

the LA branch while those on the right belong to LO branch. Lines are

guides to an eye.

FIG. 6. Transmission coefficients for all modes along k00 direction for

lsio2¼ 0.8 nm structure. The dashed line is the fit discussed in the text.

FIG. 7. LA incident phonon transmission for lSiO2¼ 0.8 nm (squares) and

lSiO2¼ 10.9 nm (circles).
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where k0 is the peak of the incident phonon wavevector, kn
and En are the transmitted/reflected phonon wavevector and

associated energy, respectively, and the summation is over

all the available phonon wavevector for the transmission or

reflection phonons. dk essentially measures how much the

average phonon momentum deviates from its initial value.

The larger the deviation, the less character of the initial pho-

non features is preserved. We plot dk as a function of inci-

dent phonon frequency in Figure 9. Clearly scattering

increases with increasing frequency causing that scattered

phonons to lose forward momentum. The rest of the momen-

tum is scattered to the non-normal directions as shown in

Figure 8. There is also less energy transmitted as the pho-

nons lose forward momentum, and more energy is reflected

back. As a consequence there is a decrease in energy trans-

mission with increasing frequency.

C. Phonon mode conversion

In addition to scattering into different directions, we

have also observed phonon mode conversion after the

scattering at the interface. Figure 10 shows the phonon wave

packet energy partition into various phonon modes as a func-

tion of incident LA phonon energies. The pink dotted lines

indicate the initially pure LA phonon wave packet energy

distribution for various incident phonon frequencies. The

blue lines and red lines are the energy distributions of LA

and TA modes, with dashed lines indicating reflection and

solid lines indicating transmission. We can clearly see the

energy shift (peak shift between blue and red) and mode con-

version (phonon modes other than blue) as the incident pho-

non frequency increases; the LA-TA conversion cannot take

place at high frequency as there are no TA modes available.

It is interesting that the LA modes still maintain their origi-

nal frequency but the frequency of the converted TA modes

gradually shifts away from the incident phonon frequency

indicating more intense scattering events. Such phonon

mode conversion is known to take place when phonons inter-

act with interfaces,19,20 a result of anharmonic phonon scat-

tering at the interface.21 This indicates that as phonon

frequency increases (in the region that TA modes are still

available), phonon mode conversion also increases, thereby

increasing the energy transmission coefficient. Thus, this

provides evidence that anharmonic scatterings open up addi-

tional channels for phonon transmission thus reducing inter-

facial thermal resistance at high frequencies.22,23

D. Kapitza resistance

The energy transmission coefficients for individual

modes alone are not sufficient to enable the Kapitza resist-

ance to be determined. Thus, we calculate the Kapitza resist-

ance using Eq. (6) as described previously. Since the factor

W(k) in Eq. (6) is the volume weighting factor of the First

Brillouin Zone, and the mesh grid in kxy plane is equally

spaced, we rewrite the factor as WðkÞ ¼ WxyðDkx;DkyÞ
Wz Dkzð Þ. By first summing up the Wz only, we obtain the rel-

ative contribution to the conductance at each (kx, ky), as

shown in Figure 11. Clearly, as kx or ky increases, under the

same frequency, their relative conductance drops rapidly

because the kz component of the wave vector decreases.

Although Figure 5 shows that all non-perpendicular incident

phonons have similar energy transmission coefficients, their

contributions to the conductance can be different due to their

different phonon group velocities and available kz dimension

in the First Brillouin Zone.

FIG. 8. Relative transmitted energy as a function of kx and ky for four dif-

ferent incident phonon frequencies. All shown are for k00 LA incident pho-

non on lSiO2¼ 0.8 nm. Note that the scales are different in each figure and all

kx and ky have the unit of 2p/a0.

FIG. 9. Wavevector deviation as a function of incident phonon frequency

for transmission and reflection phonons for lSiO2¼ 0.8 nm structure, only LA

data are shown.

FIG. 10. Frequency distribution of wave packets for lSiO2¼ 0.8 nm struc-

ture. All incident phonons are in pure k00 LA modes. All energies shown are

relative and scaled to the same incident energy.
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As discussed above, our system consists of two Si/SiO2

interfaces and the slightly strained b-cristobalite SiO2 bulk.

The total resistance (1/rT) in our system should be4

1

rT
¼ 2

rK
þ lSiO2

kSiO2

;

where 1/rT is the total resistance from simulation, 1/rK is

the Kapitza resistance of Si/SiO2 interface, the factor of 2

indicates the two interfaces, 1/kSiO2 is the thermal resistivity

of SiO2, and lSiO2 is the length of the silica layer. To deter-

mine the pure Kapitza resistance of Si/SiO2 that we are inter-

ested in, we varied the silica layer thickness lSiO2 and

calculated the total resistance. By performing a linear extrap-

olation according to Eq. (3), at lSio2¼ 0 we obtain the

Kapitza resistance of the individual interface. We perform

the calculation using both NEMD and PWD methods. For

the PWD method, we only performed the full First Brillouin

Zone sampling for the lSiO2¼ 0.8 nm and lSiO2¼ 2.2 nm

structure. We have calculated the relative contribution to

total resistance from k00 of both structure and confirmed that

its contribution is almost the same for the two structures.

Therefore, for the other thicknesses of SiO2 layer, we only

sampled the k00 direction and scaled the results with the

same contribution from lsio2¼ 0.8 nm k00 data. This is justi-

fied by the dominant contribution of k00 to the total conduct-

ance as shown in Figure 11. The NEMD simulation is

performed at 300K, and by utilizing the Bose-Einstein pho-

non distribution function (Eq. (5)), we were also able to cal-

culate the Kapitza resistance at 300K using PWD method.

Figure 12 shows the thermal conductivity as a function of

thickness of the SiO2 layer as determined from the NEMD

and PWD methods. The Si/SiO2 Kapitza resistance, deter-

mined from the intercepts, is 1.48(60.46)� 10�9 m2K/W

from NEMD and is 1.37(60.42)� 10�9 m2K/W from PWD.

The good agreement of the results from PWD and NEMD

methods suggests that they have captured the same physics

of the interfacial thermal phonon scattering, discussed in

Sec. III B. The relatively large error bars here are due to the

linear regression since we only have a small number of data

points. We also use the power-law fit in Sec. III A to calcu-

late the Kapitza resistance, giving us 1.83(60.09)� 10�9

m2KW�1. Although the value is not exactly the same from

our atomistic method, it has provided a more convenient way

to estimate the Kapitza resistance.

The experiments by Hurley et al.2 mentioned in the first

section, measured the Kapitza resistance to be 2.3� 10�9

m2KW�1 as an upper limit by considering all sources of

uncertainties. Comparing with the multi-magnitude measure-

ments from experiments,4 our results remain in the same

magnitude. And in particular, the atomistic model we used

has a one-to-one correspondence with the experiment set-

tings, thus, the comparison is more reliable. However, we do

note that, as a classical simulation, the potential we used will

have an effect on the final values.

In addition to the overall value, the PWD also provides

a mode-by-mode contribution to the thermal conductivity.

FIG. 11. Contribution to the thermal conductivity as a function of kx and ky,

with summation of all kz contribution. Data are fit by interpolation and line

integration at each (kx, ky). The region inside the white triangle indicates the

region of the calculation, while the rest is plotted by exploiting the symme-

try of the first Brillouin Zone.

FIG. 12. Extracting the Kapitza resistance of the Si/SiO2 interface at 300K.

The extrapolated values at lSiO2¼ 0 are 2.96� 10�9 and 2.74� 10�9 m2K/W

for NEMD and PWD, respectively, which are twice the Kapitza resistance

obtained from Eq. (4).

FIG. 13. Contribution to Kapitza conductance by mode for lSiO2¼ 0.8 nm.

Both TA and TO include the contribution of two transverse modes. The

mode-wise contribution is almost the same for lSiO2¼ 2.2 nm structure.
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Using Fourier analysis, we find the mode-wise contribution

to Kapitza conductance in Figure 13. The acoustic modes

contribute 88% to the total Kapitza conductance, while the

optical modes contribute only 12%. This agrees with the

conventional understanding that the acoustic phonons are the

main heat carriers in silicon.24

IV. CONCLUSIONS

We have investigated Si/SiO2/Si sandwich structure by

PWD and NEMD approaches. These methods provide similar

values for the Si/SiO2 Kapitza resistance; this value is also

consistent with the experimental results. We have demon-

strated that PWD approach provides far more detailed infor-

mation about thermal transport through the interface. In

particular, for the system of interest here we found that the

acoustic phonons are the main contributor to the conductance

through the interface. The phonon anharmonic scattering pro-

vides additional channels for phonon transport. We have also

analyzed the phonon energy transmission at the interface

using PWD. Frequency dependence of the reflection coeffi-

cient was found to be stronger (f�x0.5) than predicted by

Klemens’ theory for the ideal planar defect (�x0). We asso-

ciated this with the disordered nature of the studied interface.

The fact that transmission coefficient is fitted very well by a

power law can be used in the mesoscale models of the phonon

transport.25 We do note that in some amorphous systems, the

fractal geometry could affect the thermal transport.26

However, the correlation length27 of the SiO2 layer should be

very small compared to our structure dimension. Thus, the

SiO2 layer in our simulation is dynamically homogeneous

and the fractal geometry should not affect our results.
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