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Modified Phase Representation and Effects of Inelasticity in N/D
Calculation of p-Wave Pion-Pion Scattering*

BARBARA HALEt AND ARNoLD TUBIS

Department of Physecs, Purdue University, Lafayette, Indhana

(Received 17 June 1968l

An pt/D formalism based on a modified phase representation is used to study the effects of inelasticity
on the P-wave pion-pion amplitude. The eRects of high-energy inelasticity are introduced in terms of the
assumed behavior of the high-energy phase (not phase shift) of the partial-wave amplitude. Using a p-

exchange input force with the experimental p mass and a p width of about 100 MeV, and the assumption
that the average phase is —',~, for total c.m. energies greater than about 83f, we find that there is no appre-
ciable reduction in the width of the calculated p-wave resonance. We also investigate the eRects of low-

energy inelastic channels that may contribute through the inelasticity parameter p for E&~E;, where E; is
the energy above which the phase assumption is made. None of the forms for p that were used resulted in an
output width less than about 280 MeV.

I. INTRODUCTION

&~IVERGENCE problems generally plague E/D
calculations, ' in which use is made of forces

corresponding to the exchange of spin )1 particles.
Cutoffs or Reggeized exchange forces' are commonly
used to remedy these difhculties. In addition, little is
known about the effects of high- (and sometimes low-)

energy inelasticity; often one simply assumes elastic
unitarity over an extremely large energy range. In this

paper, we present a formalism that might, in some cases,
provide a useful alternative approach to both problems.

The formalism is developed in Sec. II. Using the
phase representation' 4 of the partial-wave amplitude

A&, a modified partial-wave amplitude a& is formed by
dividing At by a factor that (a) has the same phase as
A t for c.m. energy E&E, and (b) is real for E&E;.Thus
the modified amplitude has a finite right-hand cut and
has the same cuts as At for E(E;.High-energy (E&E~)
inelasticity is estimated through an assumption about
the average phase of At (E&E,).The formalism is most
useful if E, is assumed to be somewhere in the region of
the first or second inelastic threshold. This provides a
short right-hand cut—and hence a small energy range
over which the "effective generalized potential" must
be well approximated. Low-energy (E(E,) inelasticity
may be introduced into the formalism as usual via the
inelasticity parameter p.

In Sec. III, the formalism is applied to the P-wave

pion-pion amplitude A~, using a simple p exchange as
an input force. The simplifying assumption that the
average phase of A i' (E&E,=83I c') is sr sr is made and
is found to lead to output P-wave resonances that are

* Work supported by the U. S. Atomic Energy Commission,
t Supported in part by National Aeronautics and Space

Administration Grant No. NCR 15-005-021 to Purdue University.
' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
'See, for example, D. Wong, Phys. Rev. 126, 1220 (1962);

M. Bander and G. L. Shaw, ibM. 135, B267 (1964).
'N, Muskelishvili, Singular Integral Equations (P. NoordhoR

Ltd. , Gronigen, The Netherlands, 1953), p. 126 R. ; R. Omnes,
Nuovo Cimento 8, 316 (1958); G. Frye and R. L. Warnock,
Phys. Rev. 130, 478 (1963); M. Sugawara and A. Tubis, Phys.
Rev. Letters 9, 355 (1962); Y. S. Jin and S. W. MacDowell,
Phys. Rev. 138, B1279 (1965).' M. Sugawara and A. Tubis, Phys. Rev. 130, 2127 (1963).
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quite similar (characteristics, lly wide and asymmetric)
to those given by previous 1V/D calculations" in which

only elastic unitarity is assumed. In Sec. IV, the effects
of low-energy inelasticity are investigated. Concluding
remarks are contained in Sec. V.

II. MODIFIED PARTIAL-WAVE AMPLITUDE
USING THE PHASE REPRESENTATION

We consider the partial-wave amplitude for the
elastic scattering of two spinless, equal-mass particles,
At(v(—=q')), where q is the magnitude of the c.m. three-
momentum of one of the particles. 6 Following Ref. 4,
a real phase Ct(v) of At(v) is defined for real v as follows:

(i) At(v+ie) = + ~At(v+ie)
~

exp[Nt(v)); (ii) 4't(v) =0
on the real v axis where no cuts in At(v) occur; and

(iii) Ct(v) is continuous.
The condition (iii) can be satisfied when At(v) passes

through zero and changes sign by changing the sign
in (i). If At(v+ie) is continuous, the sign in (i) is

uniquely given for all real v once it is given for a single

(real) value of v.

In Ref. 4, it was shown that if (a) At(s) is analytic
everywhere in the complex s plane except for cuts on
the real axis and a finite number of poles, (b) At(s) is

real analytic in the sense that At*(s) =At(s*), (c) At(s)
is bounded at

~
s~ = ~ by a finite polynomial in s, and

(d) Ct(v) has finite limits, Ct(+~), as v~ &~, then

At(s) may be represented as

Pi(s) s Ci(v')dv')
A t(s) = exp-

Ps(s) n (v' —s)v'1
(2.1)

where Pi(s) and Ps(s) are finite polynomials in s
Laccounting for zeros and poles, respectively, of At(s))
and the integral is along the cuts of At(s).

Assuming that (a)—(d) are satisfied by the partial-
wave amphtude At(s) and by its defined phase Ct(v),

' See, for example, the single-channel calculation of J. R. Fulco,
G. L. Shaw, and D. Wong, Phys. Rev. 137, B1242 (1965), and the
elastic-unitarity calculation of P. W. Coulter and G. L. Shaw,
ibid. 138, B1273 (1965).

The system of natural units A= c= 1 is used, 3f is the mass of
the particle.
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we rewrite (2.1) as follows: e2ill
Im--

I

A f(s) =
C f(v')dv'-P,(s) (s

expI-
-P2(Z) ~fr left-hand ent (v S)v

z "' Cf(v')dv' —
2 " Cf(v')

+— exp — dv
X' p V S V — 7l" p V S V

=—af(s) exp[A(s)], (2.2)

where
s C'f(v )

Af(s) —=— dv'.
„(v'—s)v'

(2.3)

I

qe a

q I.O

FIG. 1. Phase diagram for the partial-wave amplitude.

af(s) as defined by (2.2) and (2.3) will be referred to as
the "modified partial-wave amplitude. " For real v)P;,

af(v+ie) =~ IAf(v+ie) I exp[—Re~&(v) j, (2.4)

practical advantage of working with af(v). To illustrate
these points we note the following form for exp[ —6(v)$:

exp[—hf(v))= [(v,—v)/v~]if +&sff"&&'"&, (2.10)

where we have used (2.2), (2.3), and definition (i). Thus
al(v) is purely real for real v) v, and has a finite right-
hand cut. For v real and &v;, exp[f), (v)j is purely real
and

where
2 "C f(v') ——,'~

(~ ( )).-=-
7l p ~ PPV

(2.11)
ys P PP

(—v

cf(v) =expI P.V.
"C (')—C ()

r
dv'

I
(2.7)

P P V

(where P.V. means the principal value); cf(v;) is finite,
since Cf(+~) is finite and Cl(v) is continuous. Thus for
P (Vs)

(2.8)exp[ ~f(v)]=cf(v')L(v, v)/v, ]—'"""'

Imaf(v+fe) exp[ Af(v) j ImA&(v+ le) . '(2.5)

Thus the cuts of af(s) coincide with thpse pf Af(s) fpr
s real and (v;.

To examine the behavior of Imaf(v) near v=v;, we
note that

exp[—Af(v)]=cf(v)[(v, —v)/v;]@ff"&fe, (2.6)
where

ncsf" 1(v+~—2) '"
Af(v)—=

22 t v

(2.12)

where f&f is the real part of the complex phase shift 5f

and

we have that
2&

—=exp[—2 ImfIf], (2.13)

C f(v) 0) =phase(i —qe'fe "+"f&) (2.14)

With the convention fif(V=O)=0 [=Cf(v=0)j and
»(V=0) = 1 it can be seen readily from Fig. 1 that for
all P such that

(pf(v)), is a measure of the average deviation of the
phase of Af(v) from 222r for v)v;. Using the definitipn
of C'f(v) and the unitary form for A f(v)

and »(v) &1

i)f(v) gfftfr, fft= 0, 1,2,

t&(v) = 1 and VQO,

(2.15)
Imai(v) =ImA f(v) cl(v;) [(v; v)/v; 1@

—f f" '& f (2.9) . or

when
(2.16)

Cf(v) is continuous and"

0&Cf(v) &fr. (2.17)

Thus in the case where there are no zeros of Af(v) for
v)0 [i.e., condition (2.15) or (2.16) is satisfied for all
v) 0j,

l(~ ())-I &1 (2.18)

for v real and in the interval 0(v(P;.
Assuming that

I (pf(v))eeI &1 (so that exp[A(v)$ does
not have a pole at v=v;), we can apply the N/D

' If f&(v,) = I and Sf(v,) =n (with dbf/dv ~. „vfO), the sign in the
de6nition (i) would have to be changed for v&vc, the total phase
4 ~ would then be continuous at v, but for v&v, would be greater
than 7i-.

al(v) has the same threshold behavior as Af(v), since
exp[—6(v)j—& 1 as v-+0+.

Assuming that ImA f(left-hand cut), Im[A f(0&v

&v,)] ', and Cl(v)v, ) are given, the amplitude af(v)
can be conveniently used instead of Af(v) in an X/D
calculation.

The motivation for considering such an amplitude is
rather clear. With a reasonable approximation for
the average value of the phase of the partial-wave
amplitude above, say, the 6rst or second inelastic
threshold, the amplitude ai(v) will have a short right-
hand cut. In this case the eGective generalized potential—essentially the integral over the left-hand cut—would
need to be approximated only over a small energy
range above the elastic threshold. Since our present
knowledge of the generalized potential is least un-
certain at low energies, this could be an important
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method' to a~(v) as follows:

ImD&(0& v& v,) = Im[A ((v)j 'cs'i~&1V)(v)
c ""'=[(v'—v)/v'j'" (3.1)

v&0, so that
~
(P(v')),

~

&1 for all v'. We also assume
that Art has no CDD poles. Equations (2.19)-(2.26)
can then be used.

Im1V („) 0 ~s&v&0 v&„. (2 20) We further make the simplifying assumption that
the scattering amplitude is, on the average, purely

ImN~(v& 3fs—)=ImA&(v)e a' " D&(v), (2.21) imaginary for v&v;. That is, we assume that (P(v)),„—=0;
hence

—=p(v)1Vi(v), (2.22)
—~' ImA ((v') e ~«"'&D((v')

dv', (2.23)
(v'- v) v"

"'1Vg(v') ImA( '(v')es«"'l
dv'. (2.24)

P P V Pp

P

1V,(v) =—

V —Pp

D~(v) =1+
7l p

In the above, we have assumed that the amplitude A~

has no CDD ' poles. Inserting D~ into X~ and inter-
changing the order of integration, E~ becomes'

v' "' p(v') 1Vt(v')
1V((v) —=Bt(v)+—

P —
V P —Pp

I
V—Vp V

—Pp

&( Bi v —Biv', 2.25
V~ V

L

where
v' ™ImA ((v') e ~ i"'&

Bi(v)—=- dV ~

V P V

(2.26)

Thus, if C ~(v& v;) can be well approximated when v; is
near the first or second inelastic threshold, the eGective
generalized potential B&(v) is only required over a small
range (0&v&v,). In the usual cutoff procedure, where
the 1V/D method is applied directly to A&, the corre-
sponding left-hand cut contribution must often be
approximated over a much larger energy range. For
example, in the 1V/D calculation of the p-wave pion-pion
amplitude assuming elastic unitarity, a cutoff of
v= 72M ' is used. ' In the formalism presented here, the
right-hand cut can be reduced to about 9 this value if
the phase (or the average value of the phase) of the
p-wave pion-pion amplitude can be approximated for
energies above the six-pion inelastic threshold
(v= 8M '). Also, the physical meaning of v;—the value
of the momentum squared above which a reasonable
assumption concerning the phase may be made —seems
much clearer than that of the usual cuto8 parameter.

It can be shown that the phase of Ag, as calculated
from the expressions (2.2) and (2.19)—(2.24), is con-
tinuous at v= v, (see Appendix).

III. APPLICATION TO THE P-WAVE
PION-PION AMPLITUDE

In the isospin-one, /= 1 amplitude for pion-pion scat-
«ring Ar'(v), we assume that there are no zeros for

s L. Castillejo, R. H, Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 {1956).

9 J, I . Uretsky, Phys. Rev. 123, 1459 (1962).

The values 1M', =760 MeV and I'=0.15 (corresponding
to about a 100-MeV width) are used. "

Elastic unitarity for v&v; and (P(v)), =0 gives

~'~'P v

Im[~, t(0& v& v;)]-t = —
(

«v+cV. 'i Ev;—v)

=—P(v) (3 3)

For v; in the range 13—37M ', the quantity
Br'(0(v&v~) [as obtained from (2.26) using (3.2) and

(P(v)), =0j can be well approximated by one term of
the form fv/(v+b). [In fact, B (0&v&v, ) v.) In this
case, E~' can be written"

1V '(v) =cB,'(v) (3 4)

"R. Warnock, Phys. Rev. 131, 1320 (1962); J. M. Charap,
Nuovo Cimento 36, 414 (1965);C. R. Hagen, RH. 43, 597 {1966).' This left-hand cut is obtained by assuming a Breit-Wigner
{p)-resonance form for AI' in the crossed channels and using the
narrow-width approximation. (The s and 1)1 partial-wave
amplitudes in the crossed channels are neglected. ) Expression (3.2)
can also be obtained from the I=I=1 projection of the (first
Born approximation) Feynman amplitude for p exchange.

~'For the experimental values of the p mass and width, see
A. H. Rosenfeld, Rev. Mod. Phys. 40, 77 (1967).We use a value
of about 100 MeV for the input width for purposes of comparison
with previous calculations. Some results for an input width of
about 150 MeV are also given."A. W. Martin, Phys. Rev. 135, 8967 (1964).

The motivations for this approximation, aside from
its simplicity, are as follows:

(a) With the increase in the number of energetically
available inelastic channels as energy increases, it is at
least plausible that g~0 for large energies. However,
rt need not approach zero for the assumption (P(v)), =0
to be valid.

(b) If the generalized Levinson theorem" is valid for
Ar'(v), then br'(~) =mar, where m is an integer. Then
Ct'(v —+ ~)=ss. if ri(+~) &1 and, at least asymptoti-
cally, our assumption is justified.

(c) (P(v)), =0 would follow from the assumption
that At (v) is purely imaginary for v& v;, it is interesting
to observe what eGects this assumption of "maximum
inelasticity" will have.

It is assumed that the left-hand cut contribution is
dominated by the p exchange and that the imaginary
part of A;(v& —M ') is given by"

ImA t'(v& —M.')
(Mv'+Sv+4M ' ( M, '

=31'~
I
1+ l~ (3 2)
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2g
Regt'(v) =Br'(v)+-

"' 2p(") ReEr'(v')
X

() 1+r)(v') (v' —v)(v' —vo)

pB'()
X( — (v —vo)

v

Bt'(v')
,(v' —v()) ~dv', (4.5)

I

(0)

Fn. 5. Direct and exchange diagrams
for the mw —+ ~co reaction.

2p(v')P—Vp

ReDt'(v) = 1+ P.V.
o 1+ri(v')

Rel()rt'(v')
dv', (4.6)

P —P P —Pp

Br'(v) —=Br'(v)—

(4 7)

p()
F()—=

1+t)(v) v —vo

1+ted(v) v((Bt'(v)(v —vo)

g(, ')—=
2)i(v) m-5 v

(4.g)

B'(')('—")~ 1

v' )v' —v'

"' $1-))(v') jdv'
xp.v.

o 2p(v')(v' —v)v'

For )) small over an appreciable region, B,(0&v& v,)
cannot be well approximated by a simple pole and (4.5)
cannot be solved by the simple method of Sec. III.
Further, the kernel of (4.5) is not square-integrable
because of the square-root singularity in p(v) at v=v, .

Equation (4.5) can, however, be reduced to two integral
equations of the Fredholm type. To show this, we make
the following de6nitions:

2 v

and (4.12) and (4.13) can be solved by the usual methods
applied to Fredholm integral equations. Once Xq and E2
are known, c' can be obtained from

F(v')1Vr(v')dv'

V1

)'( ')l)', ( ')d ') . (4.15)

Following Coulter and Shaw, "we first assume that
the nearby inelasticity ti(v&v, ) is dominated by the
~x ~em reaction. g is calculated from

~

=
~
~ww~wrP+~ww-+~ra

Xe(S—(M +M )'), (4.16)

-.8

-4
~ 2

r ( ( ( & o. ) ( s ) t ( 0 s

(o)

@
Equation (4.5) can now be written

(4.10)
- 100

-80

Re¹'(v)=¹(v)go'cps(v),

where c' is independent of p,

(4.11)

1+v(v)¹(v)= Btt(v)+ X(v,v')lVr(v')dv' (4.12)
2)i(v) o

-60

-40

b
-20

and

'( o(v) = g(~v, v')+ X(v v )lVo(v )dv (4.13)

(Mev)
s

200 400 600 800 1000 1200 1400
(b)

For vo40 and for )i such that ti(0&v&v~)) 0,

iK(v, v') i'dv'& ~ (4 14)

Ftn. 6. (a) Inelasticity parameter o. (h) p-wave pion-pipn
elastic cross section for y;=19M ', V=0.15 and g as shown in
part (a); up(0) =0.9N.

(' P. W. Co((lter an(l G. L. Shaw, Phys. Rev. 138, 81273 (1965).
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Eo
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.80
E

-60

-40
b

where AE and AD are the Feynman-graph amplitudes
of Figs. 5(a) and 5(b), respectively:

VpawVpa&p (gg ) 1
An(s) = s(V'8)

4x 3f 3fp' —5

Vpw+Vpx&p (I7g )
2 "(s)= ——,'%2L()s(R)—g2(E)j,

47I- M

(4.17)

(4 Ig)

s=4(v+M ')

q=-'2(s —4M '),
(4.19)

(4.20)

q'=(Ls —(M +M )2)LS—(M —M )'j
/4s) '", (4.21)

-20

(MeV)
I I

200 400 600 800 IOOO I200 1400
(b)

FIG. 7. (a) Inelasticity parameter g as calculated from the
IrIr —I IrIp reaction. (b) p-wave pion-pion elastic cross section for
v; =19M ', F=0.15, and It as shown in part (a); np(0) =0.940.

- IOO

80

c -60

t

g -40

b-
-20

GY (MeV)
I

200 400 600 800 IOO0 l200 1400
(b)

Fro. 8. (a) An arbitrary form for the inelasticity parameter q.
(b) P-wave pion-pion elastic cross section for v;=193f ', 1 =0.15,
and g as shown in part (a); n, (0) =0.925.

about v=18M '. For v&173f ', q is assumed to fall off
smoothly to a finite value (=0.2) at v= v; Lsee Fig. 7(a)j.

The integral equations for E& and E2 are solved
numerically by matrix inversion and the resulting
Re¹'(v) is checked by recalculating Re¹'from (4.5).
The subtraction point for ReD,'(v) is taken at vs ———0.1.

The results of Sec. III indicate that with a simpl~
p-exchange force as the dominant contribution to the
left-hand cut (with I'=0.15) a wide range of values of
v; (13-33M ') serve equally well to estimate the

-.8
-.6

R= $M '+-', (s—M.2—3M.'))/2qq'

The coupling constant y,„ is related to F by

V...2/4~= 3r.

(4.22)

(4 23)

-.4
-I2

(o)

Ei

y, „ is estimated from the following expression for the
(u —+ 3x width":

I'((u —+ 33r)

(M„—3M )' M Vp
8'(M ) . (4.24)

(M 2 4M 2)2 33/2 4~

-IOO

~ -80
E

g -60

t

-40
b

W(M„)=3.56 for M„=787 MeV. Vsing v, 2/42r=0. 5
and V, „2/43r=0.35, the above expression gives a width
of about 7 MeV for co —+3m. We use these values of
M'„, y, , and y, „ in all calculations.

2)(v) as calculated from (4.16) passes through zero at

M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1961).
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200 400 600 800 IOOO I200
(b)

Fro. 9. (a) An arbitrary form for the inelasticity parameter g.
(b) p-wave pion-pion elastic cross section for v;= 19M ', I'=0.1S,
and g as showri in part (a); o.,(0) =0.910.
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(apparently negligible) eRect of maximum inelasticity
for v& v; on the output width. To investigate the effects
of low-energy inelasticity, we arbitrarily pick v;= 19'
and 6x the output-resonance width by using a Reggeized
p-exchange force. That is, we assume the following form
for the left-hand cut of the partial-wave amplitude'0:

3F
ImA, (v( —M, ') =—(M s+8v+4M ')

2p

M ') (v+M ')~~&" '
X 1+ l-', ~l l, (4.25)

2pi k M.'

with M, = 760 MeV and F=0.15. The p Regge-
trajectory intercept n, (0) is adjusted to produce an

output resonance at 760 MeV.
With the low-energy inelastic unitarity calculated

from the xw —+ mes reaction, a symmetrical output
resonance is obtained at 760 MeV with a full width of
about 425 MeV; n, (0)=0.940. A comparison of Fig. 7

with Fig. 6 shows that the nearby inelasticity in our
formalism results in about a 175-MeV reduction in the
width. Coulter and Shaw, ' using the same expression
for ri(v) for v near the rrce threshold, obtain a reduction
in the width of from 340 to 210 MeV—depending on

their choice for the high-energy behavior for q. In
Ref. 18, an additional term in the left-hand cut contri-
bution was used to remove the divergence in the Frye-
Warnock method when ri(oo) &1. Our formalism, with

its 6nite right-hand cut, avoids the divergence difficulty.

To observe the effects of an g that falls off faster near
the rrro threshold than that prescribed by (4.16), we

arbitrarily choose more drastic forms for r)(p&p~) [see
Figs. 8(a) and 9(a)). In all cases, il is assumed to
approach a finite value (=0.2) at p=v;. This is done

for convenience in the numerical solution of the integral
equation (4.5). For ii small near p= v, (and, in fact, for

ri&0.07 for 0&v&v,), the matrix inversion method.

applied to (4.12) and (4.13) requires a considerably

larger number of mesh points than the 65 that were

used in this calculation.
The results indicate that a rapidly decreasing p near

the +co threshold can reduce the width substantially

(see Figs. 8 and 9).However, even the exaggerated form
for g, as shown in Fig. 9(a), results in only a 280-MeV
width. The cross section in this case is also asymmetric—falling off too rapidly on the high-energy side. Forms
for q that decrease to smaller values than those shown

in Fig. 9(a) were not used for the reasons mentioned
above.

'0%e use the expression for the left-hand cut that produces the
Reggeized p-exchange force proposed by Bander and Shaw (Ref. 2).

The values of n, (0) used in these calculations are
similar to those generally required to fix the output
resonance at about 760 MeV in a single-channel X/D
calculation of the p-wave pion-pion amplitude. ' "The
p Regge-trajectory intercept a, (0) is a parameter in the
formalism presented here. Actually, in all cases the
output-resonance position could have been fixed at
760 MeV by decreasing the input-width parameter F.
Decreasing I' and decreasing n, ( 0) have the same effect
in the calculations of Secs. III and IV because B; is used
only over a small region above threshold. For v;& 33M„',
decreasing rr, (0) alters essentially only the slope of
8;(0&v& p~).

V. CONCLUSIONS

The phase representation and the approximations as
described here can considerably simplify the solution of
the integral equations for a partial-wave amplitude by
reducing the range of integration on the right-hand cut.
They also provide a method of estimating the effects of
a purely imaginary partial-wave amplitude for energies
above a given energy —for a specified model of the
left-hand cut.

In our application to the p-wave pion-pion amplitude,
we found that the assumption of a purely imaginary
p-wave amplitude for total c.m. energies greater than
about 6M did not produce any appreciable reduction
in the output p-wave resonance width. (A simple

p-exchange force with a p mass equal to 760 MeV and

a width of about 100 MeV was assumed as the input
force.) When, in addition to this maximum inelasticity
for high energies, the effects of low-energy inelasticity
from the xm~m. M reaction were included, we found

some reduction in the output width. However, even

when the low-energy inelasticity from the xx~mco
reaction was greatly exaggerated, we found that the
width reduced to only about 280 MeV. These results
are all subject to the assumption that the P-wave

pion-pion amplitude has no CDD poles. As has been
discussed by many authors, " the single-channel calcu-

lation with inelasticity and no CDD poles may not be
equivalent to a multichannel calculation. The results
of this paper seem to give another indication that a
multichannel calculation is needed if the narrow width

of the p resonance is to be obtained from a dispersion-

relation calculation.

"M. Bander, P. Coulter, and G. Shaw&, Phys. Rev. Letters 14,
270 (1965); E. J. Squires, Nuovo Cimento 34, 1751 (1964); J.
Finkelstein, Phys. Rev. 140, B175 (1965); D. Atkinson and
M. B.Halpern, ibQ 150, 1377 (1966).; D. Atkinson, K. Dietz, and
D. Morgan, Ann. Phys. (N. Y.) 37, 77 (1966); J. B. Hartle and
C, E. Jones, Phys. Rev. 140, B90 (1965).
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APPENDIX' REMARKS ON THE CONTINUITY
OF THE TOTAL PHASE 4)

Continuity of the Phase of At(v) at v= v;

By de6nition, the phase of At(v) for v) v, is Ct(v). The
phase of the calculated At(v) for v(v; will be the phase
of a at(v)ea("& as derived from the integral equations
(2.23) and (2.24)."To ensure continuity of the phase
of At(v) at v= v;, the following must be satisfied:

lim [phase(at(v)ea("&)) = 4't(v, ) . (A1)
(vs—v) ~p+

/r
—ReD((v)—phase(D((v)) = cot-'~

k ImD, (v)
(A3)

From Eqs. (2.22) and (2.24) we have"

Since Dt(v) contains the entire right-hand cut of at(v),
and e~(v) is purely real for v(v;

phase(at(v)e~("&) = —phase(Dt(v)), 0(v(v, . (A2)

The phase of Dt(v) can be written

ReDt(v)
lim

~(—Imog( &)

/r v —vo= lim [—p(v)/Vt(v) ea("&)-'~ 1+ P.V.
V~vj-

'.( ')~ ( ')"",~-
dv'

/

p v —v v —vp

(A4)

f(v)

—c(v') '[(v' —v)/v')" ("*&/ /'I "' Lf(v') —f(v))e""'
(

—P.V. dv4 v v

where

aIld

(v)
+ P.V.

vi e6(v'i c(v.)[v./(vvi)), @t(vi&/r

dv'+c(v, )f(v)—P.V.
p v v Q

f()=-p()~ ()i( —.),
p(v) =Im[A((v)) ',

//v
"4 t(v') —4 t(v)

c(v,)—= lim exp~ — dv'
~

(v' —v)v' )
4 )(vs) /x

s

lim ea("&=c(v;) lim
~

V~V j V~V j

/r

v v

(A6)

(A7)

e(v,) is finite, since Ct(+ ~) is finite and Ct(v) is continuous.
For Ct(v, ) &sr, the first two integrals in (A5) converge. Thus, in the limit as v -+ v; from below, only the third

integral in (A5) contributes. That is,

( ReD((v) && P.V. "* [(v;—v)/(v, —v'))a'(" &'

[= hm (A10)"-"' k —ImDt(v)) "-"' ~ o

With x—= (v,—v)/(v; —v'), (A10) becomes

stat(ail/w —i

)
dx i=—

P.V.
lcm

(vi—v) /v; S 1

p y ~ ~e)(v, )l~—j.

de (A11)

Thus for 0&4((v,) (n, '4

|' ReD((v)
lim

~

— =cot[4((v,))
E —ImD (v)

(A12)

and (A1) is sal. isfied. For 4't(v;) =0, (A10) gives

&r ReD((v)
lirn

~

-++oo.
k —ImD (v)

Thus the calculated phase —+ 0 as v —+ v;—.

(A13)

"Conditions (2.20)—(2.22) are assumed in this discussion.
"We let Df,(v) be normalized to I at v=0.
"W. Grobner and N. Hofreiter, Integraltafeln, I3estsmmte Integral (Springer-Verlag, Austria, 1950), p. 178, Formula 20.
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