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Border Detection on Digitized Skin Tumor Images
Zhao Zhang*, William V. Stoecker, and Randy H. Moss

Abstract—A radial search technique is presented for detecting
skin tumor borders in clinical dermatology images. First, it in-
cludes two rounds of radial search based on the same tumor center.
The first-round search is independent, and the second-round
search is knowledge-based tracking. Then a rescan with a new
center is used to solve the blind-spot problem. The algorithm is
tested on model images with excellent performance, and on 300
real clinical images with a satisfactory result.

Index Terms—Border detection, radial search, skin tumor.

I. INTRODUCTION

W ITH the development of new computer technologies
and image processing algorithms, exciting new appli-

cations, such as automatic skin tumor diagnosis, are possible.
Automatic boundary detection, which is usually the first stage
of medical image understanding, is a challenging project with
much ongoing research [1]. Some of the newer methods in
medical image segmentation include texture-based segmen-
tation [2]–[4], snake functions [5]–[7], simulated annealing
[8], fuzzy logic [9]–[11], and neural networks [12]–[15]. The
degree of success of each technique depends on how much
prior higher order knowledge each algorithm uses.

This paper will present a skin tumor boundary detector based
on a radial search technique. First, some interesting morpholog-
ical operations are discussed, then the full details of the radial
search algorithm are presented.

II. M ORPHOLOGICALOPERATIONS INBORDERDETECTION

The morphological operations discussed here are used inten-
sively in the various stages of this project. The common mor-
phological operations include dilation, erosion, thinning, edge
extraction, opening and closing. In this paper, a novel method
of calculating the Euler number is presented, then based on the
Euler number counting, several other morphological operations
such as flood-filling, hole filling, and island deleting are dis-
cussed.
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Fig. 1. Example of Euler number one (one object, zero holes).

Fig. 2. Example of Euler number zero (one object, one hole).

A. Euler Number

In a binary image, the Euler number is defined as the number
of objects minus the number of holes inside the objects

# # (1)

The Euler number of Fig. 1 is one, while for Fig. 2, the Euler
number is zero.

When dealing with a square tessellation binary image, the
Euler number is different depending on the definition of con-
nectedness. There are three definitions, as listed below. Fore-
ground and background connectedness are not necessarily the
same in order to satisfy our intuition about connected compo-
nents in a binary image. For six-connectedness, the two corner
cells must be on the same diagonal to ensure symmetry in the
relationship.

• Four-Connectedness:only edge-adjacent cells are consid-
ered neighbors.

• Six-Connectedness:two corner-adjacent cells are consid-
ered neighbors, also.

• Eight-Connectedness:all four corner-adjacent cells are
considered neighbors, as well.

0278–0062/00$10.00 © 2000 IEEE
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In this paper, four-connectedness for the background, and
eight-connectedness for the object are used. This satisfies our
intuition about connected components in continuous binary im-
ages. For example, a simple closed curve should separate the
image into two simply connected regions. This is called the
Jordan curve theorem [16].

Gray [17] has devised a systematic method of computing the
Euler number by matching the logical state of regions of an
image to binary patterns. He first defined a set of 22 pixel
patterns called bit quads as shown in Tables I–III.

The Euler number of an image for eight-connectedness for
foreground and four-connectedness for background can be ex-
pressed in terms of the number of bit quad counts in the image
as

(2)

where means the number of bit quads counted.

B. Flood-Fill

At one point in the boundary detection process (to be dis-
cussed in Section III), the detected boundary often appears as
an arbitrary closed loop. For further feature extraction, the in-
side of the closed loop needs to be filled with a predetermined
value. This operation is called flood-fill. Li [18] has attempted
to do the operation sequentially but the algorithm fails for com-
plex-shaped loops. The problem can be solved completely by re-
cursive programming. For example, in Table IV, beginning with
a seed point A inside the closed loop, one can recursively “fill”
its four-neighbors (right, left, above, below) until it reaches the
loop border.

The C code for flood-fill, with an image resolution of 512
480, is as follows.

void floodfill( , screen)

int ;

unsigned char screen;

{

if ( && && && )

{ ;

if ( && )

floodfill ;

if ( && )

floodfill ;

if ( && )

floodfill ;

if ( && )

floodfill ;

}

}

The actual code is written in C under UNIX csh, the C shell.
For very large images which require very deep recursion, it
sometimes causes a stack overflow problem. The problem can
be solved in two ways. First, the csh shell command “limit stack-
size” can be used to increase the stack size allocated for each
process. A better method is to divide the image equally into four

sub-images and then run the recursive flood-fill procedure in the
four smaller images. This is the method used in this research.

C. Island Deleting

Islands are the isolated areas which are falsely detected by
the segmentation algorithm, in addition to the main object of in-
terest (tumor). Many segmentation techniques have island prob-
lems. This operation is, therefore, useful in many situations.

It is usually safe to assume that the object of interest is the
largest area detected. So the operation will first label each ob-
ject based on eight-connectedness, and then delete the smaller
objects, leaving only the largest one as the output of the opera-
tion.

A sequential labeling algorithm [19] is better suited to se-
quential scanning of the image. For example, in a binary image,
when pixel A is scanned, if A is zero, then there is nothing to do.
If A is one, then if its neighbors have only one label, that label
is simply copied. If its neighbors have two or more labels, then
the two or more labels have been used for parts of one object,
and they are connected through A, as shown in Table V. A note
is made that the labels are equivalent. If none of its neighbors
are labeled, then a new label is assigned to A. In the case shown
in Table V, it should be noted that labels 1 and 2 are equivalent.
Point A and the points shown as X should then be labeled as
either 1 or 2.

At the end of the scan, the parts with equivalent labels are
merged. Only the object with the largest area is kept. All the
other labeled objects which are smaller are deleted.

D. Hole-Filling

After the above operation, the detected object might have sev-
eral holes inside. Because there is only one object in the image,
the number of holes can be calculated after the Euler number is
determined. From and
since , therefore, .

If holes are detected inside the object of interest, the holes
need to be filled with ones so a solid object results as the seg-
mented output. The sequential hole-filling process sometimes
fails on holes with complex shapes. As discussed before, a re-
cursive algorithm can be used to solve this problem. A simple
method is to flood-fill the background first, then compare the
resulting image (as in Table VII) with the original one (as in
Table VI). If the values of the corresponding pixels are equal,
then the output is set to one, otherwise the output image value
is set to zero, as shown in Table VIII. This process is found to
be simple and effective.

Figs. 3 and 4 are an example of the hole-filling process results
on a real skin tumor image.

III. B ORDERDETECTION

A. Introduction

In this section, the border detection technique developed for
digitized skin tumor images will be discussed. It is a radial
search technique based somewhat on that of Golston,et al.[20].
The discussion is divided into four parts.

• Preprocessing, which includes low-pass filtering, 20
20 window identification, and finding an appropriate
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TABLE I
Q1

TABLE II
Q3

TABLE III
QD

TABLE IV
FLOODFILL EXAMPLE

TABLE V
SEQUENTIAL LABELING PROCESS

TABLE VI
AN IMAGE OF ONE OBJECT WITH ONE HOLE INSIDE

weighting for converting an RGB color coordinate image
to a gray-intensity image.

• Radial search technique, which finds the seed border
points through an independent search, followed by a

TABLE VII
THE IMAGE WITH BACKGROUND FLOODFILLED

TABLE VIII
THE RESULT, WITH HOLES DELETED

Fig. 3. Real skin tumor image segmentation with holes.

second round of radial search for tracking the border
based upon its nearest-neighbor border point. A solution
for the blind-spot problem is also provided.

• Skin tumor image model, with the image model con-
structed using the features extracted from manual borders.
The border detection algorithm is tested on these model
images.

• Border detection results on clinical images.

B. Preprocessing

This is the preparation for the border detection program; the
objective is to preprocess the image for more reliable border
detection, and at the same time, keep most of the information
discriminating tumor and skin.
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Fig. 4. After the hole-filling process.

Fig. 5. Image before filtering.

1) Low-Pass Filter: In the skin tumor images, the objects of
interest (tumor and skin) are usually the largest objects, repre-
senting the lower frequency part of the images. The noise, flash
reflections and hair are usually small and/or narrow, so the first
step of preprocessing is the low-pass filter, to smooth the im-
ages. There are a number of low-pass filters in the literature;
they all work well for our purpose. Fig. 5 is a skin tumor image
with noise added. Fig. 6 shows the image after 55 Gaussian

Fig. 6. After Gaussian filter.

Fig. 7. After median filter.

filtering, with main lobe width of 0.5. The 5 5 matrix for the
Gaussian filter is
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Fig. 8. After Wiener filter.

Fig. 9. Projecting the image.

Fig. 7 shows the image after 33 median filtering. Fig. 8 shows
the image after pixel-wise adaptive Wiener filtering. Neighbor-
hoods of size 3 3 are used to estimate the local image mean
and standard deviation. For simplicity, the median filter was
used in this research.

Median filtering is computationally intensive; the number of
operations grows exponentially with the window size. Pratt,
et al. [21] have proposed a computationally simpler operator,
called the pseudomedian filter, which possesses many of the
properties of the median filter. The one-dimensional (1-D)
pseudomedian filter can be extended in a variety of ways. One

Fig. 10. Uneven lighting problem and compensation by best-fit line.

Fig. 11. Radial search technique.

Fig. 12. Edge fitting technique.

approach is to implement the median filter over rectangular
windows. As with the median filter, this approach tends to
“over smooth” an image. A plus-shaped pseudomedian filter
generally provides better subjective results.

For the purpose of detecting a reliable border in a complex sit-
uation like skin tumor images, an “over-smoothed” image tends
to get better results for the detector. So a 2121-pixel square
window median filter was used. As for the computationally in-
tensive problem for the two-dimensional (2-D) median filter, the
radial search technique only needs to use the median filter for
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Fig. 13. Tumor image with 41 seed points.

Fig. 14. Tumor image with 64 seed points.

those pixels located on each radius. For example, if 64 radii are
used in the radial search detection algorithm, each radius has
fewer than 500 pixels on it, so the median filter is applied on
fewer than 64 500 pixels, instead of 512 480 pixels of the
whole image.

2) Finding the Center of the Tumors:The second step is to
find the center of the tumor. The tumor and skin usually have
different luminance, so it is possible to estimate the center of
the tumor before the tumor border is known. The center can be

Fig. 15. Tumor image with 14 seed points.

Fig. 16. Threshold versus number of seed points.

Fig. 17. Second round of search.



1134 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 19, NO. 11, NOVEMBER 2000

Fig. 18. Blind-spot problem.

Fig. 19. New center and eight new radii.

found effectively by performing the average luminance projec-
tion of an image along its rows and columns. The column and
row projections are defined as

(3)

(4)

where
image value at point ;
number of rows;
number of columns.

The difference in luminance between tumor and skin can be
accumulated into the projection, and the small objects and noise
will cancel themselves by the average projection. The vertical

Fig. 20. Border after the new scan.

Fig. 21. Loop-hole problem.

and horizontal projection will only reflect large areas. By further
analyses, the tumor center can be estimated without knowing the
tumor border.

It is noted that the tumors are almost always darker than the
surrounding skin, although sometimes only part of the tumor is
darker. If only one tumor is present in the image, the projection
will result in a “ ” shaped curve, as shown in Fig. 9. A 20-point
average filter smoothes the projection curve after the projection,
so that the smoothed projection is even more robust for center
detection.

Generally, the center of the tumor can be found by finding the
lowest point of the projection curve, but due to severe uneven
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Fig. 22. First example of model image.

Fig. 23. The detected border for first example.

lighting of some images, the projection sometimes slants to one
direction as shown in Fig. 10.

This problem can be solved by compensating the projection
curve with its least mean squares best-fit line, so the new projec-
tion curve will be leveled, as shown in Fig. 10. For any random
1-D signal , the slope of the best-fit line can be
calculated by

(5)

where
average of ;
average of ;

Fig. 24. Second example of model image.

Fig. 25. Detected border for second example.

total number of points [22].
Now that the projection curve is smoothed and leveled, a

threshold operation will detect several “wells” which are the po-
tential candidates for the tumor center. The width of each “well”
is weighted by a roof-shaped function, so the “widest well
near the center” will be recognized as the tumor center. This is
from the observation that the tumor is always the largest object
inside the image, and near to the center. Other objects such as
a ruler, body parts, and hair are more often located at the edge
of the images. By weighting the center “wells” more than the
“wells” on the edge, the chances of getting a correct result are
improved. This process is very accurate under the assumption
that there is only one tumor in each image.
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Fig. 26. Third example of model image.

Fig. 27. Detected border for third example.

3) Finding a Better RGB Weight:Each pixel of our image is
represented in the RGB color coordinate system, and digitized
to 24 bits per pixel, with 8 bits for each of the red, green, and
blue planes. It is much easier to process gray-level images than
color images. A commonly used method to convert RGB images
into gray-level images is to calculate luminance from the red,
green, and blue values of each pixel using the formula

. (This equation has all
coefficients rounded to two significant digits. A more accurate
equation can be found in [23].)

Different RGB weights for calculating gray intensity corre-
spond to different projection angles from the three-dimensional
RGB coordinate system to the 1-D gray intensity coordinate

Fig. 28. Border result, error= 9%.

Fig. 29. Border result, error=15%.

system. The luminance calculation has a fixed set of weights for
the RGB plane. For this research, finding a better set of weights
is important because a better projection angle can preserve or
maintain more difference between skin and tumor, making the
border detection much easier and more accurate.

The weight is calculated based on the RGB value of two 21
21 windows which are at the center of the tumor and on the

surrounding skin, respectively. The procedure is as follows.

• Normalize the Luminance:First, the brightness of the im-
ages are normalized, so that the average luminance inside
the tumor windows of different images are the same.

• Find Weight Based on Normalized Color:The following
equations show how the weights are calculated:



ZHANG et al.: BORDER DETECTION ON DIGITIZED SKIN TUMOR IMAGES 1137

(6)

(7)

(8)

(9)

(10)

(11)

C. Two Rounds of Radial Search, Seed Points, and Border
Tracking

1) First Round of Radial Search:From the center of the
tumor, 64 equally spaced radii are constructed. The gray in-
tensity values along each radius are sampled, and the process
searches along each radius for two rounds, first independently
to find seed points and then dependently (tracking). The proce-
dure is as follows.

• Perform the first round of radial search on 64 radial search
lines by the best-fit step edge method (discussed later),
with very strict criteria. The process will find up to 64 seed
points, depending on the complexity of the image.

• Using the border points obtained from the first round of
search as seeds, perform the second round of search on
radii which have failed in the first round search. Divide the
circumference up among the seed border points and find
the border points close to the seed along these radii. The
angle between two seeds is bisected, as shown in Fig. 11.

For the first round of independent radial search, the best-fit
edge-detection method is used for its reliable performance. The
seed points are very important because the tracking method will
be used to locate the other border points. When searching along
each radius, the problem is now reduced to the 1-D edge-fitting
problem shown in Fig. 12. The gray intensity values along the
th radius are denoted as . is fitted to a step function

if
if

(12)

where
minimum of the gray-level values on theth ra-
dius;
maximum of the gray-level values on theth ra-
dius;
sliding edge value, which varies from zero to
when searching along each radius;
number of pixels on theth radius.

An edge is assumed to be present at the pointif the area
is below or equal to some threshold while sliding the edge

from the center (where ) to the image’s edge ,
where is defined as

(13)

where
gray-level values along theth radius;
sliding step edge function for theth radius, with its
edge sliding from 0 to ;
is the total number of pixels along theth radius.

The resulting value is compared with a threshold propor-
tional to

If threshold, then a seed point is found otherwise no
seed points are found on theth radius; continue with next
radius.

This edge-fitting method requires substantially more com-
putation than other methods such as thresholding or derivative
edge detection. The benefits of it are as follows:

• that it is more stable with noise and small obstacles, such
as hair, ruler, flash reflections, rough texture of skin lesion,
etc.;

• that it is easier to control the criteria, so only a small
number of ideal border points can be found;

• that only one border point for each radius is identified.
Thus, this method works well as the first round of indepen-

dent radial search to find the seed points for the second round of
dependent radial search. Figs. 13–15 show one image with seed
points found by different thresholds used during the edge-fitting
process. Fig. 16 shows the plot of threshold versus the number
of seed points for the same image.

It was experimentally determined using multiple im-
ages that the number of seed points should be around
20–40, so the threshold of the edge-fitting was chosen to be

. If the threshold is too large, the
fitting is too optimistic, and some wrong seed points will be
more likely to occur, as shown in Fig. 14. If the threshold is
too small, there will not be enough seed points for the second
round of search to be successful, because some seed points may
be too far away from each other, and reliable tracking would be
difficult, as shown in Fig. 15.

2) Second Round of Radial Search:The second round of ra-
dial search is dependent upon the seed points found in the first
round. It is an attempt to find the border points by using the
simple prior knowledge that all the neighboring border points
are close to each other. There are no sharp jumps in the contour
of a skin tumor. So, if one correct border point is found on one
radius, the border point of its neighboring radius will be near
the first border point.

There are 64 radii, which are numbered 1–64 clockwise, for
the radial search. If radius 1 and radius 6 have successfully
found a border point from the first round of search, these two
border points are then used as the seed points for finding the
border points on radii 2–5. The procedure for the second round
of search is as follows.
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Fig. 30. Border result, error= 47%.

Fig. 31. Border result, error= 18%.

• The angle between two seeds is bisected, as shown in
Fig. 17. First the border point on radius 2 will be searched
near the seed point on radius 1, then the border point on ra-
dius 3 will be searched based on the new border point just
found on radius 2, then the border point on radius 5 will
be searched based on the seed point on radius 6, finally the
border point on radius 4 will be searched near the border
point on radius 5.

• When searching for a border point on radius 2, for ex-
ample, the distance between the seed point (border point
on radius 1 in this case) and the tumor center is calculated.
The new border point on radius 2 will be sought at about

Fig. 32. Border result, error= 19%.

Fig. 33. Border result, error= 46%.

the same distance from the center (eight pixels in-bound
and eight pixels out-bound, in the current program).

• On the 16-pixel segment on radius 2, the border point is
located by a “close to the average and high first-order dif-
ferential” criteria. The measurement is calculated as

(14)

The pixel which has the smallest measurement is identi-
fied as the new border point.
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After the second search, one border point is found on each of
the 64 radii, with a total of 64 sequentially sorted border points.
There can still be some sharp jumps on the contour of these
64 border points. This happens either due to wrong seed points
from the first round of independent search, or due to the wrong
track direction of the second round of search. By using the same
prior knowledge stated above, another process is used to trim
those border points that are too isolated from their neighboring
border points.

The length between each border point and the tumor center is
calculated. If the ratio between the length of one radius and the
average length of its six neighbors is above or below a certain
threshold (1.2 and 0.8 in this case), then it is considered that
this border point does not satisfy the above prior knowledge,
and it will be relocated to where the average length is. The same
process is used 2–3 times to trim those isolated border points.
The result is a smoother and better border for those complex
skin tumor images.

Based on the 64 border points, a second-order 2-D B-spline
process is used to form the closed contour of the tumor. The re-
cursive floodfill algorithm described in Section II-B is used to
fill the inside of the closed contour. The result is a 512480
binary image, which is compressed using a run-length coding
method, and the compressed binary image is then saved for fu-
ture calculation and reference.

D. Rescan With New Center, Blind-Spot Problem

The radial search technique described above generally works
well. For some complex-shaped contours, depending upon
where the tumor center is, a radius might meet the contour
more than once. Then the radial search technique will have
a blind-spot problem. This has been previously discussed by
Golston,et al. [20]. As shown in Fig. 18, the white cross mark
is the center of the tumor found by the preprocessing program.
From this center point, the radii cannot “see” the part of the
border on the right-hand side of the upper-left “peninsula” of
the image. This problem is solved by a rescan process from a
new center.

The process is like a partial radial search after the first two
rounds of complete radial search on all of its 64 radii. It will
first detect if the blind-spot problem occurs, then try to find a
new center close to the blind spot and within the detected border,
and create eight radii from the new center in the blind-spot area,
finally searching along the eight radii to find eight new border
points in the blind-spot area.

There are 64 border points for the detected border. The rescan
process will calculate the distance between two neighboring
points. If the distance is larger than a certain threshold, 50 pixels
in this case, then it is considered a possible blind spot.

A new center is calculated from the two border points where
the blind spot is detected. The new center has to be inside the
tumor to allow a rescan of the blind spot from a different angle.
The new center will be found along a perpendicular bisector
of the line segment from point A to point B (the two border
points at the blin spot). The angle which the rescan process spans
will start at . If the new center falls outside the detected
border, it is moved in closer to the line segment, until it is inside

the detected border. The rescan angle will have the range from
to .

From the new center, eight new radii are formed, as shown in
Fig. 19. The same radial search technique described above for
the second round of dependent search will be used on these 8
radii, with the two old border points as seeds. Eight new border
points will be added between the two old border points. The
final border is shown in Fig. 20.

When rescanning part of the border with new local centers,
a loop-hole problem might occur on some images, as shown in
Fig. 21. This will cause problems for the later processes. The
problem can be solved using the hole-filling process described
in the second section of this text.

E. Results

1) Result of the Tumor Center Marker:The tumor center
marker procedure is accurate and not sensitive to noise. If the au-
tomatically detected center falls within the manually identified
border, then it is considered as a correct center. For a 66-image
pigmented lesion subset of a 299-image database, the center
marker found the center of the tumor with 100% accuracy. For
the 299-image database, which included more difficult nonpig-
mented epitheliomas, it found the correct center of the tumor for
206 images, a 69% accuracy.

2) Definition of Border Error: The automatic border was
compared with the manual border quantitatively. Border error
is defined as: (from Hance,et al. [24])

(15)

where represents the area inside the automatic border
and represents the area inside the manual border. The
automatic border is the border found through procedures dis-
cussed in the previous section. The manual borders are drawn
under the supervision of a dermatologist.

The program was tested on model images and on real clinical
images.

3) Radial Search Technique on Model Images:The radial
search technique was first tested on model images which were
constructed based on features measured from actual skin tumor
images. The database used to create the model images was cal-
culated based on manual borders, drawn under the supervision
of a dermatologist.

From the point of view of feature calculations, the model im-
ages are equivalent to real images. This is because based on the
same manual border, both images will yield the same features.
Since this feature vector is the only information forwarded to
the diagnostic system, the reconstructed image also reveals how
much information can be extracted from the real image.

The following 14 features are extracted from raw image data
based on the manual border [25]:

• irregularity;
• asymmetry index;
• average of red inside the tumor;
• average of green inside the tumor;
• average of blue inside the tumor;
• average of red outside the tumor;
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Fig. 34. Border result, error= 57%.

Fig. 35. Border result, error= 11%.

• average of green outside the tumor;
• average of blue outside the tumor;
• variance of red in the tumor;
• variance of green in the tumor;
• variance of blue in the tumor;
• variance of red outside the tumor;
• variance of green outside the tumor;
• variance of blue outside the tumor;

The reconstructed images are modeled from these features.
The shapes of the reconstructed tumors are the same as the
manual borders of the real images. Uniformly distributed
random noise is added to the model images. The noise level

Fig. 36. Border result, error= 4%.

Fig. 37. Border result, error= 6%.

corresponds to the features of the color variance. For example,
the noise level of red inside the tumor will be calculated from
the variance of red in the tumor.

The radial-search border detector is used on these model im-
ages. The program can detect the borders accurately, with 97%
having an error less than or equal to 4% for 240 reconstructed
model images. Figs. 22–27 are several examples of model
images and their detected borders. The white cross marks on
Figs. 23, 25, and 27 are the detected tumor and skin centers.

4) Radial Search Technique on Clinical Skin Tumor Im-
ages: Figs. 28–39 show several border results. The tumor in
Fig. 28 has a blurred edge, which is very common in nonele-
vated tumors. There will be some differences for the manual
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Fig. 38. Border result, error= 41%.

Fig. 39. Border result, error= 32%.

TABLE IX
AUTOMATIC BORDERSEGMENTATION FOR66 PIGMENTED LESIONS

borders drawn by different dermatologists. The automatic
border has an error of 9% in this test compared to the border
drawn by a dermatologist. Subtle pigment changes outside
borders are problematic and are included in the tumor boundary
by some dermatologists but not by others. Fig. 29 shows a very
light tumor, which has almost the same color as the surrounding
skin. This border detector generally works better for dark

TABLE X
AUTOMATIC BORDERSEGMENTATION RESULTS FOR300 IMAGES

TABLE XI
AUTOMATIC BORDERRESULTS, WITHMANUAL TUMOR CENTER

Fig. 40. Block diagram of the whole process.

tumors. For some of the unusual cases where the tumors are
brighter than the surrounding skin, the detector will mistakenly
detect some of the dark part of the skin. In Fig. 30, the tumor
is not located in the center of the slide, which proves the
usefulness of the tumor center marker by projection method.
Also, the border error is 47%, which is still considered a good
border by dermatologists, as it allows adequate detection of
critical features. Fig. 31 has multiple tumors, but the algorithm
successfully picked up the largest one, which is preferred by
most dermatologists. Almost all of the slides in this research
only have one tumor. The border detector described here is
only designed to find one tumor per image. Fig. 32 has uneven
lighting, hair, and flash reflection problems. These are the
common “noises” for this image set. The uneven lighting can
be handled by a linear ramp function [best-fit line, (5)]. The
hair and flash reflection problems can be solved by a nonskin
filter which has been discussed previously [24]. Fig. 33 is
on a body part (ear), which presents a major challenge to the
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computers without high-level knowledge about body parts.
The algorithm works well for this image, and the border is
rated good despite the 46% error. Fig. 34 contains a foreign
object (ruler), and the algorithm missed the red extension of
the tumor. The tumor is darker on the left half, and brighter
on the other half. Fig. 35 is another example of a light tumor,
with a ruler. Rulers are usually positioned close to the tumor
before photographing to help physicians estimate the actual
size of the tumors, but in some of the poorly photographed or
poorly digitized images, rulers sometimes cause problems for
the border detector. Figs. 36–38 have hair complicating the
image. Fig. 39 has a shadow on one side of the tumor edge,
and a blurred edge on the other side. A shadow is common for
elevated tumors. Although it is easy for human observers to
detect the shadow, it is a very difficult task for computers.

Table IX shows the results of this algorithm on 66 pigmented
skin tumor images. A border error less than or equal to 50%
is considered acceptable for this research, so 83% of the auto-
matically detected borders are acceptable to human observers.
The program was also tested under different conditions on a
larger image set, which contains 300 digitized skin tumor im-
ages of various types, including many nonpigmented epithe-
liomas. Table X shows the results of the algorithm. Table XI
shows the results of the algorithm when the tumor center (for
the radial search) is manually chosen rather than being auto-
matically determined.

IV. CONCLUSION

The technique described here improves on two classes of im-
ages where the technique of Golston,et al., [20] failed to find
the correct border. The largest set was the set for which lumi-
nance was not a major primitive border determinant. A smaller
set was the set with the blind-spot problem.

This radial search algorithm is completely automatic, without
any human input. Fig. 40 is the block diagram for the complete
border detection algorithm. It includes three major blocks: pre-
processing, two rounds of radial search, and post-processing.
The preprocessing block includes the low-pass filter, the auto-
matic center marker, and the program to calculate RGB weight.
The radial search block conducts two rounds of radial search
from the same tumor center. The first round of radial search uses
the best-fit step-edge method to find some reliable border points
as seeds. The second round of search tracks the border points
along the radii in the neighborhood of their closest seed points.
The post-processing block has four functions. First, it will trim
the isolated border points. Second, if a blind spot is detected,
a rescan process from a new radii center will be performed to
remove the blind spot. Third, the tumor contour will be built
using a second-order 2-D B-spline process. Finally, if a hole
is detected after the tumor is being floodfilled, the hole-filling
process will remove the holes.

We have described several novel techniques such as center
finding by projection, compensation for uneven lighting, im-
provement of weights based on normalized color, refinement of
the radial search technique via adaptive thresholding and reli-
able seed points, and a solution of the blind-spot problem. Using
these techniques, model image borders are detected with%

error for 97% of the images. For 66 pigmented lesion images,
83% of borders are rated acceptable.

The 83% satisfactory borders in the 66-tumor sample set
compares to only 170/300 or 57% of a 300-image clinical test
set with satisfactory borders. The 66-tumor set is an easier
set for border finding because it is a pigmented lesion set
with more apparent borders. A number of difficult problems
including odd body parts such as fingers and ears, shadows, and
lesions that are no darker than the surrounding skin are present
in the 300-image test set. These problems create difficulties
in automatic border finding. The same conditions hammpered
the results of the center-tumor marker even more severely in
the larger test set. For the 66-image database, all tumors were
found by the center marker. For the larger 299-image test set,
only 69% accuracy in tumor finding was noted. Images of
this degree of difficulty are best processed by manual border
determination by the physician.

Some of the problems caused by flash and uneven lighting
can be resolved by improved lighting and the use of polarizing
filters. A number of physicians are now using polarizing filters.
Since we were using a library of photographs taken earlier, this
technique was not practical.

Studies on boundary detection in medical images continue,
with many techniques being tested by different researchers. The
success of a border detector in difficult cases is often determined
by how much higher order prior knowledge is implemented in
the algorithm. With improving understanding of human vision
and with developments in artificial intelligence, the applications
of border detection for medical images will continue to grow.
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