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Near-Infrared Spectroscopic Analyses of 
Poly(ether urethane urea) Block Copolymers. 
Part I: Bulk Composition 

C H A R L E S  E. M I L L E R , *  P E T E R  G. E D E L M A N , t  and B U D D Y  D. R A T N E R ~  
Department of Chemistry, BG-IO, University of Washington, Seattle, Washington 98195 (C.E.M.); and Department of Chemical 
Engineering and Center for Bioengineering, BF-IO, University of Washington, Seattle, Washington 98195 (P.G.E., B.D.R.) 

The ability of near-infrared (NIR) diffuse reflectance spectroscopy to 
perform rapid bulk composition analyses of poly(ether urethane urea) 
(PEUU) block copolymers is demonstrated. Six polymer samples with 
known elemental compositions were used to construct calibration models 
using the method of classical least-squares (CLS). Results indicate that 
NIR diffuse reflectance spectroscopy can determine hard-segment and 
soft-segment contents of the bulk polymers within 2.6% mass over a 
range of 31% mass. Errors in the calibrations were caused by nonrepre- 
sentative NIR sampling of the polymers and by the presence of side 
products in the polymers. NIR spectra of model hard- and soft-segment 
materials are used to assign NIR bands to specific functional groups in 
the polymers. 

Index Headings: Near-infrared spectroscopy; Polymers. 

INTRODUCTION 

Segmented poly(ether urethane urea) (PEUU) copol- 
ymers, which are composed of alternating hard- and soft- 
segment blocks, are commercially useful materials with 
interesting properties worthy of fundamental investi- 
gation. 1~ The polyether soft segment provides flexibility 
and elasticity to the polymer. The hard segment, gen- 
erally comprised of the reaction products of a diisocya- 
hate and a low-molecular-weight diamine, can noncova- 
lently self-associate to form domains that act as effective 
crosslinks and reinforce the polymers. The physical prop- 
erties of these polymers greatly depend on the compo- 
sition and the degree of phase separation. 

Some physical properties of segmented PEUU copol- 
ymers can be measured directly by mechanical analy- 
ses. 3,5,s Other methods, such as thermal analysis, 2,5,s x-ray 
scattering, ~ x-ray photoelectron spectroscopy, 4 and FT- 
IR spectroscopy, 3 also provide valuable information that 
can be used to probe composition and morphology. These 
techniques are useful for polymer analysis, but  require 
specific and careful sample preparation, leading to long 
analysis times. For those situations where a rapid de- 
termination of chemical composition of polymers is re- 
quired, near-infrared (NIR) spectroscopy can be valu- 
able.7, s 

NIR spectra contain vibrational overtone and com- 
bination bands from C-H, N-H, O-H, and C=O groups. 
Quantitative NIR polymer analysis depends on the sen- 
sitivity of NIR spectra to the relative amounts and struc- 
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tural states of functional groups in the polymer. Earlier 
NIR determinations of octane numbers in gasolines, 9 
functional groups in hydrocarbons, 1° and ethylene and 
propylene contents in EPDM terpolymers 11 illustrate the 
ability of NIR spectroscopy to determine important com- 
positional and structural properties. 

Because the absorptivities of overtone and combina- 
tion bands in the NIR region are much lower than the 
absorptivities of fundamental bands in the infrared re- 
gion, thicker and bulkier samples can be analyzed with 
NIR spectroscopy than with IR spectroscopy. As a result 
of these less stringent sample preparation requirements, 
NIR analysis is more rapid than IR analysis. In past 
years, successful NIR analyses of bulk agricultural prod- 
ucts have been made. 7 In the same way, NIR spectros- 
copy can be used to study bulk polymers. 

NIR spectral features of different analytes, such as hard 
and soft segments, in a polymer are generally highly 
overlapped. Therefore, multivariate calibration methods 
are usually necessary for quantitative NIR work. 7,12-14 
Examples of these methods are partial least-squares 
(PLS),11-~3 classical least-squares (CLS),11,14 and principal 
component regression (PCR). 13 These methods can use 
all available spectral frequencies for quantitative anal- 
ysis, and can thus provide accurate analyses for analytes 
with highly overlapped spectral features. Earlier appli- 
cation of the PLS and CLS methods with NIR polymer 
analysis resulted in accurate composition determina- 
tions. ~ 

In the CLS method, the relationship between spectral 
absorbances and analyte concentrations is assumed to 
follow the Beer-Lambert  law. ~,la In the calibration phase 
of CLS, basis spectra that  represent each pure compo- 
nent in the polymer are determined with the use of the 
spectra of calibration standards with known analyte con- 
centrations. To determine calibration fit, the basis spec- 
tra are fit by the least-squares method to the spectra of 
each of the calibration standards. The coefficients of this 
fit are equal to the calibration estimates of analyte con- 
centrations in the standards. 

The major difficulty with NIR spectroscopy of bulk 
polymers is the nonreproducible sampling of the poly- 
mer, which leads to the presence of multiplicative effects 
and baseline shifts in the spectra21 These effects are 
especially large if the bulk samples are highly scattering 
like the PEUU samples used in this work. In order to 
construct a CLS calibration from NIR spectra of bulk 
PEUU samples, the calibration spectra must be correct- 
ed for these effects before calibration. The method of 
multiplicative scatter correction (MSC) has been used 
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FIG. 1. Chemical structure of PEUU copolymers. 

in other applications to reduce these effects and improve 
calibration results. 1~,~6 

After a CLS calibration is prepared, prediction of ana- 
lyte concentrations can be made with the use of spectra 
with unknown mult ipl icat ive effects and baseline 
shifts. T M  As a result, the CLS method is suitable for 
situations where sampling speed is a high priority and 
sample preparation is minimal. In this work, the CLS 
method will be used to construct calibrations for hard- 
segment and soft-segment concentrations in PEUU co- 
polymers. 

EXPERIMENTAL 

Mater ia l s .  PEUU polymers were synthesized from 4,4'- 
methylenebis(phenylene isocyanate) (MDI) (Upjohn 
Company), hydroxy-terminated poly(tetramethylene ox- 
ide) of approximately 2000 g/mol (PTMO-2000) (Quaker 
Oats Co.), and 1,3-propylenediamine (PD) (Aldrich). MDI 
and dimethylacetamide (DMA) (Burdick and Jackson 
Lab. Inc.) were vacuum-distilled. MDI was refrigerated 
until needed. PD was distilled under an argon blanket. 
PTMO-2000 was dried in a vacuum oven for 24 h at 60°C. 
Dibutyltin dilaurate (ICN Pharmaceuticals, Inc.) was 
used as received. 

S y n t h e s i s .  A two-step solution synthesis was used for 
the PEUU samples from MDI, PD and PTMO-2000. 
Synthesis of the 2:1:1 polymer will be described in detail 
as being representative of the procedure for the series. 
The 2:1:1 refers to the mole ratio of MDI to PD to PTMO- 
2000, respectively. A 3-necked 250-mL round-bottom 
flask was set up with a mechanical stirrer, pressure- 
equalizing dropping funnel, and argon inlet. For removal 
of moisture, the glassware was flamed-out under argon. 
To MDI (4.14 g, 16.5 mmol) dissolved in DMA at room 
temperature, a solution of PTMO-2000 (16.55 g, 8.28 
mmol) and 2 drops of catalyst were added. The solution 
concentration was 10-15% w/v. The temperature was 
slowly raised to 60°C and maintained for 1 h. After 
cooling back to room temperature, the dropping funnel 
was charged with a 5 % solution of the diamine (0.614 g, 
8.28 mmol), which was then added dropwise with rapid 
stirring. In all cases, the solution thickened considerably 
after about 80 % of the diamine had been added, so that  
more DMA had to be added to facilitate uniform mixing. 
After complete addition, the temperature was again raised 
to 60°C for about four additional hours. The product was 
then separated by precipitation into 600-mL methanol, 
filtered, rinsed five times in methanol, and vacuum dried 
at 80°C for 12 h. Additionally, to ensure more complete 
removal of low-molecular-weight products, the polymers 
were redissolved in DMA and reprecipitated in metha- 
nol. The basic structure of the polymers after an ideal 
reaction is shown in Fig. 1. 

A hard-segment model compound was prepared by 
reaction of a 1:1 molar mixture of MDI and PD. Pure 
PTMO-2000 was used as a soft-segment model. Six PEUU 

TABLE I. Bulk elemental compositions of PEUU samples. 

Mass percent Mass percent Mass percent 
Sample name nitrogen hard segment soft segment 

1:0:1 1.27 11.3 88.7 
2:1:1 2.25 16.8 83.2 
3:2:1 4.16 27.4 72.6 
4:3:1 5.36 34.0 66.0 
5:4:1 6.25 38.9 61.1 
6:5:1 6.89 42.5 57.5 

polymers were prepared with the use of reaction stoichi- 
ometries of 1:0:1, 2:1:1, 3:2:1, 4:3:1, 5:4:1, and 6:5:1 (MDI: 
PD:PTMO-2000); these polymers were used as calibra- 
tion samples. The percent (mass) of nitrogen in the six 
polymers, determined from elemental analysis (Huffman 
Laboratories, Golden, CO), is shown in Table I. The 
mass percent hard-segment value for each sample was 
obtained from the percent nitrogen value as follows: a 
calibration curve of mass percent hard segment vs. mass 
percent nitrogen for an ideal reaction was constructed, 
and this curve was used to determine experimental mass 
percent hard-segment values from experimental mass 
percent nitrogen values. The percent soft-segment value 
was determined as 100 minus the mass percent hard- 
segment value. It should be noted that  this method of 
determining hard- and soft-segment contents does not 
take into account the formation of side products in the 
polymers. 

NIR Bulk P o l y m e r  Ana lys i s .  The PEUU samples were 
analyzed in the form that  they took immediately after 
synthesis and purification. The different polymer sam- 
ples had different physical appearances and consisten- 
cies (e.g., fibrous, powdery). Each sample was packed in 
a sampling cup with a quartz window and was subse- 
quently analyzed by the spectrometer. 

The near-infrared reflectance spectra of the six cali- 
bration samples, the hard-segment model, and the soft- 
segment  model were obtained with a Technicon 
InfraAlyzer 500C near-infrared reflectance spectrometer. 
The spectral range was 1100 to 2200 nm; the region 1350 
to 1450 nm was deleted because of instrumental anom- 
alies. The wavelength accuracy was _+1 nm, and the 
nominal resolution was 10 nm. Four spectra of each sam- 
ple were obtained--one spectrum each, with the speci- 
men in four different orientations in the spectrometer. 
Each individual scan lasted 1.5 rain. In some cases, sec- 
ond-derivative spectra were used for calibration (Techni- 
con IDAS software, Tarrytown, NY). 

D a t a  A n a l y s i s - - B u l k  P o l y m e r s .  CLS calibrations were 
constructed from both log(l/reflectance) and second-de- 
rivative log(I/reflectance) NIR spectra of the bulk poly- 
mers. In each case, the method of multiplicative scatter 
correction (MSC) was used to correct the spectra for 
multiplicative and baseline effects before CLS calibra- 
tion. 15,16 Replicate samples were treated separately in the 

TABLE II. CLS calibration results. 

Calibration SEE for 
Spectral correction mass % hard segment 
None 2.6 
Second derivative 2.5 
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Calibration curve for CLS calibration for percent hard segment that  uses second-derivative NIR spectra. 

calibration procedure. All calibrations were evaluated 
according to the standard error of estimate (SEE) value: 

V (Q,j_ Qj)~ 
SEE = i=~ 

NC 
(1) 

where Ciz is the known concentration of analyte i in 
sample j, Cij is the predicted concentration of analyte i 
in sample j, and NC is the number of calibration samples. 

RESULTS AND DISCUSSION 

Calibration Results. The SEE values for CLS calibra- 
tions for percent hard segment and percent soft segment 
in the PEUU copolymers are listed in Table II. They 
indicate that  the NIR spectroscopic method can deter- 
mine bulk composition within 2.6% mass over a range 
of 31% mass. Slightly better results are obtained if sec- 
ond-derivative spectra are used, because sampling effects 
are reduced and spectral resolution is improved. Because 
percent hard- and soft-segment values are inversely pro- 
portional, calibration errors for both quantities are equal 
for a given analysis. These calibration results are en- 
couraging, because they indicate that rapid, accurate 
analyses of bulk polymers can be performed. 

In order to further assess the ability of NIR spectros- 
copy to perform bulk polymer analyses, the sources of 
errors in the calibrations were investigated. Calibration 
errors can be caused by errors in the spectral data or by 
errors in the elemental analysis data for the polymers. 
Errors in the spectral data might arise from nonlinear 
absorbances, instrumental anomalies, or inadequate re- 
moval of sampling effects by MSC. Errors in the refer- 
ence hard- and soft-segment concentration data might 
result from random errors in elemental analysis results. 
However, systematic errors in the reference hard- and 
soft-segment concentrations might result from the pres- 

ence of side products in the polymers, which is not ac- 
counted for in the determination of hard- and soft-seg- 
ment concentrations from percent nitrogen data. 

The calibration curve for percent hard segment that 
used second-derivative spectra is shown in Fig. 2. Note 
that the points that  correspond to replicate samples fall 
into tightly bound clusters with deviations of approxi- 
mately 1 to 3 % mass, which are similar to or lower than 
the overall calibration error of 2.5 % (see Table I). This 
result indicates that  sampling errors, caused by a com- 
bination of baseline shifts, multiplicative spectral effects, 
and sample nonhomogeneity, contribute only a fraction 
to the calibration error. It should also be noted that the 
calibration error is not distributed equally over all of the 
samples. The clusters for the 4:3:1 and 5:4:1 samples are 
located far from the calibration line, but  the other clus- 
ters are close to the line. This result indicates the pres- 
ence of two possible error sources in the calibration: (1) 
nonrepresentative sampling of the 4:3:1 and 5:4:1 sam- 
ples, or (2) the presence of unexpected side products in 
these samples. It is unlikely that  differences in phase 
separation of these samples are responsible for the error, 
because the effect of phase separation on the NIR spectra 
of these polymers is small. '7 

The sources of error in the CLS calibrations can be 
investigated by comparison of CLS-estimated spectra of 
the hard and soft segments in the polymer with spectra 
of hard- and soft-segment model compounds. If nonrep- 
resentative sampling is the source of the calibration error, 
systematic errors in the CLS-estimated spectra will be 
present. These errors are indicated by the presence of 
bands from groups in the hard segment in the CLS- 
estimated soft-segment spectrum, and vice versa. If the 
presence of side products is the source of the calibration 
error, spectral features from the side products, not pres- 
ent in the spectra of the model compounds, will be pres- 
ent in the CLS-estimated spectra. Furthermore, if it is 
assumed that side product formation primarily affects 
urea and urethane groups in the polymers, only the re- 
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FIG. 3. NIR diffuse reflectance spectrum of the hard-segment model polymer (A), and the CLS-estimated spectrum of the hard segment in 
PEUU copolymer (B). 

gions of carbonyl and N-H absorption (1450-1600 nm 
and 1900-2100 nm) 7,1s,ls will be affected by side product 
formation. 

Figures 3 and 4 show the CLS-estimated spectrum and 
model compound spectrum for the hard segment and 
soft segment, respectively. Comparison of the estimated 
spectrum of the hard segment in the polymer (Fig. 3B) 
and the hard-segment model spectrum (Fig. 3A) reveals 
significant differences in the C-H stretching overtone 
region (1650-1800 nm) and the N-H and carbonyl ab- 
sorption region (1900-2100 nm). The band at 1748 nm 
in the estimated hard-segment spectrum, which is at the 
same position as a band in the soft-segment model spec- 

trum (Fig. 4A), indicates the occurrence of nonrepresen- 
tative sampling. In the carbonyl and N-H region (1900- 
2100 nm), a shoulder at 1920 nm in the hard-segment 
model spectrum (Fig. 3A) is not present in the estimated 
hard-segment spectrum (Fig. 3B). Although this differ- 
ence might be caused by a difference in the morphology 
of the hard-segment model and the hard segment in the 
polymers, it might also indicate the presence of side prod- 
ucts in the polymers. 

The estimated soft-segment spectrum (Fig. 4B) and 
soft-segment model spectrum (Fig. 4A) are very similar. 
However, the band at 2160 nm in the estimated soft- 
segment spectrum, which is in approximately the same 
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FIG. 4. NIR diffuse reflectance spectrum of the soft-segment model polymer (A), and the CLS-estimated spectrum of the soft segment in P E U U  
copolymer (B). 
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posit ion as the 2164-nm band in the hard-segment  model 
spect rum (Fig. 3A), is a clear indication of nonrepresen-  
tat ive sampling. Other  differences between the soft-seg- 
men t  spectra  in Fig. 4 might  be weaker indicators of 
nonrepresenta t ive  sampling, or results of morphological 
differences between the soft-segment  model  and the soft 
segment  in the polymers.  In summary,  comparison of 
CLS-es t imated  spectra  and model  compound spectra  in- 
dicates the occurrence of nonrepresentat ive sampling and, 
possibly, the presence of side products  in the polymers.  
Addit ional  results f rom a reference me thod  tha t  mea- 
sures funct ional  group concentrat ions (e.g., N M R  or IR 
spectroscopy) might  allow identification and determi-  
nat ion of side products .  

Band Assignments. Although NIR bands are highly 
overlapped,  assignments of NIR  absorptions to specific 
funct ional  groups can be made. NIR bands at  1144, 1690, 
and 2164 nm in the hard-segment  model  spec t rum (Fig. 
3A) correspond to the second-overtone,  first-overtone, 
and combinat ion bands of the aromatic  C-H s t re tch in 
the MDI unit.  These  bands are in close proximity  to 
aromatic  C-H bands present  in the NIR  spectra  of poly- 
styrene.  7 The  absorbance at  1764 nm, which is in the 
region of previously observed bands in the NIR spectra  
of aliphatic hydrocarbons  7,1° and E P D M  terpolymers,  n 
is from the methylene  group in the MDI uni t  and from 
methylene  groups in the chain extender.  Absorbances in 
the region 1450 to 1600 nm arise f rom overlapped N-H  
stretching f irst-overtone bands and th i rd-over tone  car- 
bonyl  s t retching bands.  The  region 1900 to 2100 nm also 
contains contr ibut ions  from combinat ion N-H  stretching 
and amide bands and f rom second-overtone carbonyl  
s t retching bands.  Absorptions in these regions are ob- 
served in NIR  spectra  of proteins 7,1s and amino acids29 
More  detai led assignments of absorbances in the region 
1900 to 2100 nm are made  in the following paper  (part  
II). 

The  NIR spect rum of the  soft-segment  model  (Fig. 
4A) is dominated by methylene stretching overtone bands. 
The  absorbances in the region of 1198 nm are second- 
over tone methylene  s tretching bands,  and the absor- 
bances at  1746 nm are f irst-overtone methylene  stretch-  
ing bands.  Similar absorbances are observed in spectra  
of e thylene-propylene  rubbers  1~ and of aliphatic hydro-  
carbons. 7,~° Note  tha t  these absorbances are not  highly 
over lapped with absorbances from aromatic  C-H groups 
in the hard  segment  (Fig. 3). As a result, accurate de- 
te rminat ions  of hard-  and sof t -segment  concentrat ions 
are possible. 

C O N C L U S I O N S  

This  analysis has shown tha t  rapid composit ion de- 
terminat ions  of bulk P E U U  polymers can be made with 
the use of  NIR diffuse reflectance spectroscopy. The  
me thod  of CLS provided accurate calibrations of NIR  
spectra  to hard-segment  and sof t -segment  fractions in 
the polymers. The  observed calibration errors were caused 
by nonrepresenta t ive  NIR  sampling of the  polymers.  I t  
is also possible tha t  the presence of side products  in the 
polymers cont r ibuted  to the calibrat ion errors. NIR ab- 
sorbances of specific groups in the polymers  were deter-  
mined from NIR spectra  of model  compounds.  
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