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Human Recombinant Granulocyte-Macrophage Colony Stimulating Factor and
Interleukin 3 Have Overlapping but Distinct Hematopoietic Activities

Stephen G. Emerson,* Yu-Chung Yang,* Steven C. Clark,* and Michael W. Long®
Departments of *Internal Medicine and SPediatrics, University of Michigan Medical Center, Ann Arbor, Michigan 48109;

and *Genetics Institute, Cambridge, Massachusetts 02140

Abstract

The hematopoietic stimulatory activities of human recombi-
nant IL-3 and granulocyte-macrophage colony stimulating fac-
tor (GM-CSF) were directly compared using highly enriched
human bone marrow progenitor target cells. IL-3 supported a
larger number of erythroid and megakaryocytic progenitor
cells than did GM-CSF, while GM-CSF supported more my-
eloid progenitors. IL-3 directly stimulated the division and mi-
gration of primitive erythroid burst forming units, while GM-
CSF merely sustained their net survival in culture without
promoting division and expansion. IL-3 promoted the forma-
tion of larger numbers of multipotential granulocyte-ery-
throid-macrophage-megakaryocyte colony forming unit—de-
rived colonies than did GM-CSF. These data indicate that
human IL-3 and GM-CSF have overlapping but distinct hema-
topoietic activities, and suggest a potential role for the clinical
application of combined IL-3/GM-CSF therapy.

Introduction

Hematopoietic differentiation is a complex process in which
self-renewing pluripotent stem cells divide and evolve into
committed progenitor cells, recognizable precursor cells, and
finally mature blood cells. Although the factors that regulate
the earliest stages of stem cell differentiation are not well de-
scribed, a family of proteins, termed hematopoietic growth
factors (HGFs),' stimulates the division and differentiation of
committed progenitor cells. This family includes two classes of
molecules. The first class stimulates committed progenitor
cells restricted to single lineages, and includes macrophage col-
ony stimulating factor (1), granulocyte colony stimulating fac-
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1. Abbreviations used in this paper: BICM, bladder carcinoma 5637
conditional medium; BFU-E, erythroid burst-forming unit; CFU-
GEMM, granulocyte-erythroid-macrophage-megakaryocyte colony
forming unit; CFU-GM, granulocyte-macrophage colony forming
unit; CFU-Mk, megakaryocyte colony forming unit; Epo, erythropoie-
tin; GM-CSF, human recombinant granulocyte-macrophage colony
stimulating factor; HGF, hematopoietic growth factor; IMDM,
Iscove’s modified Dulbecco’s medium; MoCM, Mo cell line condi-
tional medium.
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tor (2), erythropoietin (Epo) (3), and perhaps thrombopoietin
(4). The second class of HGFs affects progenitors of several
lineages as well as more primitive multipotential progenitor
cells.

The first multipotent HGF isolated was granulocyte-mac-
rophage colony stimulating factor (GM-CSF) (5). Picomolar
quantitives of GM-CSF provide colony stimulating activities
to granulocyte progenitors, macrophage progenitors, bipotent
granulocyte-macrophage progenitors, erythroid burst forming
units (BFU-E), and multipotential myeloid progenitors. GM-
CSF is active on progenitor cells from bone marrow, periph-
eral blood, and fetal liver (6-8).

Recently a cDNA has been cloned from the Gibbon leuke-
mic cell line MLA-144 which encodes a second multipotent
HGF, IL-3 (9). The human genome contains a homologous
gene, whose predicted protein product differs from the gibbon
IL-3 protein by only nine amino acids. The gibbon protein is
active on human bone marrow progenitor cells (9), while the
activities of purified human IL-3 have yet to be defined.

In this study we examined the effects of human recombi-
nant proteins IL-3 and GM-CSF on highly enriched human
progenitor cells. We show that while both hormones have
multilineage stimulating activities, their target cell specificities
are distinguishable. IL-3 supports the differentiation of a larger
number of erythroid and megakarocytic progenitor cells than
does GM-CSF, while GM-CSF supports more myeloid pro-
genitors. IL-3 promotes BFU-E division, while GM-CSF ap-
pears to support BFU-E survival with little proliferation. In
addition, IL-3 promotes the formation of greater numbers of
multipotential granulocyte-erythroid-macrophage-mega-
karyocyte colony forming unit (CFU-GEMM)—derived colo-
nies than does GM-CSF. These data support a model of differ-
entiation in which the acquisition and loss of growth factor
responsiveness and lineage specific restriction are parallel but
asynchronous programs. In addition these data suggest a po-
tential role for combined GM-CSF/IL-3 therapy in selected
clinical settings.

Methods

Bone marrow samples. Normal human bone marrow was obtained
following informed consent by aspiration into preservative-free hepa-
rin from adult volunteers, under a protocol approved by the University
of Michigan Human Investigation Committee.

Cell separation procedures. The marrow suspensions were centri-
fuged over Ficoll-Hypaque (1.077 g/cm?®) (Pharmacia Finie Chemicals,
Piscataway, NJ) at 400 g for 40 min at 20°C, the interface mononu-
clear cells collected, washed three times, and resuspended in Iscove’s
modified Dulbecco’s medium (IMDM) containing 20% FCS. The cells
were incubated in 100-mm tissue culture dishes (Lux, Miles Laborato-
ries, Elkhart, IN) overnight at 37°C and the nonadherent cells removed
with two gentle washes and centrifuged.

Progenitor cell enrichment by panning. Nonadherent cells were
incubated with saturating quantities of a panel of eight murine mono-



clonal antibodies for 1 h at 4°C. The antibodies, their sources, specific-
ities, and the quantities employed per 10° total nucleated cells were as
follows: anti-Leu-1 (Becton-Dickinson & Co., Oxnard, CA), T cells,
100 ng; anti-Leu-5b (Becton-Dickinson & Co.), T cells and NK cells,
40 ng; anti-Leu-10 (Becton-Dickinson & Co.), HLA-DQ, 400 ng; anti-
Leu-M1 (Becton-Dickinson & Co.), mature and precursor myeloid
and monocytic cells, 200 ng; anti-Leu-12 (Becton-Dickinson & Co.), B
cells, 200 ng; anti-CALLA (Becton-Dickinson & Co.), pre-B cells, 300
ng; TG-1 (courtesy of Peter Beverley [10]), granulocytes, myeloid pre-
cursors, some monocytes, 5 ul hybridoma supernatant; 4F7 (Laurence
Livermore Laboratories, Livermore, CA) glycophorin A, 1 ul hybrid-
oma supernatant. In some experiments 200 ng of Leu-18 (anti My-11)
(Becton-Dickinson & Co.), which detects granulocyte-macrophage col-
ony forming units (CFU-GM) and myeloid precursors, was also in-
cluded. Antibody-coated cells were washed three times to remove ex-
cess antibody before panning. Separation of antibody-negative cells
(panning) was performed as previously described (6). Anti-Ig plates
were prepared by incubating 100 X 15-mm plastic culture plates (Lux)
with 5 ml affinity purified rabbit anti-mouse Ig (100 ug/ml) in PBS
overnight at 4°C and washing with cold PBS before use. Coating the
plates with <250 ug antibody resulted in suboptimal cell binding.
Murine antibody-labeled, washed cells were suspended in 5 ml PBS at
1-5 X 107 cells/ml with 5% heat-inactivated FCS and incubated over
the rabbit anti-mouse Ig coated plates for 1 h at 4°C, after which time
the nonadherent, antibody negative cells were recovered by gently
pipetting without disrupting the antibody-coated cells bound to the
plates. Incubation times of < 40 min were ineffective at allowing max-
imal cell binding to the plates, while cells could be allowed to adhere to
the plates for at least 2 h without decreased binding or subsequent
plating efficiency. Panning removed 90-95% of bone marrow cells but
removed only 0-15% of the progenitor cells. Progenitor cells were
thereby concentrated 9-20-fold by the panning procedure.

Culture conditions. For most experiments, the bone marrow cells
were cultured in 0.9% methylcellulose in IMDM containing 30% FCS
(HyClone Laboratories, Logan, UT), 1% BSA (Sigma Chemical Co.,
St. Louis, MO), 10~* M B-mercaptoethanol. The lot of FCS used was
chosen by comparison among six lots: the lot that supported maximal
colony growth in the presence of Epo + Mo cell line conditional
medium (MoCM), but none without Epo + MoCM, was selected.
GM-CSF, IL-3, or MoCM was added to the cultures at their initiation
(day 0), and erythropoietin was added on day 3. For liquid culture
experiments, bone marrow cells were initially incubated in IMDM
plus 20% FCS, with or without GM-CSF or IL-3, for 1-7 d before
plating in methylcellulose. Methylcellulose cultures were routinely es-
tablished at 5,000-10,000 cells/ml in 0.33-ml triplicates in 24-well
tissue culture plates (Costar, Cambridge, MA) and incubated at 37°C
in a high humidity, 5% CO, incubator.

Megakaryocyte cultures were performed as described for murine
cells (11, 12), except that 30% human plasma replaced the FCS. Briefly,
cells were cultured in supplemented McCoy’s 5A media containing
30% heparinized human plasma and 0.25% bactoagar (Difco, Detroit,
MI). Bone marrow cells were cocultivated with conditioned medium
from a human bla_ldder carcinoma cell line (5637), IL-3, or GM-CSF.
Incubation conditions were identical to those for methylcellulose cul-
tures. Megakaryocyte colonies were defined as greater than three cells/
colony and were identified by their morphological characteristics as
described elsewhere (13-15).

BFU-E- and CFU-GM-derived colonies were counted on day 14,
and megakaryocyte colony forming unit (CFU-Mk)- and CFU-
GEMM-—derived colonies were counted on day 17. CFU-GEMM-de-
rived colonies were clearly distinguished from overlapping erythroid
and myeloid colonies by tracking the development of individual colo-
nies over the 17-d culture. In addition, the frequency of CFU-
GEMM-—derived colonies was unchanged in cell cultures plated over a
range from 1,000 to 20,000 cells per ml. For one series of experiments
total colonies and cell numbers per colony were counted on day 3, and
the numbers of subcolonies per BFU-E—derived colonies were counted
on day 14.

Human Granulocyte-Macrophage Colony Stimulating Factor and Interleukin 3

Hematopoietic growth factors. Purified recombinant erythropoie-
tin (AmGen, Thousand Oaks, CA) was employed at 2 U per ml. Puri-
fied recombinant human GM-CSF (5) was generously provided by the
Genetics Institute Pilot Development Laboratory, and purified recom-
binant human IL-3 (9) was the generous gift of Dr. K. Turner and Dr.
R. Kaufman, Genetics Institute, Cambridge, MA. Both of these he-
matopoietins were produced from engineered Chinese hamster ovary
cells and had specific activities of 2-4 X 105 CML U/mg (9). MoCM
was prepared from the Mo T lymphoblast cell line (16). Human blad-
der carcinoma (5637) conditioned media (BICM) (17) was obtained
from carcinoma cells grown in RPMI 1640 containing 0.75% (wt/vol)
glutamine (100X, Gibco Laboratories, Grand Island, NY) and 2%
FCS. Bladder carcinoma cells were cultured in 75-cm? flasks on Cyto-
dex-3 beads (Pharmacia Fine Chemicals), grown to confluence (on
beads), and media conditioned for 3-4 d. After centrifugation, the
B1CM was concentrated fivefold by ultrafiltration (YM-10 membrane,
Amicon Corp., Danvers, MA), filter sterilized, and stored at —80°C.

Results

Responsiveness of human hematopoietic progenitor cells to
IL-3. To accurately assess the effects of recombinant human
IL-3, we measured its activity on bone marrow cells that had
been physically and immunologically depleted of all known
accessory cells producing HGFs (6). This adherence and pan-
ning procedure, which concentrates progenitor cells 10-30-
fold, yields target cells that are totally dependent on added
HGFs for their survival, division, and differentiation. The ad-
dition of increasing concentrations of IL-3 to methylcellulose
cultures containing these enriched progenitor cells resulted in
a dose-dependent induction of erythroid, myeloid, and mixed
erythroid-myeloid colonies. For each lineage, maximal pro-
genitor cell induction was seen at IL-3 concentrations of 2
ng/ml or higher (Fig. 1). This concentration was therefore used
in all subsequent experiments in assaying IL-3 effects.
Differential responsiveness of human progenitor cells to
IL-3 and GM-CSF. When assayed using enriched bone mar-
row progenitor cells, both recombinant human GM-CSF and
IL-3 supported erythroid, myeloid, and mixed erythroid-my-
eloid colonies. GM-CSF supported larger numbers of myeloid
colonies than did IL-3, though not as many as with 10%
MoCM (Table I). Both HGFs stimulate granulocyte, macro-
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Figure 1. Responsiveness of hematopoietic progenitor cells to IL-3.
Human bone marrow progenitor cells were enriched by panning as
described in Methods, and cultured in methylcellulose with Epo
added on day 3. BFU-E and CFU-GM-derived colonies were enu-
merated on day 14, and CFU-GEMM-derived colonies on day 17.
The data are means+SD from one of three similar experiments.
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Table 1. Progenitor-derived Hematopoietic Colonies Supported
by IL-3 and GM-CSF

Growth factor or supernatant BFU-E* CFU-GM* CFU-GEMM*
IL-3 (2 ng/ml) 1,250+250  3,100+£520 25065
GM-CSF (100 ng/ml) 300+75 4,200+850 150+50
MoCM (10%) 600+£123  6,000+1,040 200+35
IL-3 + GM-CSF 1,200+325  6,200+940 250+80

* Progenitor-derived colonies per 10° total nucleated cells cultured.
The data presented are means+SD from one of five similar experi-
ments.

phage, and mixed granulocyte-macrophage colony formation.
The cocultivation of GM-CSF and IL-3 gave no more myeloid
colonies than did GM-CSF alone.

In contrast to GM-CSF, IL-3 has a more pronounced effect
on early erythroid progenitor cells. In each of six experiments,
IL-3 (2 ng/ml) consistently yielded 50-400% more erythroid
bursts than did cultures containing as much as 300 ng/ml
GM-CSF. Additionally, IL-3 supports 20-50% more BFU-E-
derived colonies than does 10% MoCM. As with granulocyte
progenitor cells, the combination of GM-CSF and IL-3 was
not additive for erythroid colony formation. Cultures contain-
ing IL-3 always yielded 20-100% more CFU-GEMM-derived
colonies than did cultures containing GM-CSF.

IL-3 induces the division and migration of primitive
BFU-E. The erythroid colonies induced by IL-3 appeared to
be somewhat larger and more multicentric than GM-CSF- or
MoCM-induced colonies. To further explore this difference,
individual erythroid colonies induced by GM-CSF or IL-3
were examined under a magnification of 300 using Hoffman
contrast optics, and the number of subcolonies constituting
each burst was measured. In cultures containing GM-CSF,
bursts ranged in composition from single unicentric colonies
to multicentric colonies with 35 subcolonies. Most of the colo-
nies contained subcolonies, with mean = 10.4 subcolonies and
median = 9 subcolonies. The range of erythroid bursts induced
by IL-3 also included small unicentric colonies, but included
larger and more numerous multicentric colonies than did cul-
tures containing GM-CSF (mean = 15.4 subcolonies, median
= 14) (Fig. 2 A).

To focus on the proliferative effects of IL-3 and GM-CSF
on the earliest progeny of erythroid progenitor cells, BFU-E-
derived clusters were examined after 3 d of culture. BFU-E
were enriched using an antibody cocktail containing anti-Leu
18 (18). This antibody bound to most CFU-GM, CFU-G, and
CFU-M as well as myeloid precursors, so that the great major-
ity of colonies that developed were erythroid. Enriched pro-
genitor cells were plated in methylcellulose in the presence of
IL-3 or GM-CSF. Individual clusters of cells were identified
and the numbers of cells per cluster enumerated on day 3 of
the cultures. Clusters induced by GM-CSF were generally
small, containing two to four cells. IL-3 induced not only simi-
lar small clusters, but dlso larger clusters containing six or
more cells (Fig. 2 B). These data suggested that IL-3 exerted a
stronger proliferative effect on BFU-E than did GM-CSF.

The effects of IL-3 and GM-CSF on BFU-E division were
directly compared by incubation of these factors in liquid cul-
tures with enriched bone marrow progenitor cells before
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Figure 2. IL-3 promotes BFU-E division and migration. (4) Subco-
lonies per colony. Mature (d14) erythroid colonies were examined
under 300X Hoffman contrast optics, and the numbers of subco-
lonies per colony were enumerated. 123 total GM-CSF-supported
erythroid colonies and 144 IL-3-supported colonies were examined.
(B) Day 3 cluster size. Erythroid progenitor cells were specifically
enriched by adding Leu 18 to the monoclonal antibody depletion
cocktail, and the number of undifferentiated blast cells per cell clus-
ter enumerated after 3 d of methylcellulose culture. 108 total GM-
CSF-supported and 125 IL-3-supported clusters were analyzed, of
which 96% subsequently were found to be erythroid bursts, 1% my-
eloid colonies, and 3% multilineage (CFU-GEMM-derived) colonies.

short-term colony assays. Under these conditions, the induc-
tion of BFU-E self-renewal or commitment was assayed by the
appearance of more BFU-E-derived colonies in the subse-
quent cultures. Incubation of enriched progenitor cells in the
presence of GM-CSF sustained their survival for 72-96 h, al-
lowing similar numbers of bursts to develop as observed in
cultures that were initiated before liquid culture. However,
there was no increase in BFU-E by preincubation with GM-
CSF. In contrast, preincubation in IL-3 led to increasing num-
bers of bursts in the subsequent semisolid colony assays. Lig-
uid culture without GM-CSF or IL-3 led to the loss of all
subsequently clonable BFU-E (Fig. 3). This greater effect of
IL-3 versus GM-CSF on BFU-E proliferation in suspension
was observed over a wide range of concentrations of both re-
combinant hormones (Fig. 4), and was seen throughout the
time course of the culture at all concentrations. Thus, while
GM-CSF appeared to maintain numbers of BFU-E without
inducing division, IL-3 increased BFU-E either by actively
inducing self-renewal and expansion or by inducing differen-
tiation from multilineage progenitors to BFU-E in liquid cul-
ture.

Stimulation of megakaryocyte colony formation with re-
combinant HGFs. Both IL-3 and GM-CSF supported the de-
velopment of megakaryocyte colonies. Colony development
was limited with colonies being comprised of 3-50 relatively
immature cells. In each experiment IL-3 supported higher
numbers of megakaryocyte colonies than did GM-CSF (Table
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Figure 3. IL-3 promotes BFU-E pool expansion in liquid culture: ki-
netics. Enriched bone marrow progenitor cells were cultured in lig-
uid suspension in the presence of 1 ng/ml IL-3, 100 ng/ml GM-CSF,
or no added HGF for up to 7 d in liquid culture. Aliquots were re-
moved, placed into methylcellulose cultures for 14 d, and erythroid
bursts enumerated. The data shown display the number of erythroid
bursts per 10° cells originally placed into liquid culture, and are from
one of three similar experiments.

II). Extended dose response experiments confirmed that this
increased megakaryocytopoietic effect of IL-3 was not due to
increased factor avidity alone, but also to a larger number of
susceptible CFU-Mk. The megakaryocytopoietic effect of
GM-CSF was maximal at 100-300 ng/ml, and was actually
substantially lower at 500 ng/ml (Fig. 5). No additive or syn-
ergistic effects between these two factors were observed in five
experiments over ranges of GM-CSF concentrations from 1 to
300 mg/ml and IL-3 concentration from 0.1 to 10 ng/ml.
Maximal megakaryocyte colony formation was always seen
with IL-3, and the simultaneous inclusion of GM-CSF and
IL-3 never stimulated the proliferation of more megakaryo-
cytic colonies than did the same concentration of IL-3 alone
(Fig. 6).

Discussion

Both purified GM-CSF and IL-3 have distinct multilineage
colony stimulating activities, supporting the survival and pro-
liferation of primitive BFU-E, CFU-GM, CFU-Mk, and mul-
tipotential CFU-GEMM. While GM-CSF supports greater
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Figure 4. IL-3 promotes BFU-E pool expansion in liquid culture:
dose response. Enriched bone marrow progenitors were cultured in
suspension for 3 d before methylcellulose cultures, and BFU-E were
enumerated 14 d later, as in Fig. 3. The data shown are means+SD
of the number of erythroid bursts as a percentage of control cultures
plated in methylcellulose before suspension, and are from one of
four similar experiments.
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Table II. Human Megakaryocyte Progenitor Cell
Responsiveness to IL-3

Donor (Exp. No.)

CFU-Mk CFU-GM
Growth factor or
supernatant . 22 3 X+SD 1. 2 3 X=+SD
1. BICM 40 18 18 25+13* 92 172 138 134+40*
2. IL-3
100 pg/ml 0 3 0 1x2 93 29 72 65%32
1,000 pg/ml 21 8 0 1011 83 61 66 70x11
2,000 pg/ml 35 37 11 2815 43 75 35 S51%21
3. GM-CSF(300ng/ml) 20 3 5 949 100 53 72 75%23

* CFU-Mk- and CFU-GM-—derived colonies per 10° total nucleated cells cul-
tured. Megakaryocyte progenitor cells were cultured as in Methods. Results for
each donor are means of three to five replicate cultures.

numbers of myeloid colonies than does IL-3, IL-3 has a
stronger proliferative effect on BFU-E and CFU-Mk, as well as
multilineage CFU-GEMM. The target cells for these studies
were enriched progenitor cells from which all known accessing
cells had been depleted. Cultures failed to generate colonies
when no added growth factor was added, suggesting that no
such activities were present in the cultures. Nevertheless, it is
indeed possible that some of the effects of GM-CSF and IL-3
were indirect effects mediated through intermediary cells or in
concert with costimulating hormones.

The greater burst-promoting activity of IL-3 is apparent
both in the number of bursts generated and in the size and
composition of the bursts. IL-3 stimulated the generation of
larger multicentric bursts than observed with GM-CSF. Close
examination of erythroid colony formation during the first 3 d
demonstrated that IL-3 exerted a stronger early proliferative
effect on BFU-E than does GM-CSF.

The greater proliferative effect of IL-3 was further demon-
strated in the liquid culture incubations. During 3 d of liquid
culture, IL-3 increased the frequency of BFU-E, while GM-
CSF merely sustained input numbers of these cells. These data
suggest that IL-3 either stimulates self-renewal of BFU-E or,
alternatively, drives erythroid commitment from antecedent
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Figure 5. Comparative responsiveness of megakaryocyte progenitor
cells to IL-3 and GM-CSF. Progenitor cells cultured as in Methods.
Results are mean+SD of three to five replicate cultures (per concen-
tration) of parallel cell cultures on a single donor, and are taken from
one of five similar experiments.
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plurimultipotent cells (CFU-GEMM). In contrast, the ability
of GM-CSF to stimulate BFU-E self-renewal is more limited,
rather supporting the survival of BFU-E until they become
erythropoietin responsive.

Our observations on the direct proliferative effects of IL-3
and the ability of GM-CSF to support the survival of primitive
BFU-E extend and confirm similar results by Metcalf et al.
using the murine system, which showed that partially purified
murine GM-CSF and crude spleen cell-conditioned medium
synergized to support BFU-E differentiation (19, 20). In par-
ticular, partially purified GM-CSF appeared to support the
survival of clonable BFU-E for 48 h, at which time spleen
cell-conditioned medium addition stimulated the subsequent
development of erythroid bursts (20). Recent work with puri-
fied recombinant human GM-CSF and Epo has confirmed
that this synergism actually requires GM-CSF doses one-tenth
as great as for myelopoietic effects and is directly attributable
to GM-CSF (6, 7).

Both IL-3 and GM-CSF are capable of stimulating mega-
karyocyte colony formation. As with the erythroid (BFU-E)
and multipotential (CFU-GEMM) progenitor cells, greater
numbers of megakaryocyte progenitor cells appear to be re-
sponsive to IL-3 than to GM-CSF. This observation implies
that either some IL-3-responsive CFU-Mk are not GM-CSF
responsive or, alternatively, distinct subpopulations of cells
respond to each HGF. While the data do not allow clear dis-
tinction between these alternatives, the lack of an additive
effect between IL-3 and GM-CSF coincubation argues in favor
of a subpopulation of IL-3-responsive CFU-Mk being GM-
CSF responsive. In contrast to these observations, Robinson et
al. have shown an additive effect with murine IL-3 and GM-
CSF on megakaryocyte colony development (21). Such differ-
ences may be species specific.

One interesting conclusion from our data is that a progeni-
tor cell’s susceptibility to growth factor responsiveness is not a
strict property of restricted lineage potential. Some, but not all,
restricted erythroid or megakaryocytic progenitor cells are
supported by GM-CSF, as are some but not all multipotential
CFU-GEMM. Lineage restriction and growth factor respon-
siveness are acquired more or less in parallel, and not by
strictly sequenced or synchronized developmental switches.

From a clinical perspective, these data suggest that GM-
CSF and IL-3 might be expected to have overlapping in vivo
activities. While each hormone would have effects on all my-

1286 S. G. Emerson, Y.-C. Yang, S. C. Clark, and M. W. Long

eloid lineages, GM-CSF would be expected to have a stronger
neutrophilic effect whereas IL-3 might have a stronger throm-
bopoietic effect. In clinical scenarios such as bone marrow
transplantation and chemotherapy-induced nadirs, combined
therapy with GM-CSF and IL-3 might be required for optimal
amelioration of neutrophil and platelet deficiency.

In summary, these data indicate that human recombinant
GM-CSF and IL-3 have overlapping but distinct spectra of
activities. These data further suggest that hematopoietic dif-
ferentiation progresses through two parallel and loosely syn-
chronized programs: the acquisition and loss of HGF respon-
siveness, and restriction to lineage commitment. Future clini-
cal applications might take advantage of distinct activities to
achieve optimal benefits by combined treatment with both
hormones.
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