
APROXIMATE ALGORITHMS FOR NONLINEAR FILTERING OF CHAOS*
ALGORITMOS DE APROXIMACIÓN PARA FILTRADO NO LINEAL DE CAOS

vALEri KontorovicH1 

zinAidA LovtcHiKovA2

rEcibido: MAyo 2009
AProbAdo: JuLio 2009

AbstrAct

The paper is dedicated to the description of two approximate methods of 
non-linear filtering algorithms for signals of Lorenz, Chua and Rössler 
attractors to provide real time filtering solutions for scenarios with low 
Signal Noise Ratios (SNR). For those cases the method of the Global (In-
tegral) Approximation of the a-posteriori Probability Density Function 
(PDF) is considered. Some asymptotical solutions are presented as well.
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Resumen
Este documento está dedicado a la descripción 
de dos métodos de aproximación de algoritmos 
de filtrado no lineales para señales de Lorentz y 
atractores Chua y Rössler, ofreciendo soluciones 
de filtrado en tiempo real para escenarios con 
bajas tasas de señal de ruido (RSR). Para esos 
casos, se considera el método de la Aproxima-
ción Global (Integral) de la a posteriori función 
de densidad de probabilidad (FDP). También se 
presentan algunas soluciones asintóticas.
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1. INTROduCTION 

During the last decade, chaotic signals (chaotic 
models) were widely applied for different purpo-
ses in the electrical engineering field. Meanwhi-
le the statistical descriptions of chaos haven’t 
been widely developed so far. For this reason in 
[4], authors proposed the so-called “degenerated 
cumulant equations” approach in order to offer a 
rather simple and adequate method of statisti-
cal analysis for chaos, suitable for applications.
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Actually, chaos can be mathematically represen-
ted in a way:

     

where                                            is a determi-
nistic vector function of     with the components            
                          

Equation (1) can be transformed in the stochastic 
form: Stochastic Differential Equation or SDE [4]:

 

where         is a vector of “weak” white noise with 
the matrix of intensities                    with its ele-
ments tending to zero. Concrete type of the vec-
tor function f(x) in (1) and (2) describes different 
nonlinear dissipative systems (strange attrac-
tors), which generates almost randow chaotic 
signals [1]. In the following are considered only 
widely used attractors so as: Lorenz, Chua and 
Rössler [4]. 

It is worth to mention, that the SDE represen-
tation of chaos is rather opportunistic: in our 
case it allows to apply the well developed and 
well known theory of the nonlinear filtering for 
Markov processes [9], [6].

One can find in [9], [6], that if the received signal is: 

 

where y(t) is a vector of the received signal, s(t,x) 
is vector function of the desired signal, which de-
pends to the Markov process x(t) (message), and 
n0(t) is a vector of the additive white noises with 
the intensity matrix N0 (all with dimension “m”). 

Then the a-posteriori PDF WPS(x,t) of the process 
x(t) follows the so called integral-differential 
Stratonovich-Kushner Equation (SKE), [6], [9]:

where 

  (x,t) is a “probabilistic flow” with the compo-
nents:

T is the symbol of transposition.

It is well known, that with the exception of some 
few special cases [2], SKE doesn’t provide with 
exact solutions. Though, the majority of the 
nonlinear filtering algorithms are approximate 
ones. Mainly those approximate algorithms are 
considered as extended Kalman filtering (EKF) 
algorithms or their modifications [2], [8]; as a 
matter of fact EKF and its modifications are rea-
lly applicable only for high Signal Noise Ratios 
(SNR) scenarios.

In the following will be considered the low SNR 
cases for nonlinear real-time filtering of chaos, 
which requires some special attempts. First of 
all, hereafter is proposed in case of low SNR to 
apply for WPS(x, t) approximation the method of 
Global or Integral Approximation. Second, it was 
proposed to reduce the dimension of SDE (2) by 
its statistically equivalent one-dimensional SDE 
(SDE-1). The last ones can be synthesized with 
the help of methodology of [7]. Third, for SDE-1 
can be utilized the asymptotic algorithms in the 
low SNR sense. 

(1)

(4)

(2)

(3)
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In this paper we’ll assume that the subject of the 
filtering is one (for example, the first) compo-
nent of each strange attractor. Keeping in mind 
that attractors of interest have n = 3 in (1), (2), 
this first component is called as observable one. 
Though, one has to find the statistically equiva-
lent SDE-1 for the three-dimensional SDE (2), 
where the observable component has the same 
statistical properties as SDE-1. 

In this way in the following is done a reduction 
of dimensionality of the SDE (2). So, the received 
signal is:

where  x1(t) is the observable component of at-
tractor (desired signal); n0(t) is an additive whi-
te noise. To obtain statistical characterization 
of the Lorenz, Chua and Rössler attractors, one 
have to refer to [4] and to the Table 1. 

The paper is organized in the following way. At 
section 2 one can find a brief description of the 
Integral or Global Approximation principles. 
Section 3 is completely dedicated to the appli-
cation of Integral (Global) Approximation to 
WPS(x,t). Here also are presented asymptotical 
algorithms for case of low SNR. Conclusions are 
presented in Section 4.

2.   INTEGRAL OR GLObAL APPROXIMATION FOR     
      WPS(x,t). 

The main challenge of the Integral (Global) Approxi-
mation is to avoid the “local” estimations of maxi-
mums of WPS(x,t) of the filtered process x (t).The lat-
ter is typical for EKF algorithms which are applying 
mainly Gaussian approximations of WPS(x,t), etc. In 
contrary to it, Integral or Global approach is for suc-
cessful “complete” approximation of WPS(x,t) inclu-
ding its “tails”. 

Let us assume, that WPS(x,t) can be represented 
in the way:

Where       is an unknown vector of approxima-
tion parameters.

Then, applying the well know Kullback measure 
as an approximation criteria, one can obtain the 
following equation for the unknown vector :

where ; 

The details of this development for (7) can be 
found at [3], [10]. Let us represent (6) in the fo-
llowing way:
    

Where  (t) is a vector of sufficient statistics for 
WPS(.); {P (x)} are the set of orthogonal multidi-
mensional functions: Hermite, Laguerre, etc.; C 
is a normalization constant. 

One can presume from (7) and (8), that the filte-
ring algorithm for n = 3 might be rather complex 
and not adequate for the real time solutions. In 
the next section will be presented an approach 
how to reduce those complexities.

(5)

(6)

(7)

(8)
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3.   INTEGRAL APPROXIMATION FOR WPS(x,t). 

Let us consider Lorenz, Chua and Rössler attrac-
tors. As it follows from [4], and can be seen from 
the Table 1, marginal PDF’s of the components 
for Lorenz attractor are practically Gaussian, or 
it’s orthogonal representation, [7] has a Gaus-

sian kernel PDF; for Rössler attractor orthogo-
nal representation with the Gaussian kernel 
PDF is also valid for “x” and “y” components of 
the attractor. The opposite situation takes place 
for Chua attractor (Table 1): it can be seen that 
this attractor represents a clearly non-Gaussian 
case.

Table 1. Strange Attractors and its Properties.
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Next, when SNR is low, then the influence of the 
second summand in SKE (4) at WPS(x,t) is low as 
well, and for the first approximation it is possible 
to assume that the marginal a-posteriori PDF’s 
are close to their a-priori shapes. Therefore, it is 
feasible that EKF algorithms will be rather ade-
quate for both high and low SNR scenarios for 
Lorenz and Rössler attractors, but not for Chua 
attractor. 

Now, let us consider Chua attractor with the In-
tegral (Global) Approximation for the a-posteriori 
PDF, assuming (Table 1) that first component has 
a symmetric WPS(x1,t). Supposing that {i(xi) }k are 
polynomials of Hermite and k = 4, from (8) it 
follows:

With the help of definition of the Hermite poly-
nomials, [7] one can get for (9):

where 

As {i(t)}4 are sufficient statistics for WPS (x1 ,t) 
and invoking the symmetry and normalization 
conditions for a-posteriori PDF, one can get:

It is worth to mention that for the case of low SNR 
(11) coincides with the a-priori PDF WPR (x1 ,t) for 
Chua attractor (Table 1). Now, from (7) it follows: 

    

where i = 2, 4.
Statistically equivalent SDE-1 with PDF (11) 
can be found from [7] (chapter 7) with 

Then, for i = 2, one get ( → 0) a following equation:

where 

       

m= 1,2,…; D(.) is function of parabolic cylinder

Analogically for i = 4 ( → 0), it yields:
       
    

Assuming that in (13) ÷ (15) y2 (t) tends to its sta-
tionary value y2 (t) while t →    , and substituting 
into (13) ÷ (15), one can get nonlinear algebraic 
equations for stationary parameters 2,4, which 
are obviously related to the variance and fourth 
moment (cumulant) of WPS (x1).

(9)

(10)

(12)

(13)

(14)

(15)
(11)
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Therefore, 2 can be used as a measure of the 
filtering accuracy, being calculated with influen-
ce of the fourth a-posteriori moment (cumulant). 
The similar approach was already used at [5].

The asymptotical filtering algorithm for x1  (t) = x(t) 
of Chua attractor in discrete time can be represen-
ted using [9], [8]:

Where T0 is a sampling interval,      is a-poste-
riori variance.

This a-posteriori variance can be calculated 
through  2 and 4  (see above), but also might be 
found from the following equation:

  

If the SNR is low and n0(t) is a Gaussian additive 
white noise, then applying Taylor series expan-
sion for the InWPS(.), with this asymptotic one 
can get:
       

In stationary conditions is:
       

It can be seen from (19) that accuracy of the fil-
tering depends on absolute value of   . 

This interesting issue follows from the dependen-
ce of      on the derivative of the nonlinear drift 

      . Moreover, as it was mentioned before, the 
value of   

     
can be additionally reduced by appli-

cation of 4. It was shown at [5] that if SNR is 
less than one, then 

   
can be reduced by two ti-

mes if applying the fourth cumulant.

4.   CONCLuSIONS 

In this paper were presented two different 
approaches for the approximate nonlinear filte-
ring for the low SNR scenarios: Integral (Global) 
Approximations for the a-posteriori PDF and as-
ymptotic approach. It was shown that finally it 
is reasonable to aggregate both of them in order 
to improve the accuracy of filtering.
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