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Phase transitions of the generalized contact process with two absorbing states

Man Young Lee and Thomas Vojta
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA

�Received 22 March 2010; published 21 June 2010�

We investigate the generalized contact process with two absorbing states in one space dimension by means
of large-scale Monte Carlo simulations. Treating the creation rate of active sites between inactive domains as
an independent parameter leads to a rich phase diagram. In addition to the conventional active and inactive
phases we find a parameter region where the simple contact process is inactive, but an infinitesimal creation
rate at the boundary between inactive domains is sufficient to take the system into the active phase. Thus, the
generalized contact process has two different phase transition lines. The point separating them shares some
characteristics with a multicritical point. We also study in detail the critical behaviors of these transitions and
their universality.

DOI: 10.1103/PhysRevE.81.061128 PACS number�s�: 05.70.Ln, 64.60.Ht, 02.50.Ey

I. INTRODUCTION

Many systems in physics, chemistry, and biology are far
from thermal equilibrium, even if they are in time-
independent steady states. In recent years, continuous phase
transitions between different nonequilibrium steady states
have attracted lots of attention. Just as in equilibrium, these
transitions are characterized by large-scale fluctuations and
collective behavior over large distances and long times. Ex-
amples can be found, e.g., in surface growth, granular flow,
chemical reactions, population dynamics, and even in traffic
jams �1–7�.

Continuous nonequilibrium phase transitions can be di-
vided into different universality classes according to their
critical behavior, and considerable effort has been devoted to
categorizing the variety of known transitions. A well-studied
type of nonequilibrium phase transitions separates fluctuat-
ing �active� steady states from absorbing �inactive� states
where fluctuations stop completely. The generic universality
class for these so-called absorbing state transitions is directed
percolation �DP� �8�. More specifically, it was conjectured by
Janssen and Grassberger �9,10� that all absorbing state tran-
sitions with a scalar order parameter and short-range interac-
tions belong to this class as long as there are no extra sym-
metries or conservation laws. While nonequilibrium
transitions in the DP universality class are ubiquitous in both
theory and computer simulations, experimental verifications
were only found rather recently in ferrofluidic spikes �11�
and in the transition between two turbulent states in a liquid
crystal �12�.

Absorbing state transitions in universality classes differ-
ent from DP can occur in the presence of additional symme-
tries or conservation laws. Hinrichsen �13� introduced non-
equilibrium lattice models with n�2 absorbing states. In the
case of two symmetric absorbing states �n=2�, he found the
transition to be in a new universality class, the Z2-symmetric
directed percolation class �DP2�. If the symmetry between
the absorbing states is broken, the critical behavior reverts
back to DP. In one dimension, the DP2 universality class
coincides �4� with the parity-conserving PC class �14� which
is observed, e.g., in the branching-annihilating random walk
with an even number of offspring �BARWE� �15�.

In this paper, we revisit one of the stochastic lattice mod-
els introduced in Ref. �13�, the generalized contact process
with two absorbing states in one space dimension. Compared
to the simple contact process �16�, this model contains an
additional dynamical process, viz., the creation of active sites
at the boundary between domains of different inactive states.
By treating the rate for this process as an independent pa-
rameter we uncover a rich phase diagram with two different
types of phase transitions, separated by a special point that
shares many characteristics with a multicritical point. We
perform large-scale Monte Carlo simulations of this model to
study in detail the critical behavior of these transitions.

Our paper is organized as follows. We introduce the gen-
eralized contact process with several absorbing states in Sec.
II In Sec. III, we summarize the mean-field theory for this
system. Sec. IV is devoted to the results and interpretation of
our Monte-Carlo simulations. We conclude in Sec. V

II. GENERALIZED CONTACT PROCESS WITH SEVERAL
ABSORBING STATES

The contact process �16� is a paradigmatic model in the
DP universality class. It is defined on a d-dimensional hyper-
cubic lattice. Each lattice site r can be in one of two states,
namely, A, the active �infected� state or I, the inactive
�healthy� state. Over the course of the time evolution, active
sites can infect their nearest neighbors, or they can become
inactive spontaneously. More precisely, the contact process is
a continuous-time Markov process during which active sites
turn inactive at a rate �, while inactive sites become infected
at a rate �m / �2d� where m is the number of active nearest
neighbors. The healing rate � and the infection rate � are
external parameters whose ratio determines the behavior of
the system.

If ���, healing dominates over infection. All infected
sites will eventually become inactive, leaving the absorbing
state without any active sites the only steady state. Thus, the
system is in the inactive phase. In the opposite limit, ���,
the infection survives for infinite times, i.e., there is a steady
state with a nonzero density of active sites. This is the active
phase. The nonequilibrium phase transition between these
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two phases at a critical value of the ratio � /� is in the DP
universality class.

In 1997, Hinrichsen �13� introduced a generalization of
the contact process. Each lattice site can now be in one of
n+1 states, the active state A or one of the n different inac-
tive states Ik �k=1. . .n�. k is sometimes called the “color”
index. The dynamics of the generalized contact process is
defined via the following rates for transitions of pairs of
nearest-neighbor sites,

w�AA → AIk� = w�AA → IkA� = �̄/n , �1�

w�AIk → IkIk� = w�IkA → IkIk� = �k, �2�

w�AIk → AA� = w�IkA → AA� = � , �3�

w�IkIl → IkA� = w�IkIl → AIl� = � , �4�

with k , l=1. . .n and k� l. All other rates vanish. We are
mostly interested in the fully symmetric case, �k�� for all
k. For n=1 and �̄=�, the so defined generalized contact
process coincides with the simple contact process discussed
above. One of the rates �̄, �, �, and � can be set to unity
without loss of generality, thereby fixing the unit of time. We
choose �=1 in the following. Moreover, to keep the param-
eter space manageable, we focus on the case �̄=� in the
bulk of the paper. The changes for �̄�� will be briefly
discussed in Sec. V

The process �Eq. �4�� prevents inactive domains of differ-
ent color �different k� to stick together indefinitely. They can
separate, leaving active sites in between. Thus, this transition
allows the domain walls to move through space. It is impor-
tant to realize that without the process �Eq. �4��, i.e., for �
=0, the color of the inactive sites becomes unimportant, and
all Ik can be identified. Consequently, for �=0, the dynamics
of the generalized contact process reduces to that of the
simple contact process for all values of n.

Hinrichsen �13� studied the one-dimensional generalized
contact process by means of Monte Carlo simulations, focus-
ing on the case �=�=1. For n=2, he found a nonequilibrium
phase transition at a finite value of � which separates the
active and inactive phases. The critical behavior of this tran-
sition coincides with that of the PC universality class. For
n�3, he found the model to be always in the active phase.
The Monte Carlo simulations were later confirmed by means
of a non-Hermitian density-matrix renormalization group
study �17�.

Motivated by a seeming discrepancy between these re-
sults and simulations that we performed during our study of
absorbing state transitions on a percolating lattice �18�, we
revisit the one-dimensional generalized contact process with
two inactive states. In contrast to the earlier works we treat
the rate � of the process �Eq. �4�� as an independent param-
eter �rather than fixing it at �=�=1�.

III. MEAN-FIELD THEORY

To get a rough overview over the behavior of the gener-
alized contact process with two inactive states, we first per-

form a mean-field analysis. Denoting the probabilities for a
site to be in state A, I1, and I2 with PA, P1, and P2, respec-
tively, the mean-field equations read,

dPA/dt = �1 − ��PA − PA
2 + 2�P1P2, �5�

dP1/dt = �PA/2 − PAP1 − �P1P2, �6�

dP2/dt = �PA/2 − PAP2 − �P1P2. �7�

Let us begin by discussing the steady states which are given
by the fixed points of the mean-field equations. There are
two trivial, inactive fixed points P1=1 , PA= P2=0 and P2
=1 , PA= P1=0. They exist for all values of the parameters �
and � and correspond to the two absorbing states. In the case
of �=0, these fixed points are unstable for ��1 and stable
for ��1. In contrast, for ��0, they are always unstable.

The active fixed point is given by P1= P2 and fulfills the
equation

0 = �1 − ��PA − PA
2 + ��1 − PA�2/2. �8�

For �=0, this equation reduces to the well-known mean-field
equation of the simple contact process, 0= �1−��PA− PA

2

with the solution PA=1−� for ��1. Thus, for �=0, the
nonequilibrium phase transition of the generalized contact
process occurs at �=�c

cp=1. This means, it coincides with
the transition of the simple contact process, in agreement
with the general arguments given in Sec. II In the general
case, ��0, the steady state density of active sites, PA, is
given by the positive solution of

PA =
1

2 − �
�1 − � − � � ��2 − 2� + 1 + 2��� . �9�

We are particularly interested in the behavior of PA for small
�. As long as ���c

cp=1 �i.e., in the active phase of the
simple contact process�, a small, nonzero � only provides a
subleading correction to PA. At �=�c

cp=1, the density of
active sites vanishes as PA��� with �→0. Finally, for �
��c

cp=1, the density of active sites vanishes as PA�� / ��
−1�.

We thus conclude that within mean-field theory, the gen-
eralized contact process with two inactive states is in the
active phase for any nonzero �. This agrees with older mean-
field results but disagrees with more sophisticated methods
which predict a nonequilibrium transition at a finite value of
� �13,17�. The mean-field dynamics can be worked out in a
similar fashion. We find that the approach to the stationary
state is exponential in time anywhere in parameter space ex-
cept for the critical point of the simple contact process at
�=1, �=0. However, it is known that mean-field theory
does not reflect the correct long-time dynamics of the gener-
alized contact process which is of power-law type �13�.
Therefore, we do not analyze the mean-field dynamics in
detail.

IV. MONTE CARLO SIMULATIONS

A. Method and overview

We now turn to the main part of the paper, viz., large-
scale Monte Carlo simulations of the one-dimensional gen-
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eralized contact process with two inactive states. We perform
two different types of calculations: �i� decay runs and �ii�
spreading runs. Decay runs start from a completely active
lattice; we monitor the time evolution of the density 	�t� of
active sites as well as the densities 	1�t� and 	2�t� of sites in
inactive states I1 and I2, respectively. Spreading simulations
start from a single active �seed� site embedded in a system of
sites in state I1. �From a domain-wall point of view, the
spreading runs are therefore in the even parity sector.� Here
we measure the survival probability Ps�t�, the number of
sites in the active cloud Ns�t� and the mean-square radius of
this cloud, R2�t�.

In each case, the simulation proceeds as a sequence of
events. In each event, a pair of nearest-neighbor sites is ran-
domly selected from the active region. For the spreading
simulations, the active region initially consists of the seed
site and its neighbors; it is updated in the course of the simu-
lation according to the actual size of the active cluster. For
the decay runs, the active region comprises the entire sample.
The selected pair than undergoes one of the possible transi-
tions according to Eqs. �1�–�4� with probability 
w. Here the
time step 
 is a constant which we have fixed at 1/2. The
time increment associated with the event is 
 /Npair where
Npair is the number of nearest-neighbor pairs in the active
region.

Using this method we studied systems with sizes up to
L=106 lattice sites and times up to tmax=108, exploring the
parameter space 0���1 and 0���1. The �−� phase
diagram resulting from our simulations is displayed in Fig. 1.
This phase diagram shows that the crossover from DP critical
behavior at �=0 to DP2 �or, equivalently, PC� critical behav-
ior at ��0 occurs in an unusual fashion. The phase bound-
ary �c��� between the active and inactive phases does not
terminate at the critical point of the simple contact process
located at �� ,��= ��c

cp ,0���0.30325,0�. Instead, it ends at
the point �� ,��= ��� ,0���0.552,0�. In the parameter range

�c
cp�����, the system is inactive at �=0, but an infinitesi-

mally small nonzero � takes it to the active phase.
Thus, the one-dimensional generalized contact process

with two inactive states has two types of phase transitions, �i�
the generic transition occurring at ���� and �=�c����0
�marked by the dashed blue line and arrows in Fig. 1� and �ii�
the transition occurring for �c

cp����� as � approaches
zero �solid red line and arrows�. We note in passing that our
critical healing rate for �=1 is �c=0.628�1�, in agreement
with Ref. �13�.

In the following subsections we first discuss in detail the
simulations that lead to this phase diagram, and then we
present results on the critical behavior of both transitions as
well as special point ��� ,0���0.552,0� that separates them.

B. Establishing the phase diagram

We first performed a number of spreading simulations
at �=0 and various � for maximum times up to 3�104. The
resulting number Ns�t� of active sites in the cluster is shown
in Fig. 2. The figure demonstrates that the transition between
the active and inactive phases occurs at �=0.303 25�25�. A
fit of the critical curve to Ns� tcp yields cp=0.315�5�. As
expected from the general arguments in Sec. II, both the
critical healing rate and the initial slip exponent cp agree
very well with the results of the simple contact process �see,
e.g., Ref. �19� for accurate estimates of the DP exponents�.
Thus, at �=0, the generalized contact process undergoes a
transition in the directed percolation universality class at �
=�c

cp=0.30 325�25�.
We now turn to nonzero �. Because the domain boundary

process �Eq. �4�� creates extra active sites, it is clear that
the phase boundary between the active and inactive phases
has to shift to larger healing rates � with increasing �. In the
simplest crossover scenario, the phase boundary �c���
would behave as �c���−�c

cp�1/� where � is a crossover
exponent. To test this scenario, we performed spreading
simulations for times up to 107 at several fixed ���c

cp in
which we vary � to locate the transition. Examples of the
resulting Ns�t� curves for several � at �=0.428 and �=0.6
are shown in Fig. 3. The set of curves for �=0.6 �Fig. 3�b��
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FIG. 1. �Color online� Phase diagram of the 1D generalized
contact process as function of the healing rate � and the boundary
rate �. A line of DP2 �PC� transitions �blue dashed line� separates
the active and inactive phases. For �→0, this line does not termi-
nate in the simple contact process critical point at �c

cp�0.30325
and but at ���0.552. For �c

cp�����, the system is inactive at
�=0 �thick solid red line�, but an infinitesimal � takes it to the
active phase. Inset: close to the end point at ��, the phase boundary
behaves roughly as �c���−���2.
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FIG. 2. �Color online� Spreading simulations at �=0: Number
Ns of active sites as a function of time t. The solid line for
�=0.30325 represents a fit to Ns� tcp yielding cp=0.315�5�. The
data are averages over 25 000 runs.
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behaves as expected: Initially, Ns�t� follows the behavior of
the simple contact process at this �. At later times, the curves
with ��0.25 curve upward implying that the system is in
the active phase. The curves for ��0.25 curve downward,
indicating that the system is in the inactive phase. Thus,
�c��=0.6��0.25.

In contrast, the set of curves for �=0.428 �Fig. 3�a�� be-
haves very differently. After an initial decay, Ns�t� curves
strongly upward for all values of � down to the smallest
value studied, �=10−4. This suggests that at �=0.428, any
nonzero � takes the generalized contact process to the active
phase. The phase transition thus occurs at �=0.

We determined analogous sets of curves for many differ-
ent values of the healing rate in the interval �c

cp=0.30325
���0.65. We found that the phase transition to the active
phase occurs at �=0 for �c

cp�����=0.552, while it occurs
at a nonzero � for healing rates ����. This establishes the
phase diagram shown in Fig. 1. The phase boundary thus
does not follow the simple crossover scenario outlined
above. In the following subsections, we analyze in detail the
critical behavior of the different nonequilibrium phase tran-
sitions.

C. Generic transition

We first consider the generic transition occurring at �
����0.552 and nonzero � �the blue dashed line in Fig. 1�.
Figure 4 shows a set of spreading simulations at �=0.1 and
several � in the vicinity of the phase boundary. The data
indicate a critical point at ��0.582. We performed analo-
gous simulations for several points on the phase boundary.
Figure 5 shows the survival probability Ps and number Ns of
active sites as functions of time for all the respective critical
points. In log-log representation, the Ns and Ps curves for
different � and � are perfectly parallel, i.e., they represent

power laws with the same exponent. Fits of the asymptotic
long-time behavior to Ps=B�t−� and Ns=C�t give estimates
of �=0.289�5� and =0.000�5�. Moreover, we measured
�not shown� the mean-square radius R2�t� of the active cloud
as a function of time. Its long-time behavior follows a uni-
versal power law. Fitting to R2�t�� t2/z gives 2 /z=1.145�5�
�z=1.747�7��. Here z=�	 /�� is the dynamical exponent, i.e.,
the ratio between the correlation time exponent �	 and the
correlation length exponent ��.

In addition to the spreading simulations, we also per-
formed density decay simulations for several �� ,�� points
on the phase boundary. Characteristic results are presented in
Fig. 6. The figure shows that the density 	A of active sites at

criticality follows a universal power law, 	A= B̄�t−� at long
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times. The corresponding fits give �=0.285�5� which agrees
�within the error bars� with our value of the survival prob-
ability exponent �. We thus conclude that the generic transi-
tion of our system is characterized by three independent ex-
ponents �for instance �� ,z and �� rather than four �as could
be expected for a general absorbing state transition �4��. We
point out, however, that even though Ps and 	A show the
same power-law time dependence at criticality, the behavior

of the prefactors differs. Specifically, the prefactor B̄� of the
density is increasing with increasing � while the prefactor B�

of the survival probability decreases with increasing �.
All the exponents of the generic transition do not depend

on � or �, implying that the critical behavior is universal.
Moreover, their values are in excellent agreement with the
known values of the PC �or DP2� universality class �see, e.g.,
Refs. �4,5��. We therefore conclude that the critical behavior
of the generic transition of generalized contact process with
two inactive states is universally in this class.

D. Transition at �=0

After discussing the generic transition, we now turn to the
line of transitions at �c

cp����� and �=0. To investigate
these transitions more closely, we performed both spreading
and density decay simulations at fixed � and several
�-values approaching �=0 �as indicated by the solid �red�
arrows in the phase diagram, Fig. 1�.

Let us start by discussing the density decay simulations.
Figure 7 shows the stationary density 	st of active sites as a
function of � for several values of the healing rate �. Inter-
estingly, the stationary density depends linearly on � for all
healing rates �c

cp�����, in seeming agreement with mean-
field theory. This means 	st=B��� with �=1 and B� being a
�-dependent constant. We also analyzed how the prefactor
B� of the mean-field-like behavior depends on the distance
from the simple contact process critical point. As inset �a� of
Fig. 7 shows, B� diverges as ��−�c

cp�−� with �=2.3�1�.
At the critical healing rate �c

cp of the simple contact pro-
cess, the stationary density displays a weaker �-dependence.
A fit to a power-law 	st���cp gives an exponent value of

�cp=0.108�2�. In contrast, at the end point at healing rate ��,
the corresponding exponent ��=1.4�1� is larger than 1.

These results of the density decay simulations must be
contrasted with those of the spreading simulations. Figure 8
shows the time dependence of the survival probability Ps for
�=0.4 and several �. At early times, all curves follow the
�=0 data due to the small values of the rate of the boundary
activation process �Eq. �4��. �Note that the �=0 curve does
not reproduce the survival probability of the simple contact
process. This is because in our generalized contact process, a
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cp. A fit to a power law gives B����
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sample is surviving as long as not every site is in state I1
even if there are no active sites.� In the long-time limit,
the Ps curves approach nonzero constants, as expected in
an active phase. However, in contrast to the stationary den-
sity 	st �Fig. 7�, the stationary value of Ps does not go to
zero with vanishing boundary rate �. Instead, it approaches a
�-independent constant. We performed similar sets of simu-
lations at other values of � in the range �c

cp�����, with
analogous results. We therefore conclude that—somewhat
surprisingly—the survival probability and the stationary den-
sity of active sites display qualitatively different behavior at
the �=0 phase transition.

We now show that the properties of these quantities can
be understood within a simple domain-wall theory. The rel-
evant long-time degrees of freedom at ���c

cp and ��1 are
the domain walls between I1 and I2 domains. These domains
are formed during the early time evolution when the system
follows the simple contact process dynamical rules �Eqs.
�1�–�3��. At late times, the domain walls can hop, they can
branch �one wall branching into three�, and they can annihi-
late �two walls vanish if the meet on the same bond between
two sites�. This means, the domain-wall dynamics follows
the branching-annihilating random walk with two offspring
�BARW2�.

In our case, the BARW2 dynamics is controlled by two
rates, the domain-wall hopping rate � and the branching rate
� �annihilation occurs with certainty if two walls meet�.
These two rates depend on the underlying generalized con-
tact process dynamics. In the limit ��1 they are both linear
in the boundary rate, �=�F����, �=�F���� because a
single boundary activation event is sufficient to start a
domain-wall hop or branching �F� and F� are nontrivial
functions of ��. Because both rates are linear in �, their ratio
is �-independent, thus the steady state of the domain walls
does not depend on � in the limit ��1. This explains why
the survival probability Ps of the generalized contact process
saturates at a nonzero, �-independent value in Fig. 8. It also
explains the �-dependence of the stationary density 	st of
active sites in the following way: For ��1 and ���c

cp,
active sites are created mostly at the domain walls at rate �.
Consequently, their stationary density is proportional to both
� and the stationary domain-wall density 	dw, i.e., 	st
��	dw, in agreement with Fig. 7. �The linear �-dependence
of 	st is thus not due to the validity of mean-field theory.�

These results imply that the phase transition line at �=0
between �c

cp and �� is not a true critical line because there is
no �nontrivial� diverging length scale. It only appears critical
because the stationary density of active sites vanishes with �.
Note that this is also reflected in the fact that the system is
not behaving like a critical system right on the phase transi-
tion line �=0 �no power-law time dependencies, for in-
stance�. Instead, the physics of this transition line is con-
trolled by the BARW2 dynamics of the domain walls with a
finite correlation length for all �c

cp�����.

E. Scaling at the contact process critical point (�c
cp ,0)

Even though the generalized contact process is not critical
at �=0 and ���c

cp, its behavior close to the critical point of

the simple contact process can be understood in terms of a
phenomenological scaling theory.

Let us assume that the stationary density of active sites
close to ��c

cp ,0� fulfills the homogeneity relation

	st���,�� = b�cp/�cp
�

	st���b−1/�cp
�

,�b−ycp� �10�

where ��=�−�c
cp and b denotes an arbitrary scale factor.

�cp and �cp
� are the usual order parameter and correlation

length exponents and ycp denotes the scale dimension of � at
this critical point. Setting b=�1/ycp then gives rise to the scal-
ing form

	st���,�� = ��cp/��cp
� ycp�X����−1/��cp

� ycp�� , �11�

where X is a scaling function. At criticality, ��=0, this leads

to 	st�0,�����cp/��cp
� ycp� �using X�0�=const�. Thus, �cp

=�cp / ��cp
� ycp�. For �→0 at nonzero ��, we need the large-

argument limit of the scaling function X. On the active side
of the critical point, ���0, the scaling function must be-
have as X�x��
x
�cp to reproduce the correct critical behavior
of the density, 	st�
�−�c

cp
�cp.
More interesting is the behavior on the inactive side of the

critical point, i.e., for ���0 and �→0. Here, we assume
the scaling function to behave as X�x��x−�. In this limit, we
thus obtain 	st�����−��� �just as observed in Fig. 7� with
�= ��cp+�� / ��cp

� ycp�. As a result of our scaling theory, the
exponents � , �cp and � are not independent, they need to
fulfill the relation �cp��cp+��=�cp�. Our numerical values,
�=1, �cp=0.108�2� and �=2.32�10� fulfill this relation in
very good approximation, indicating that they represent
asymptotic exponents and validating the homogeneity rela-
tion �10�. Using �cp=0.2765 and �cp

� =1.097 �19�, the result-
ing value for the scale dimension ycp of � at the simple
contact process critical point is ycp=2.34�4�.

F. End point (�� ,0)

Finally, we turn to the point ��� ,��= �0.552,0� where the
generic phase transition line terminates on the � axis. At first
glance, one might suspect this point to be a multicritical
point because it is located at the intersection of two phase
transition lines. However, we argued in Sec. IV D �based on
the domain-wall theory� that the transition line at �=0 and
�c

cp����� is not critical. This implies that the end point
��� ,0� is not multicritical but a simple critical point in the
same universality class �viz., the PC class� as the generic
transition at ����. In fact, the end point can be understood
as the critical point of the BARW2 domain-wall dynamics in
the limit �→0.

To test this hypothesis, we first study the survival prob-
ability and density of active sites as �� is approached along
the � axis. The inset of Fig. 8 shows the stationary survival
probability �more precisely, its saturation value for �→0� as
a function of �. The data can be well fitted by a power-law
Ps����−��� with �=0.87�5�. The corresponding informa-
tion on the stationary density of active sites can be obtained
from inset �b� of Fig. 7. It shows the prefactor B� of the
linear �-dependence 	st=B�� as a function of ��−�. Suffi-
ciently close to ��, their relation can be fitted by a power law
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B�����−����
with ��=0.91. Thus both � and �� agree with

the order parameter exponent of the PC universality class
within their error bars. This confirms the validity of the
domain-wall theory of Sec. IV D at ��.

The discussion of the �-dependence of Ps and 	st right at
�� is somewhat more complicated because it is determined
by the subleading �-dependencies of the domain-wall rates �
and �. Moreover, because the dynamics is extremely slow at
���� and ��1, our numerical results close to the end
point are less accurate then our other results. According to
the domain-wall theory of Sec. IV D, the stationary survival
probability should fulfill the homogeneity relation

Ps���,�� = b�/��
Ps���b−1/��

,�b−y�
� , �12�

where ��=�−�� while � and �� are the order parameter
and correlation length exponents of the BARW2 transition
�PC universality class�. The only unknown exponent is y�.
The same homogeneity relation should hold for the domain-
wall density, but not the density of active sites.

Setting the scale factor to b=�1/y�
gives the scaling form

Ps���,�� = ��/���y��Y����−1/���y��� . �13�

Right at the end point, ��=0, this gives Ps���/���y��. To
test this power-law relation and to determine y�, we per-
formed spreading simulations at �=�� and several � be-
tween 0.03 and 1. The low-� behavior �not shown� can in-
deed be fitted by a power law in � with an exponent
� / ���y��=0.5�1�. Using the well-known values �=0.92 and
��=1.83 of the PC universality class, we conclude y�

=1.0�2�. Within the domain-wall theory, 	DW� Ps and the
stationary density of active sites is 	st��	DW����

with
��=1+� / ���y��=1.5�1�. This agrees well with the numeri-
cal estimate of 1.4�1� obtained from the density decay simu-
lations in Fig. 7.

The scaling form �Eq. �13�� can also be used to determine
the shape of the phase boundary at ����. The phase bound-
ary corresponds to a singularity of the scaling function Y at
some nonzero value of its argument. Thus, the phase bound-
ary follows the power law ����−�����y�

. At fit of the data
in Fig. 1 lead to ��y�=1.8�2� which implies y�=1.0�1� in
agreement with the above estimate from the spreading simu-
lation data.

To investigate the time dependence of Ps close to the end
point, the homogeneity relation �12� can be generalized to
include a time argument. On the right hand side, it appears in
the scaling combination �t / t0�bz with t0 the basic micro-
scopic time scale. It is important to realize that this micro-
scopic scale diverges as �−1 with �→0 �independent of any
criticality at ���. Thus, the right scaling combination is ac-
tually t�bz. We used the resulting scaling theory to discuss
the power-law decay of Ps on the phase boundary shown in
Fig. 5�a�. The scaling theory predicts Ps��−�t−� with ���
as the end point is approached. This agrees with our numeri-
cal data �shown in the inset of Fig. 5�a�� which give �
�0.284

In summary, all our simulation data support the notion
that the end point ��� ,0� is a not a true multicritical point but
a simple critical point in the same universality class �PC� as

the entire generic phase boundary at ����. The behavior of
some observables makes it appear multicritical, though, be-
cause the microscopic time scale of the domain-wall dynam-
ics diverges with �→0.

V. CONCLUSIONS

In summary, we have studied the phase transitions of the
generalized contact process with two absorbing states in one
space dimension by means of large-scale Monte Carlo simu-
lations. We have found that this model has two different
nonequilibrium phase transitions, �i� the generic transition
occurring for sufficiently high values ���� of the healing
rate and nonzero values of the boundary activation rate �,
and �ii� a transition at exactly �=0 for �c

cp�����.
The generic transition is in the parity-conserving �PC�

universality class �which coincides with the DP2 class in one
dimension� everywhere on the ���� phase boundary, in
agreement with earlier work �13,17�. In contrast, the �=0
transition turned out to be not critical. The density of active
sites rather goes to zero with the vanishing boundary activa-
tion rate � while the survival probability remains finite for
�→0. Its behavior is controlled by the BARW2 dynamics of
the domain walls between different inactive domains �which
is not critical for �c

cp������. It is interesting to note that
the behavior of our model at ��0 differs qualitatively from
the �→0 limit of the finite-� behavior in the entire param-
eter region �c

cp�����.
As a result, the crossover between directed percolation

�DP� critical behavior at ��0 and parity conserving �PC�
critical behavior for ��0 does not take the naively expected
simple scaling form. In particular, the generic ���0� phase
boundary does not continuously connect to the critical point
of the ��0 theory �the simple contact process critical point�.
Instead, it terminates at a separate end point ��� ,0� on the
�-axis. While this point shares some characteristics with a
multicritical point, it is actually just a simple critical point in
the same universality class �PC� as the entire generic phase
boundary.

We emphasize that the crossover between the DP and PC
universality classes as a function of � in our model is very
different from that investigated by Odor and Menyhard �20�.
These authors started from the PC universality class and in-
troduced perturbations that destroy the symmetry between
the absorbing states or destroy the parity conservation in
branching and annihilating random walk models. They found
more conventional behavior that can be described in terms of
crossover scaling. In contrast, the transition rates �1� to �4� of
our model do not break the symmetry between the two inac-
tive states anywhere in parameter space.

Crossovers between various universality classes of ab-
sorbing state transitions have also been investigated by Park
and Park �21–23�. They found a discontinuous jump in the
phase boundary similar to ours along the so-called excitatory
route from infinitely many absorbing states to a single ab-
sorbing state �21�. Moreover, there is some similarity be-
tween our mechanism and the so-called channel route �22�
from the PC universality class to the DP class which involves
an infinite number of absorbing states characterized by an
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auxiliary density. In our case, at ��0 �but not at any finite
��, any configuration consisting of I1 and I2 only can be
considered absorbing because active sites cannot be created.
The density of I1-I2 domain walls then plays the role of the
auxiliary density; it vanishes at the end point ��� ,0�. How-
ever, our crossover occurs in the opposite direction than that
of Ref. �22�: the small parameter � takes the system from the
DP universality class to the PC class. Note that an unex-
pected survival of active sites has also been observed in a
version of the nonequilibrium kinetic Ising model with
strong disorder. Here, the disorder can completely segment
the system, and in odd-parity segments residual particles
cannot decay �24�.

The generalized contact process as defined in Eqs. �1�–�4�
is characterized by three independent rates �one rate can be
set to one by rescaling the time unit�. In the bulk of our
paper, we have focused on the case �̄=� for which our
system reduces to the usual contact process in the limit of
�→0. In order to study how general our results are, we have
performed a few simulation runs for �̄�� focusing on the
fate of the end point that separates the generic transition from
the �=0 transition. The results of these runs are summarized
in Fig. 9 which shows the phase diagram projected on the
�̄−� plane. The figure shows that the line of end points of
the generic phase boundary remains distinct from the simple
contact process ��=0� critical line in the entire �̄−� plane.
The two lines only merge at the point �̄=0, �=1 where the
system behaves as compact directed percolation �13�.

Our study was started because simulations at ���c
cp and

��1 �18� seemed to suggest that the generalized contact
process with two absorbing states is always active for any
nonzero �. The detailed work reported in this paper shows
that this is not the case; a true inactive phase appears, but
only at significantly higher ����. Motivated by this result,
we also carefully reinvestigated the generalized contact pro-
cess with n=3 absorbing states which has been reported to
be always active �for any nonzero �� in the literature �13,17�.
However, in contrast to the two-absorbing-states case, we
could not find any inactive phase in this system.

Let us close by posing the question of whether a similar
splitting between the n=1 critical point and the n=2 phase
transition line also occurs in other microscopic models with
several absorbing states. Answering this questions remains a
task for the future.
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