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Separation of transitions with two quantum jumps from cascades

Ulrich D. Jentschura
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409-0640, USA

(Received 22 July 2009; published 20 January 2010)

We consider the general scenario of an excited level |i〉 of a quantum system that can decay via two channels:
(i) via a single-quantum jump to an intermediate, resonant level |m〉, followed by a second single-quantum jump
to a final level |f 〉, and (ii) via a two-quantum transition to a final level |f 〉. Cascade processes |i〉 → |m〉 → |f 〉
and two-quantum transitions |i〉 → |m〉 → |f 〉 compete (in the latter case, |m〉 can be both a nonresonant as well
as a resonant level). General expressions are derived within second-order time-dependent perturbation theory,
and the cascade contribution is identified. When the one-quantum decay rates of the virtual states are included
into the complex resonance energies that enter the propagator denominator, it is found that the second-order
decay rate contains the one-quantum decay rate of the initial state as a lower-order term. For atomic transitions,
this implies that the differential-in-energy two-photon transition rate with complex resonance energies in the
propagator denominators can be used to good accuracy even in the vicinity of resonance poles.

DOI: 10.1103/PhysRevA.81.012112 PACS number(s): 12.20.Ds, 31.30.jc

I. INTRODUCTION

In this article, we consider quite a general problem which
is illustrated on the basis of the radiative decay of excited
atomic levels. Let us suppose that an initial state |i〉 of
a quantum system can decay into a final state |f 〉 via an
intermediate, virtual state |m〉, under the influence of an
interaction potential V , with relevant matrix elements Vf m

and Vmi . If all available levels |m〉 are nonresonant, then the
decay rate can be computed using time-ordered second-order
perturbation theory [1]. One famous example is the decay of
the 2S state of hydrogen, whose decay to the ground state is
dipole-forbidden. Nevertheless, the main contribution to the
2S state decays to the ground state is caused by the very
electric dipole coupling of the bound electron to the quantized
electromagnetic field: the transition proceeds via virtual nP

levels (n � 2), which are all nonresonant in the nonrelativistic
approximation. One has to formulate the problem in second-
order as opposed to first-order time-dependent perturbation
theory.

Cascade decay accompanying the process |i〉 → |m〉 →
|f 〉 can proceed when some of the available virtual levels
|m〉 ∈ {|m〉} are resonant. In that case, the atom may first
undergo a transition |i〉 → |m〉, then |m〉 → |f 〉 (cascade
decay). An example is the decay 3S → nP → 1S in atomic
hydrogen, where the atom may first radiate a photon at
the resonant frequency of the 3S → 2P transition, and then
radiate a second photon at the resonant frequency of the
2P → 1S transition. However, the transition 3S → nP → 1S

may also proceed via a nonresonant nP level, in which case
it is a true two-photon (two-quantum) transition. Indeed, the
second-order transition amplitude for the sum of the processes
3S → nP → 1S (n being summed over) contains both the
transition amplitude due to nonresonant virtual states as
well as the transition amplitude due to resonant intermediate
states. Strictly speaking, the situation is even a little more
complicated: the electric-dipole coupling of the atom with
the radiation field couples a state with the atom in the 3S

state to a combined atom + field state with the atom in the
|nP 〉 state and one photon in the radiation field. We can
denote this state as |m〉 = |nP, 1�kλ〉 for the particular transition

mentioned. Here, �k is the photon wave vector, and λ is its
polarization. Unless simultaneously n = 2 and the photon
fulfills the resonance condition E3S − E2P = h̄ck, where k ≡
|�k| is the wave number of the photon, the intermediate state
|m〉 is nonresonant. An intermediate level |m〉 = |2P, 1�k′λ〉
with E3S − E2P �= h̄ck′ constitutes a nonresonant level even
if the atomic part of the intermediate state—the 2P level—can
become resonant. To give another example, an intermediate
state |m〉 = |4P, 1�kλ〉 with arbitrary �k is always nonresonant
because there is no photon frequency available which could
turn this level into a resonant state. The question then is how to
separate the decay through resonant intermediate states from
the decay via nonresonant intermediate states. Certainly, it
is impossible to do this by excluding the |2P 〉 level from the
sum over the intermediate atomic levels, because this level can
be both resonant (if the photon frequency in the intermediate
state is resonant with respect to the 3S → 2P transition) or
nonresonant (if the photon frequency in the intermediate state
is nonresonant with respect to the 3S → 2P transition). The
exclusion of the 2P state had been proposed in Ref. [2] but
has since been scrutinized [3,4].

Related questions are investigated here in more general
terms: How can we formulate the problem, within time-
dependent second-order perturbation theory, so that the res-
onant intermediate levels in the process |i〉 → |m〉 → |f 〉
are separated from the nonresonant levels, and so that the
cascade contribution due to resonant intermediate levels |m〉
is clearly identified within the time-dependent formalism? In
order to answer this question, we first recall that under rather
general assumptions about the process, the intermediate states
|m〉 represent a continuum of states. This is the case even in
transitions of discrete atomic levels because the intermediate
states |m〉 in this case are product states of the atom in a discrete
state and one or more excited modes of the electromagnetic
field. While the bound states of the atom are discrete, the
photon modes represent a continuum of energies. In particular,
the photon wave vector �k represents a continuous variable. A
resonant process involves a transition to a lower atomic level
with a simultaneous emission of a photon of the resonant
frequency; in that case, the resonant state |m〉 is an eigenstate
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of the unperturbed Hamiltonian of atom + radiation field with
exactly the same energy as the initial state (the sum of the
energies of the lower atomic state and of the energy of the
radiated photon is equal to the energy of the initial atomic
state).

When the decay |i〉 → |m〉 → |f 〉 can proceed via a
resonant state |m〉 which can be reached from |i〉 via a single
quantum jump, we have to take into account both possibilities:
(a) the sequential transition (cascade) and (b) the two-quantum
transition via the nonresonant levels. One possibility to identify
the cascade within time-dependent perturbation theory is given
by the functional form of its time dependence: for a cascade
decay |i〉 → |m〉 → |f 〉, the probability of finding the system
in the final state |f 〉 is proportional to the square of the elapsed
time t : The system first has to make a quantum jump |i〉 → |m〉,
leading to a linear increase (with time) of the population of
the resonant intermediate level |m〉. The second quantum jump
|m〉 → |f 〉 then leads to a quadratic increase of the probability
of finding the system in state |f 〉 with time. By contrast, the
true nonsequential two-quantum transition |i〉 → |m〉 → |f 〉
via nonresonant intermediate states leads to a linear increase
(with time) of the probability of finding the system in state
|f 〉 with time. Here, we identify, in a general formalism,
those contributions of the two-quanta transition which con-
tribute to the linear behavior (in time), and separate them from
the (quadratic in time) cascade effect.

We follow Ref. [1] in our conventions and proceed as
follows: First, the basics of a single-quantum transition are
recalled (Sec. II). We then proceed to the discussion of a
two-quantum transition without cascades (Sec. III), before
including the cascades/resonant levels in Sec. IV. Conclusions
are reserved for Sec. V. The interaction is switched off
adiabatically in the distant past and in the distant future, but
the rate is calculated near t = 0. We work in natural units
(h̄ = c = ε0 = 1).

II. SINGLE-QUANTUM TRANSITION

A. General formulation

Following Chap. 5 of Ref. [1], we first consider a single-
quantum transition |i〉 to |f 〉, with cf (t) being the time-
dependent expansion coefficient of the final-state Hilbert
vector with respect to the state |f 〉. The interaction is
adiabatically damped on in the infinite past t → −∞ and
suppressed by an exponential factor exp(ηt), with η > 0 being
an infinitesimal parameter. We then start the time evolution
with cf (0) = 0 and ci(0) = 1 (initially, the system is in the
state |i〉). For the complex probability amplitude cf (t) of
finding the system in state |f 〉 at time t , one finds [see
Eq. (5.8.2) of Ref. [1]],

cf (t) = −i

∫ t

−∞
Vf ie

ηt ′eiωf i t
′
dt ′ = − eηt+iωf i t

ωf i − iη
Vf i, (1)

where Vf i is the matrix element of the interaction Hamiltonian
V in the Schrödinger picture, i.e., Vf i = 〈f |V |i〉. Note that
there is a somewhat subtle difference between the interaction
Hamiltonian V in the Schrödinger picture, and the interaction
Hamiltonian exp(iH0t)V exp(−iH0t) in the interaction pic-
ture, because in the latter case, matrix elements of V acquire

a time dependence. This time dependence is explicitly written
out in the term Vf ie

iωf i t
′
in Eq. (1).

In the case of an electric-dipole transition in an atom, V is
the coupling of the bound electron to the quantized radiation
field. The expression ωf i = Ef − Ei is the energy difference
of the initial and final state of the transition with respect to
the unperturbed Hamiltonian H0 of the system. In the case
of an electric-dipole transition in an atom, H0 is the sum of
the unperturbed Hamiltonian of the atom and of the electro-
magnetic Hamiltonian counting the modes of the radiation
field. From Eq. (1), we find |cf (t)|2 = e2ηt |Vf i |2/(ω2

f i + η2).
Differentiating this expression with respect to time, we obtain

d

dt
|cf (t)|2 = e2ηt2η|Vf i |2

ω2
f i + η2

. (2)

With the identification [see Eq. (5.8.5) of Ref. [1]]

η

ω2
f i + η2

→ πδ(ωf i), η → 0+, (3)

we obtain in the limit η → 0+

�
(1)
f i = d

dt
|cf (t)|2

∣∣∣∣
t=0

= 2π |Vf i |2δ(ωf i), (4)

where by definition, �
(1)
f i is the decay rate associated with

the transition |i〉 → |f 〉 via a single quantum jump (we
reemphasize that the time derivative is taken at t = 0). This
result is known as Fermi’s golden rule [see Eqs. (5.6.35) and
(5.8.6) of [1]].

One might wonder why the Dirac δ persists in the final
result, although Fermi’s Golden Rule is known to be directly
applicable to experimentally relevant calculations, and an
expression containing a Dirac δ might otherwise be assumed
not to be applicable to an experiment. Just after Eq. (5.6.35) of
Ref. [1], which is equivalent to Eq. (4) in this work, it is stated
that the final state must be integrated over an (infinitesimal)
interval about the final-state energy. This statement is useful,
but it may need a more complex explanation for a full
elucidation. Indeed, the solution to this question involves two
observations: (a) that Eq. (4) needs to be summed over the
state variables of the radiated quanta (in the case of an atomic
transition, photons) in order to make experimentally relevant
predictions, and (b) that the Dirac δ disappears when all
possible energies and all possible polarizations of the emitted
quanta are taken into account in the final state. In order to
illustrate this aspect, we now discuss the application of Eq. (4)
to an electric dipole transition in an atom.

B. Specialization to an atomic transition

In the case of an electric-dipole transition of an atom, the
final state |f 〉 is a product state of the atom in state |fA〉 and one
radiated photon |1�kλ〉 in the radiation field. In the following, we
will write a general product state |f 〉 of the system composed
of the atom + radiation field as

|f 〉 = |fA, f̃ 〉, (5)

where |fA〉 is atomic part of the product state, and |f̃ 〉 is the
photon part of the product state. The unperturbed Hamiltonian
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of the system is

H0 =
∑
fA

EfA
|fA〉〈fA| +

∑
�kλ

ka+
�kλ

a�kλ, (6)

where the a�kλ and a+
�kλ

are photon annihilation and creation
operators (here, we work in a representation with a finite nor-
malization volume V , i.e., [a�kλ, a

+
�kλ

] = δ�k�k′δλλ′). Eigenstates of
the Hamiltonian (6) are product states of the atom in eigenstate
|fA〉 and a Fock state of the electromagnetic field such as |1�kλ〉.

In the Schrödinger picture, the dipole interaction of an
electron at point �x with the quantized electromagnetic field
is given by

V = −e�x · �E,
(7)

�E =
∑
�kλ

√
k

2V (ε̂�kλa�kλ + ε̂�kλa
+
�kλ

),

with the unit polarization vectors ε̂�kλ and the electric field
operator �E. In atomic physics, one distinguishes between
the ( �p · �A) and (�x · �E) forms of the interaction with the
electromagnetic field. The former is called the velocity gauge
because of the appearance of the electron momentum in the
interaction Hamiltonian. The latter is commonly referred to
as the length gauge, because the electron coordinate �x in the
interaction Hamiltonian has physical dimension of length. In
some situations, the length gauge is preferable because the
interaction is formulated in terms of physically observable
electric field strength �E instead of the gauge-dependent vector
potential �A (see Refs. [5–7]). All results presented here are
given in the length gauge.

While the initial state of the atom |iA〉 and the final state
of the atom |fA〉 are well-defined for an atomic decay rate,
we have to sum over the degrees of freedom of the radiated
photons in order to obtain the decay rate for the one-photon
transition |iA〉 → |fA〉. The Dirac δ function in Eq. (4) ensures
the fulfillment of the resonance condition. For a one-photon
final state, we can replace∑

f̃

→
∑
�kλ

(8)

for the sum over the photon degrees of freedom of the final
state. Indeed, the atomic one-photon (1γ ) decay rate for the
transition |iA〉 → |fA〉, which we denote as �

(1γ )
fAiA

, is obtained
as the sum

�
(1γ )
fAiA

=
∑
f̃

�
(1)
f i =

∑
�kλ

�
(1)
f i =

∑
�kλ

�
(1)
|fA,1�kλ〉,|iA,0〉

= 2π
∑
�kλ

δ(EfA
− EiA − k)|〈fA, 1�kλ|V |iA, 0〉|2, (9)

where we recall that the sum over �k and λ transforms into an
integral in the continuum limit,

∑
�kλ

→ V
∑

λ

∫
d3k

(2π )3
. (10)

This integral cancels the Dirac δ. We reemphasize that the
Dirac-δ function is eliminated after a summation over specific

degrees of freedom of the final state, namely, the degrees of
freedom of the electromagnetic field.

One might wonder why the single-quantum transitions
apparently conserve energy according to the above formalism
[persistence of the δ(ωf i) in Eq. (4)], while spontaneous decay
of an atomic state always tends to lower the energy of the bound
electron. The answer is that the final state of the process, which
is a bound electron in a lower state plus a single resonant
photon, has the same energy as the initial state (electron in
the excited state and no photon in the radiation field). This
is manifest in the expression δ(ωf i) = δ(EfA

− EiA − k) in
Eq. (9).

In view of Eq. (7), the transition matrix element
〈fA, 1�kλ|V |iA, 0〉 in Eq. (9) can be written as

〈fA, 1�kλ|(−e�x · �E)|iA, 0〉 = −e

√
k

2V ε̂�kλ · 〈fA|�x|iA〉, (11)

where we denote the atomic component of the bra and ket
vectors by a subscript A. The sum over the photon modes
in Eq. (7) collapses because there is exactly one definite
photon mode occupied in the state |fA, 1�kλ〉. Summing over the
available photon modes in the exit channel, we obtain (k ≡ |�k|)
�

(1γ )
fAiA

=
∑
�kλ

2π |Vf i |2δ(ωf i)

=
∑
�kλ

2πe2 k

2V |ε̂�kλ · 〈fA|�x|iA〉|2δ(EfA
− EiA − ω�k)

=
∑

λ

∫
d3k

(2π )3
4π2αk|ε̂�kλ · 〈fA|�x|iA〉|2

× δ(EfA
− EiA − ω�k)

=
∫

d
k

4π
2α(EfA

− EiA )3δT,jk〈fA|xj |iA〉〈iA|xk|fA〉

= 4

3
α(Ef − Ei)

3|〈fA|�x|iA〉|2, (12)

which is the familiar result for a one-photon electric-dipole
decay rate. The transverse delta function is δT,ij = δij −
kikj /k2. We denote the Cartesian components of a vector
by superscripts. Note, in particular, that the sum over the
photon modes in Eq. (7) is not enough in order to calculate
the familiar expression for the one-photon decay rate; an
additional summation over final states is necessary.

III. TWO-QUANTUM TRANSITION WITHOUT CASCADES

A. General formulation

In second-order time-dependent perturbation theory, the
amplitude cf (t) to find the system in state |f 〉 at time t due to
the transition |i〉 → |m〉 → |f 〉 is given by

cf (t) = (−i)2
∫ t

−∞
dt ′eηt ′+iωf mt ′Vf m

∫ t ′

−∞
dt ′′eηt ′′+iωmi t

′′
Vmi,

(13)
which leads to [see Eq. (5.6.37) of Ref. [1]],

|cf (t)|2 = e4ηt

(4η2 + ω2
f i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

. (14)
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This is a generalization of Eq. (1) to second order. When no
cascades are allowed, we can differentiate with respect to time
and assume that ωmi �= 0 is always nonvanishing. In order to
fix ideas by comparison to a concrete example, we recall that
in the case of the 2S → 1S two-photon transition in atomic
hydrogen, the intermediate state |m〉 = |nP, 1�kλ〉 has a higher
energy than the initial state |i〉 = |2S, 0〉 where the atom is
in the 2S state and the electromagnetic field is in the vacuum
state |0〉. No cascades are relevant in this case, and Eq. (14) is
immediately applicable.

We can thus differentiate Eq. (13) with respect to time and
obtain

�
(2)
f i =

(
d

dt
|cf |2

)∣
∣
∣
∣
t=0

= 4η

(2η)2 + ω2
f i

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

= 2πδ(ωf i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi

∣
∣
∣
∣
∣

2

, η → 0+. (15)

In analogy to the single-quantum transition described by
Eq. (4), the Dirac δ disappears when the final states are summed
over the experimentally relevant degrees of the radiated quanta.
We now verify that Eq. (15) exactly reproduces the known
expressions [8,9] for two-photon decay rates in atoms.

B. Specialization to an atomic transition

For a two-photon transition in an atom, we can write the
initial state as |i〉 = |iA, 0〉, where |iA〉 is the atomic final state,
and |0〉 is the vacuum state of the electromagnetic field. The
intermediate state is |m〉 = |mA, 1�kλ〉, where the atom is in state
|mA〉, and the electromagnetic field is in the one-photon Fock
state |1�kλ〉. The final state is |f 〉 = |fA, 1�k1λ1

, 1�k2λ2
〉, where the

|�ki | and λi are the wave vectors and polarizations of the two
radiated photons (i = 1, 2).

In specializing Eq. (15) to a two-photon transition in atoms,
we have to take into account a subtlety, which we outline in
greater detail because it becomes relevant for all discussions
in the following. Namely, the atomic decay rate is obtained
after summing the rate �

(2)
f i over the degrees of freedom of all

possible radiated photons. Now, if we sum the final states over
all �k1λ1 and all �k2λ2, we count the photons twice, because
the Fock state |1�k2λ2

, 1�k1λ1
〉 obtained under the simultaneous

exchange �k1 ↔ �k2 and λ1 ↔ λ2 is identical to the original
state |1�k1λ1

, 1�k2λ2
〉. Hence,

�
(2γ )
fAiA

= 1

2

∑
�k1λ1

∑
�k2λ2

�
(2)
f i . (16)

The factor 1/2 is discussed after Eq. (5.108) on p. 169 of the
quantum field theory textbook [10] and in the text preceding
Eq. (3.316) of the textbook [11].

With reference to Eq. (15), we now turn our attention to
the two-quantum decay rate (without cascades). Here, two
quantum paths are possible which must be added coherently.
These correspond to a different time ordering for the emissions
of the photons with photon wave vector �ki and polarization λi

(i = 1, 2). Summing over the final-state photon polarizations,
the result then is

�
(2γ )
fAiA

= 1

2

∑
�k1λ1

∑
�k2λ2

2πδ(ωf i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi

∣
∣
∣
∣
∣

2

,

=
∑
�k1λ1

∑
�k2λ2

πe4 k1

2V
k2

2V δ(Ef − Ei − k1 − k2)

×
∣
∣
∣
∣
∣

∑
mA

(
(ε̂�k1λ1

· 〈fA|�x|mA〉)(ε̂�k2λ2
· 〈mA|�x|iA〉)

EmA
− EiA + k2

+ (ε̂�k2λ2
· 〈fA|�x|mA〉)(ε̂�k1λ1

· 〈mA|�x|iA〉)
EmA

− EiA + k1

)∣
∣
∣
∣
∣

2

. (17)

Separating angular and radial variables for the photon energies,
we finally obtain the following known result [8] in the
continuum limit [see Eq. (10)]:

�
(2γ )
fAiA

= 4α2

27π

∫ EfA
−EiA

0
dkk3(EfA

− EiA − k)3

×
∣
∣
∣
∣
∣

∑
mA

( 〈fA|xj |mA〉〈mA|xj |iA〉
EmA

− EiA + k

+ 〈fA|xj |mA〉〈mA|xj |iA〉
EmA

− EfA
− k

)∣
∣
∣
∣
∣

2

. (18)

The integration over k extends over the allowed frequency
range for a two-photon transition [12]. The subtlety with
respect to the counting of photon modes illustrates that Eq. (15)
cannot be applied to atomic transitions without a proper
interpretation of all physical quantities involved.

IV. TWO-QUANTUM TRANSITION WITH CASCADES

A. General formulation

We return once more to Eq. (14) which gives the result for
the two-photon decay rate [see also Eq. (5.6.37) of Ref. [1]],

|cf (t)|2 = e4ηt(
4η2 + ω2

f i

)
∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

. (19)

In the text directly following Eq. (5.6.37) of Ref. [1], it is
stated that the best way to deal with the situation of a resonant
intermediate state with ωmi ≈ 0 is to use an adiabatic turn-on of
the perturbation that leads to the transition. We have already
incorporated this adiabatic turn-on into Eq. (13). It is also
stated in Eq. (5.6.38) of Ref. [1] that the turn-on amounts to
the replacement

ωmi → ωmi − iη (20)

in the denominator of the expression on the right-hand
side of Eq. (19). Again, we have already incorporated the
infinitesimal imaginary part in Eq. (19). Here, we extend the
discussion beyond that in Ref. [1] and analyze the resonant
and nonresonant levels separately.

We now assume that some of the intermediate states of
the system are close in energy to the initial state of the
process, i.e., that there exist states |m〉 with Em = Ei . We
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recall that Em here represents the total energy if the system.
In the case of an atomic transition, this would be the sum of
the energy of the intermediate atomic level and of energy of the
photons radiated. In order to analyze this process, we restrict,
in Eq. (19), the sum over intermediate states to the resonant
states m. Then,

|cf (t)|2 = e4ηt

(2η)2 + ω2
f i

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

, (21)

where ωmi tends to zero. The cascade contribution associated
with the resonant levels |m〉 needs to be differentiated twice
with respect to the time. We obtain

(
d2

dt2
|cf |2

)∣∣∣∣
t=0

= 16η2

(2η)2 + ω2
f i

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

η→0+= 4π2
∑
m

|Vf mVmi |2δ(ωf m)δ(ωf i)

= 4π2
∑
m

|Vf mVmi |2δ(ωf m)δ(ωmi)

=
∑
m

�
(1)
f m�

(1)
mi ≡ Cf i. (22)

In the last step, we define the expression Cf i as the relevant
cascade term which we evaluate for atomic transitions in
Sec. IV B below. We also assume that interference terms
among the different resonant levels |m〉 vanish.

Equation (22) is just the expected result: the level |i〉 feeds
the resonant intermediate levels |m〉 with a time dependence
�

(1)
mi t , and the resonant intermediate levels, in turn, feed the

final state population as

|cf (t)|2 =
∑
m

∫ t

0
dt ′�(1)

f m�
(1)
mi t

′ = 1

2

∑
m

�
(1)
f m�

(1)
mi t

2. (23)

The necessity of the sum over m is also clear, because all
intermediate resonant levels have to be included.

Now that we have treated the resonant levels separately,
we have to subtract them from the remaining expression. We
thereby obtain a modified probability |cf (t)|2 of finding the
system in state |f 〉,

|cf (t)|2 = |cf (t)|2 − |cf (t)|2

= e4ηt(
4η2 + ω2

f i

)
∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

− e4ηt(
4η2 + ω2

f i

)
∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

. (24)

One might think that the subtraction term (second term on
the right-hand side of the above equation) would imply, e.g.,
the subtraction of the intermediate 2P state in the two-photon
decay of the 3S state of hydrogen. However, that is not the
case. The intermediate states are quantum states of the coupled
system of atom + radiation field. As already outlined in Sec. I,
the product state composed of the 2P level and a resonant
photon would qualify as a resonant state |m〉, but a 2P state
with a slightly off-resonant photon would not constitute a

resonant intermediate state. Therefore, the 2P state may not be
taken out of the sum over the atomic-state components of the
virtual states. The time derivative of the subtracted expression
|cf |2 is

(
d

dt
|cf |2

)∣∣∣∣
t=0

= 4η(
4η2 + ω2

f i

)
∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

− 4η(
4η2 + ω2

f i

)
∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

. (25)

The second term on the right-hand side of Eq. (25) is divergent
in the limit η → 0+ and ωmi → 0. We cannot proceed without
giving a physical interpretation to the adiabatic parameter η.
First, in the subtraction term

S = − 4η

(2η)2 + ω2
f i

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − iη

∣
∣
∣
∣
∣

2

, (26)

we carry out the limit η → 0+ in the prefactor; this leads
to a Dirac δ. Then, for the sum over m, we match the
adiabatic parameter with the imaginary part of the interaction
Hamiltonian. The in and out states |i〉 and |f 〉 are assumed to
be asymptotic, stable states in the infinite past and future within
the context of adiabatic perturbation theory. Adiabatically, we
therefore switch on only the virtual intermediate states. We
should thus replace

η → 1
2�

(1)
f m (27)

for every term in the sum. We then obtain

S = −2πδ(ωf i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − i 1
2�

(1)
f m

∣
∣
∣
∣
∣

2

= −2πδ(ωf i)
∑
m

∣∣Vf mVmi

∣∣2

ω2
mi + (

1
2�

(1)
f m

)2

= −2πδ(ωf i)
∑
m

2

�
(1)
f m

1
2�

(1)
f m|Vf mVmi |2

ω2
mi + (

1
2�

(1)
f m

)2

= −4π2δ(ωf i)
∑
m

1

�
(1)
f m

|Vf mVmi |2δ(ωmi)

= −4π2δ(ωf i)
∑
m

|Vf m|2|Vmi |2
�

(1)
f m

δ(ωf m)

= −2πδ(ωmi)
∑
m

|Vmi |2 = −
∑
m

�
(1)
mi . (28)

In going from the fourth to the fifth line of the above equation,
we have neglected interference terms. This deserves some
comments, which we give by way of example. Let us consider
a situation with an initial 4S state without any photons, and
resonant 2P and 3P virtual states (each endowed with a single
resonant photon), and a 1S final state (with two resonant
photons). A conceivable 2P -3P interference term would
necessitate the final states |f 〉 to be equivalent in regards to
both their atomic components as well as electromagnetic-field
components. However, because the emitted resonant photons
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for 4S → 3P → 1S have different energy as compared to
4S → 2P → 1S, the interference term vanishes.

The derivation (28) clarifies that the subtraction term is
nothing but the sum of the one-quantum decay rates of the
initial state to all accessible resonant intermediate states. The
result coincides with the lower-order subtraction term found
in Ref. [12] for the two-photon decay rate, but the above
derivation is much more general. It means that under this
regularization, the two-quantum correction to the decay rate is
obtained as

�
(2)
f i =

(
d

dt
|cf |2

)∣∣∣∣
t=0

= 2πδ(ωf i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − 1
2 i�

(1)
f m

∣
∣
∣
∣
∣

2

−
∑
m

�
(1)
mi , (29)

where we introduce the overlining in order to differentiate

�
(2)
f i from �

(2)
f i . The result (29) is well defined and gauge

invariant [12]. We also note that the total (one-quantum plus
two-quantum) decay rate of level |i〉 thus is

�i =
∑
m

�
(1)
mi + �

(2)
f i = 2πδ(ωf i)

∣
∣
∣
∣
∣

∑
m

Vf mVmi

ωmi − 1
2 i�

(1)
f m

∣
∣
∣
∣
∣

2

.

(30)

This result states, in general terms, that the expression for the
two-quantum decay rate, in the presence of allowed cascade
transitions and with propagator denominators regularized by
the total one-quantum decay rate, has to be interpreted as a
one+two quantum decay rate.

B. Specialization to an atomic transition

In view of the result given in Eq. (18), it is immediately
clear how to apply Eq. (30) to two-photon transitions in atoms.
Namely, when Eq. (30) is evaluated for two-photon transitions,
the correct result is obtained when the virtual-state energies in
formula (18) are regularized by their total one-photon decay
widths [see Eq. (1) of Ref. [12] for a concrete example
and extensive further discussion in Refs. [12–15]]. For an

atomic two-photon transition, �
(2)
f i as written in Eq. (29)

coincides with the imaginary part of the two-loop self-energy
due to cut diagrams with two-photon emission [12,16], with
the photons fulfilling the two-photon resonance condition
k1 + k2 = EfA

− EiA .

It has been shown in Refs. [12,16] that �
(2)
f i is of the order

of α2(Zα)6 in units of the electron rest mass energy, and is
thus of the same order as the result obtained for two-photon
transitions without cascades [8]. It is therefore appropriate to

refer to �
(2)
f i as a two-photon correction to the decay rate of an

initial state which otherwise decays via one-photon decay. For
completeness, we note that the two terms on the right-hand
side of Eq. (29) are both of order α2(Zα)4, but their difference
is of order α2(Zα)6 and thus smaller by two orders of Zα.

The only calculation remaining concerns the verification of
the fact that Eq. (22) reproduces the product of one-photon
decay rates for the cascade process |iA〉 → |mA〉 → |fA〉. We
use Eq. (16) in order to sum over the two-photon final states and

Eq. (10) in order to proceed to the continuum limit. Summing
the cascade term (22) over the degrees of freedom of the
emitted photons, we obtain

CfAiA =
⎛
⎝1

2

∑
�k1λ1

∑
�k2λ2

⎞
⎠ ∑

m

Cf i

= 1

2

∑
�k1λ1

∑
�k2λ2

∑
m

�
(1)
f m�

(1)
mi

= 1

2

∑
mA

∑
�k1λ1

∑
�k2λ2

∑
�kλ

2πδ(EfA
+ k1 + k2 − EmA

− k)

× 2πδ(EmA
− EiA − k)

×|〈mA, 1�k1λ1
, 1�k2λ2

|(−e�x · �E)|iA, 1�kλ〉|2
×|〈mA, 1�kλ|(−e�x · �E)|iA, 0〉|2. (31)

The summation over �kλ is over both polarizations λ and over
an energy interval for k = |�k| which contains the resonance
frequency of the intermediate atomic resonant state |mA〉. After
performing the sum over �kλ and going to the continuum limit
with the help of Eq. (10), we obtain

CfAiA = e4
∑
mA

∑
�k1λ1

∑
�k2λ2

(2π )2δ[k1 − (EfA
− EmA

)]

× δ[k2−(EmA
−EiA)]

k1

2V
|〈fA|ε̂�k1λ1

· �x|mA〉|2

× k2

2V
|〈mA|ε̂�k2λ2

· �x|iA〉|2

=
∑
mA

[
4α

3
(EfA

− EmA
)3|〈fA|�x|mA〉|2

× 4α

3
(EmA

− EiA )3|〈mA|�x|iA〉|2
]

=
∑
mA

�
(1γ )
fAmA

�
(1γ )
mAiA

. (32)

This result confirms that the cascade terms can indeed be
written as the product of atomic one-photon decay rates.

V. CONCLUSIONS

In this paper, we have reviewed the formulation of a
transition with a single quantum jump within time-dependent
perturbation theory (see Sec. II A). The result, which is Fermi’s
golden rule [see Eq. (4)], is evaluated for an atomic dipole
transition in Sec. II B. We find that the familiar result for
the one-photon decay rate [see Eq. (12)] is obtained after
a summation/integration over the degrees of freedom of the
emitted photon in the continuum limit, as given in Eq. (10). The
general formulation of a transition with two quantum jumps is
carried out in Sec. III A, within second-order time-dependent
perturbation theory. The result for the two-quantum decay rate
�

(2)
f i as given in Eq. (15) is valid if there are no resonant

intermediate states through which a cascade decay could
possibly proceed. The specialization to a transition with two
quantum jumps is carried out in Sec. III B, where it is shown
that a summation over the two-photon final states of the process
[see Eq. (16)] yields the familiar result (18) for a two-photon
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transition rate in a hydrogenlike ion (such as the 2S-1S decay).
Cascade contributions are analyzed in Sec. IV A.

By isolating the resonant states within the intermediate
states of the process, we obtain the cascade contribution
(23) after differentiating the probability of finding the system
in the final state twice with respect to the elapsed time.
Subtracting the contribution of the resonant states within
the first time derivative of said probability, we obtain an
expression for the two-quantum correction to the decay rate
of a system which can simultaneously decay via cascades and
two-quantum transitions. If we use the identification (27) for
the regularization parameter η that parametrizes the width
of the intermediate states, then the effect of subtracting the
resonant states from the two-quantum decay rate is equivalent
to the subtraction of the total one-photon decay rate of the
initial state [see Eq. (29)]. The difference of the formal
two-quantum decay rate (with the propagator denominators
of the resonant states regularized by their widths) and the
one-photon decay rate therefore constitutes the two-quantum

correction �
(2)
f i to the decay rate, as noted in Eq. (29).

The formal two-quantum decay rate (with the propagator
denominators of the resonant states regularized by their
widths) therefore constitutes more than its name might suggest:
namely, according to Eq. (30), it is the sum of the one-quantum
decay rate and of the two-quantum correction and therefore
constitutes, in some sense, a one + two quantum decay rate.
This finding provides a formal and general justification for
the observation made in Ref. [12]: namely, that the formal
two-photon decay rate of, say, a 4S state in a hydrogenlike
ion contains the one-photon decay rate of 4S as a lower-order
term which needs to be subtracted in order to obtain the pure
two-photon correction. It is instructive to also remember that
competing one- and two-photon decays are not restricted to
atomic hydrogen, but also occur in other atomic systems of
fundamental importance like rubidium [17].

Finally, in Sec. IV B, we analyze the cascade contribution
for atomic transitions and show that under the appropriate
normalization of the two-photon final state [see Eqs. (16)
and (31)], the familiar result is obtained [see Eq. (32)].
The results reported here have an interesting consequence,
because they imply that the one + two-photon decay rate (30)
gives the correct differential-in-energy rate coefficients for
recombination codes [13,14], where the spectrum of emitted
photons from both two-photon and cascade transitions is
needed over the entire range of resonant and nonresonant
frequencies. In particular, the corresponding expression (30)
can be used even in the vicinity of resonant bound-state poles,
provided these are regularized by their respective decay widths.

One particular limitation of the treatment discussed here
is immediately obvious. Adiabatic perturbation theory does
not make any statement about the time points t ′ and t ′′
where the two photons are emitted. Thus, the total regularized
two-photon decay rate as described by Eq. (30) contains both
correlated emission (with a small time difference |t ′ − t ′′|)
and also sequential emission (with a large time difference
|t ′ − t ′′|). Since it is only the photon spectrum, not the
correlation [18], that matters for cosmological recombination,
we can use the regularized two-photon decay rate (30),
differential in energy, with good accuracy for recombination
codes [13,14] which need the differential-in-energy spectrum
of the emitted photons as input. In particular, this means

that it is not necessary to distinguish specific contributions
to the complete rate (30); this rate contains both cascade
photons and correlated two-photon processes in a natural way.
Therefore, it is understandable that the authors of Ref. [19]
could not give a unique value to their parameter �ω; this
parameter was introduced in order to distinguish between
cascade photons and two-photon decays. If one would like to
make a more refined distinction between cascade photons and
correlated two-photon processes, then one has to go beyond
adiabatic perturbation theory and analyze the dependence of
the process on the emission times t ′ and t ′′, including loss of
correlation as a function of |t ′ − t ′′|, which may be process-
as well as environment-dependent (e.g., there may be a
dependence on the average mean free path of the atoms in their
environment).

Our article illustrates both the usefulness but also the
limitations of adiabatic perturbation theory. Namely, if we
apply the regularization (27) consistently, to both the first
term as well as the second term on the right-hand side of
Eq. (25), then the subtraction term S defined in Eq. (26)
attains a finite value and can be evaluated in closed form
[see Eq. (28)]. Furthermore, as shown in Ref. [12], if the
regularization (27) is applied to a two-photon transition in
atoms, then there are significant cancellations between the two
terms on the right-hand side of Eq. (29), which are both of order
α2(Zα)4, but their difference is of order α2(Zα)6, where Z is
the nuclear charge number, and α is the fine-structure constant.
Two-photon decay rates are of order α2(Zα)6. As evident from
Eq. (11) of Ref. [12] and from Eq. (28) in the current work, the
cancellation of the lower-order terms depends on the particular
choice of the regularization. Within adiabatic perturbation
theory, the regularization (27) thus appears to be the only one
which leads to a consistent removal of the infinities that plague
the two-quantum decay rate in the presence of allowed cascade
transitions. Therefore, our article offers a connection of the
adiabatic parameter η used in time-dependent perturbation
theory to a physical concept, namely, the lifetime of virtual
intermediate states.

An interesting connection to the theory of energy shifts of
atomic levels can be drawn. Low [20–22] observed that the
calculation of energy shifts of excited states of hydrogenlike
ions becomes problematic at order α2(Zα)6, due to interfer-
ence effects of the resonance line shapes of atomic levels of
different principal quantum number. It has been argued that at
order α2(Zα)6, two-loop energy shifts of excited states cannot
be uniquely associated any more with a particular atomic
level, due to the predictive limits of adiabatic perturbation
theory [20–22]. The decay rate at order α2(Zα)6 constitutes
the imaginary part of the energy shift of that same order.
It is thus not surprising that its calculation requires consid-
erable effort within the formalism of adiabatic perturbation
theory.
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