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Abstract

Background: Antimicrobial resistance is a growing international problem. We observed a 50% increase in the prevalence of
trimethoprim resistance among fecal Escherichia coli from healthy Nigerian students between 1998 and 2005, a trend to
increase that continued in 2009.

Methods and Findings: A PCR-based screen revealed that 131 (43.1%) of isolates obtained in Nigeria in 2005 and 2009
carried integron-borne dfrA cassettes. In the case of 67 (51.1%) of these isolates, the cassette was a class 1-integron-borne
dfrA7 gene, which has been reported at high prevalence from E. coli isolates from other parts of Africa. Complete
sequencing of a 27 Kb dfrA7-bearing plasmid from one isolate located the dfrA7 gene within a Tn21-type transposon. The
transposon also contained an IS26-derived bla/sul/str element, encoding resistance to b-lactams, sulphonamides and
streptomycin, and mercury resistance genes. Although the plasmid backbone was only found in 12 (5.8%) of trimethoprim-
resistant isolates, dfrA7 and other transposon-borne genes were detected in 14 (16.3%) and 32 (26.3%) of trimethoprim
resistant isolates collected in Nigeria in 2005 and 2009, respectively. Additionally, 37 (19.3%) of trimethoprim-resistant E. coli
isolates collected between 2006 and 2008 from Ghana were positive for the dfrA7 and a transposon marker, but only 4
(2.1%) harbored the plasmid backbone.

Conclusions: Our data point to transposition as a principal mechanism for disseminating dfrA7 among E. coli from Nigeria
and Ghana. On-going intensive use of the affordable broad-spectrum antibacterials is likely to promote selective success of
a highly prevalent transposable element in West Africa.
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Introduction

The broad-spectrum antibacterial trimethoprim is heavily used

worldwide, most commonly in combination with sulphonamides.

Following the evolution of resistance trimethoprim has, in many

cases, been replaced by newer antimicrobials. But because of its

low cost, broad spectrum, excellent safety profile, high stability and

oral bioavailability, trimethoprim-sulphamethoxazole is still used

intensively in many African countries [1,2]. In the last two decades

trimethoprim-sulphamethoxazole has been recommended as a

prophylactic in HIV/AIDS patients on top of extensive curative

use. This medicament has prevented potentially life-threatening

opportunistic infections, is a useful prelude to antiretroviral

therapy for many patients and averts loss of life that would

otherwise accompany the slow roll-out of antiretrovirals [3,4].

Trimethoprim inhibits the enzyme dihydrofolate reductase

(Dfr). E. coli is most commonly becomes resistant by acquiring

one of over 30 known dfr genes encoding resistant variants, most of

which belong to the dfrA category [5]. Many dfr gene cassettes,

including about half of the known dfrA alleles, lie within gene

capture and expression systems known as integrons [6]. Integrons

contain an integrase gene, the product of which catalyzes the

integration of circular cassettes at an adjacent integration site, attI.

Each antimicrobial resistance cassette consists of a promoterless

gene and an attachment site, attC, which recombines with attI upon

integration (Figure 1). A given integron can have from zero to

several cassettes and cassette transcription is facilitated by a

promoter at the 59 end of the integration site. Four classes of

integrons have been well-characterized, although others do exist in

nature [7]. Class 1 and class 2 integrons have been implicated in

resistance gene dispersal, particularly in E. coli and other enteric

bacteria.

For three decades, the class 2 integron-bearing transposon Tn7

has been implicated in global dissemination of the dfrA1 gene
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across a wide range of bacterial species [8,9,10,11,12,13,14,15].

There have since been many studies cataloguing the relative

distribution of different dfr cassettes across the globe but, in spite of

increasing interest in the forces underlying evolution to trimeth-

oprim resistance [16,17,18], very little is known about the context

in which more than a handful of the most promiscuous alleles are

spread. Trimethoprim resistance rates among commensal and

pathogenic enteric bacteria reported in the literature from Africa

are very high, typically approaching or exceeding 60%

[19,20,21,22,23,24]. In 2005, we observed an increase in

trimethoprim resistance among fecal E. coli from healthy adults

in Nigeria compared to similar strain collections procured in

1986–1998. We sought to determine the contributions of integrons

to multiple- and trimethoprim resistance. Trimethoprim resistance

was most commonly attributed to a class 1 integron-borne dfrA7

cassette. We locate this promiscuous cassette to a transposable

element and demonstrate that dfrA7 cassettes on mobile elements

may be regionally disseminated.

Materials and Methods

Strains
Permission to conduct this study was provided by the

Institutional Review Board of Obafemi Awolowo University, Ile-

Ife, Nigeria. The study was also approved by the Institutional

Review Board of the University of Ghana Medical School. All

volunteers gave informed consent. E. coli isolates were recovered

from stool specimens collected from apparently healthy under-

graduates at the Obafemi Awolowo University and from

apparently healthy adults presenting for physical check-ups at

the Korle Bu Hospital Teaching Hospital as described previously

[20,25]. We collected and processed specimens in 2005 and 2009

using identical protocols to those used in 1986–1998 in Nigeria

and 2006–2008 in Ghana [20,25]. Lactose-fermenting colonies

isolated on MacConkey agar were confirmed as E. coli by

biochemical testing. (Lactose-negative E. coli were excluded).

Colonies from the same specimen with identical biochemical and

susceptibility profiles were treated as identical isolates. A total of

128 isolates from Nigeria in 2005 and 176 in 2009 were included

along with 130 isolates from Ghana in 2006, 73 isolates from

Ghana in 2007, and 88 isolates from Ghana in 2008.

Susceptibility Testing
The Clinical and Laboratory Standards Institute (CLSI,

formerly NCCLS) disc diffusion method was used to determine

susceptibility of the isolates to eight antibacterials [26]. Discs used

contained ampicillin (10 mg), streptomycin (10 mg), trimethoprim

(5 mg), tetracycline (30 mg), nalidixic acid (30 mg), chloramphenicol

(30 mg), ciprofloxacin (5 mg) and sulphonamide (300 mg) (Oxoid/

Remel). E. coli ATCC 35218 was used as control strain. Inhibition

zone diameters were interpreted in accordance with CLSI

guidelines using WHONET software version 5.3 [27].

General Molecular Biology Procedures
Genomic DNA was extracted using the Promega Wizard kit.

DNA amplification was performed using Platinum PCR Supermix

(Invitrogen) and 1 mM oligonucleotide primer in each reaction.

Oligonucleotide primer sequences are listed in Table S1.

Sensitivity and specificity of each primer pair for its target

sequence was tested in silico, using Genbank and BLAST, and

experimentally using strains of known genotype. All amplifications

began with a two-minute hot start at 94uC followed by 30 cycles of

denaturing at 94uC for 30 s, annealing at 5uC below primer

annealing temperature for 30 s, and extending at 72uC for one

minute per kilobase of DNA. When the target PCR product was

over 3 Kb, we used Pfx polymerase in accordance with manufac-

turer’s instructions, with annealing at 5uC below the temperature

used for Taq PCRs. Where necessary, for sequencing, PCR

amplicons were TA cloned into the pGEMT vector (Promega)

according to manufacturer’s directions and plasmids were

transformed into chemically competent E. coli K-12 TOP10 cells.

Large, naturally occurring plasmids were electroporated into

DH5aE electrocompetent cells (Invitrogen) using a Biorad

micropulser according to manufacturers’ instructions, and extract-

ed by a modified boiling protocol as described previously [28,29].

All other molecular biology operations were performed using

standard procedures [30].

Integron Cassette Amplification and Identification
The variable, cassette-containing portions of class 1 and class 2

integrons were amplified using conserved-end primers and

protocols described by Levesque et al [31] and White et al [32]

respectively. Restriction fragment polymorphism analyses of all

amplicons were performed in separate RFLP reactions using AluI

and MboI. At least three representatives of unique profiles were

cloned and sequenced.

Plasmid Replicon Typing
Three multiplex panels comprised of 18 primer pairs were used

to identify plasmid replicons by PCR as described by Johnson et al

[33]. Strains carrying well-characterized plasmids pMAR-7,

pB171, pHCM1 and pED204 were used as controls [34,35,36,37].

fliC Genotyping and Multilocus Sequence Typing
fliC PCR-restriction fragment length polymorphism (RFLP)

typing was performed as described by Fields et al [38]. The E. coli

fliC gene was amplified using the primers F-FLIC1 and R-FLIC2

(Table S1). Amplicons were digested with RsaI and restriction

profiles were compared after electrophoresis on 2.5% agarose gels.

Multilocus sequence typing was performed as described by Wirth

et al [39]. PCR primers listed in Table S1 were used to amplify

gene fragments from the adk, fumC, gyrB, icd, mdh, purA and recA and

amplified DNA products were sequenced from both ends. Allele

assignments were made at the publicly accessible E. coli MLST

database at http://www.mlst.net/.

Shot-gun Sequencing and Sequence Analysis
Whole-replicon shotgun library preparation, sequencing and

assembly of a large plasmid were performed by SeqWright DNA

Technology Services (Houston, TX). Sequence analyses and

Figure 1. Structure of generic integron. Each integron is
comprised of 59 and 39 conserved ends separated by a variable region
(black), which contains zero to several cassettes. The figure illustrates an
integron bearing a single cassette. Cassette incorporation occurs by
recombination between an attC attachment site at the 39 end of the the
gene cassette (hatched) at the integron’s attachment site (attI), located
at the 59 conserved end. This reaction is catalyzed by a site-specific
recombinase encoded by the 59 intI gene. Class 1 and Class 2 integrons,
which are the sub-categories most commonly associated with drug
resistance contain a promoter at the 59 conserved end, from which
cassette genes are transcribed.
doi:10.1371/journal.pone.0038142.g001

Transposon Disseminating dfrA7 in West Africa
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annotation were performed in Artemis [40]. Open reading frames

were initially defined by Glimmer. Annotations were made where

BLAST e-values equaled or approached zero and there was 98%

or greater identity at the DNA and amino acid levels. Direct and

inverted repeats were identified by dot-plot analysis of pairwise

FASTA alignments made using the BLAST suite. Open reading

frame and feature plots were prepared using Artemis and

DNAPlotter [41].

Results and Discussion

Increase in Trimethoprim Resistance Rates in South-
western Nigeria from 2005 is Associated with a
Predominant, Class 1-integron-borne dfrA7 Cassette

Between 1986 and 1998, we followed resistance trends for eight

antimicrobials among commensal bacteria belonging to the species

E. coli from apparently healthy Nigerian students [25]. We

observed a temporal increase in resistance for most heavily used

agents with the notable exception of trimethoprim, a drug

commonly administered as a fixed combination with sulphameth-

oxazole. During this period, resistance to trimethoprim, remained

at a stable high of 35–45% [25]. In this study, deliberately

designed to replicate the 1986 to 1998 protocols, stool specimens

were collected from 83 and 101 consenting adults in 2005 and

2009 respectively [1]. Susceptibility testing of the 304 E. coli

isolates obtained revealed that resistance to most agents commonly

used in Nigeria was high (Table S2). As shown in Figure 2,

trimethoprim resistance has become much more prevalent than in

previous decades, showing an 80% increase in 2005 on 1998 data,

with the number and percentage of trimethoprim-resistant strains

increasing again, from 86 (67.2%) to 122 (70.8%), between 2005

and 2009.

We used primers that anneal to the conserved ends of class 1

and class 2 integrons [31,32] to amplify the interim cassette

regions of all 128 E. coli isolates collected in Ile-Ife, Nigeria in 2005

and 176 isolates from 2009. These primers identify strains carrying

complete and intact integrons but exclude those that may be

truncated at the 39 end or otherwise modified [42]. We identified

specific cassettes by sequencing and restriction fragment length

polymorphism analyses. Based on data from similar studies

elsewhere in the world, we hypothesized that dfrA genes would

be detected and that dfrA1, the most commonly reported allele

worldwide [5,10,16,18,43,44] would feature predominantly. We

did indeed identify only dfrA alleles, including several strains

harboring dfrA1. There were only two varieties of class 2 integron

cassettes, both carrying dfrA1 cassettes. The more common variant

was dfrA1-sat-aadA, known to be globally disseminated via

transposon Tn7 [16,45]. However, in contrast to recent studies

performed outside Africa [46,47], dfrA1 was not the most common

allele in class 1 integrons. There was low diversity overall and

67(56.8%) of isolates with a class 1 integron, carried a single dfrA7

cassette identical to that in Tn5086, originally isolated from an E.

coli strain in Colombo, Sri Lanka [48].

Class 1 Integron-borne dfrA7 Cassettes Occur Widely
Among E. coli from Sub-Saharan Africa

We examined the literature for studies that sought class 1

integron cassettes from intestinal E. coli. dfrA7 alleles in the class 1

integron single-cassette conformation have been reported previ-

ously from E. coli isolates, but not commonly. Of the over 100

studies that characterized integron cassette contents, most found

dfrA7 relatively uncommon, if geographically widespread. The

cassette was identified at low levels in community-acquired E. coli

in the following countries: Finland (0–2%) [45,49], Korea (4%)

[50], Bolivia (2.6%) [47] Spain (3.6%) [46], Taiwan (3.8%) [51],

Greece (0.9%) [52], the USA (4.4%) [17], Lebanon (2%) [53],

Australia (1/20) [54] as well as Sweden and Sri Lanka (,7%)

[16,48]. dfrA7 is also more commonly reported from Salmonella

[55,56]). By contrast, the few, generally small studies from Africa,

reported dfrA7 from E. coli in much larger proportions: 18.7% in

Nigeria [57], 33.3% in Senegal [58], 38% in South Africa [59],

and more recently, 49% in the Central African Republic [60]and

40% in Tunisia [61]. Descriptive genetic studies of E. coli isolates

from Nigeria have invariably found dfrA7 [62,63]. In other recent

studies across Africa where the specific dfr alleles have been

uncharacterized, rates of resistance to trimethoprim are high

[22,64]. These data suggest that dfrA7 may be disseminated sub-

regionally.

To test the hypothesis that class 1 integrons bearing dfrA7

cassettes were also highly prevalent among E. coli outside our Ile-

Ife, Nigeria study area, we screened 291 isolates collected in Accra,

Ghana between 2006 and 2008 [20]. As shown in Table 1, a few

cassette combinations were identified repeatedly at one geographic

location but not at the other. Future studies could reveal that these

combinations represent locally disseminated elements or clones.

They included dfrA5 and dfrA15 from Nigeria and dfr2d in Ghana.

However, eight cassette arrays were seen at both sites. In addition

to dfrA1, these include dfrA15-aadA1 (reported from Vibrio spp in

Africa [65,66]) as well as, dfrA17-aadA5, which is associated with

uropathogenic clonal group A strains known to be present in

Nigeria [24,67]. However, all of other cassette combinations

detected at both sites, combined, were less common than dfrA7,

which was identified in 54 (52.4%) class 1 integron-bearing

isolates.

Independent Isolates from Nigeria and Ghana Bearing
dfrA7 Cassettes are not Clonal

Clonal expansion has accounted for dissemination of some dfrA

alleles elsewhere on the globe and we hypothesized that it could

account for dfrA7 spread in Nigeria and Ghana [24,68,69,70].

When we examined the genetic background of 12 strains by multi-

locus sequence typing (MLST) by the scheme of Wirth et al [39],

we identified nine different sequence types (Table S3). Similarly,

flagellin typing [38] of 35 other dfrA7-positive isolates identified at

Figure 2. Trimethoprim resistance trends among E. coli isolates
from healthy adults in Ile-Ife Nigeria 1988–2009.
doi:10.1371/journal.pone.0038142.g002

Transposon Disseminating dfrA7 in West Africa
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least 15 different flagellin types among 23 typeable strains (Figure

S1), confirming that the genomic background of isolates bearing

the dfrA7 gene is diverse.

Isolate 05/01a from Nigeria Bears dfrA7 on a Plasmid
Encoding Resistance to Multiple Antimicrobials

We next sought to determine whether the dfrA7 cassette could

be transferred to a nalidixic acid-resistant derivative of E. coli K-12

strain C600 by conjugation. We employed seven dfrA7-bearing

strains as conjugative donors, five from Nigeria and two from

Ghana. All were resistant to ampicillin, streptomycin, sulphon-

amides, tetracycline and trimethoprim, five strains were addition-

ally resistant to chloramphenicol and five showed low-level

nalidixic acid resistance. All the isolates tested were ciprofloxa-

cin-sensitive. As shown in Table 2, the dfrA7 gene could be

conjugated from only three of these isolates. Therefore, although

we are able to conclude that the dfrA7 cassette can be conjugated in

vitro in some instances, it is present in a non-conjugable form in

other strains.

As shown in Figure 2, dfrA7-positive strain 05/01a from Nigeria

harbors at least four plasmids. This strain is unable to conjugate

dfrA7 in vitro (Table 2), but could serve as a transformative donor of

the gene (Table 3). Strain 05/01a is susceptible to ciprofloxacin

and chloramphenicol but resistant to the other six tested

antimicrobials, including low-level resistance to nalidixic acid.

Electroporation of a Kado and Liu [28] plasmid extract into

DH5a-E cells (Invitrogen) yielded transformants on trimethoprim

plates that are co-resistant to ampicilin, streptomycin and

sulphonamides but not to nalidixic acid or tetracycline (Table 3).

While having different plasmid profiles, each of these transfor-

mants carried a single, large, low-copy number plasmid on which

the dfrA7 gene is located (Figure 3). As shown in Table 3, the

plasmid in question could not be incompatibility-typed with the

primers of Carattoli et al [71], which represent the most common

plasmid incompatibility groups.

We sequenced the dfrA7-bearing plasmid from isolate 05/01a,

and designated it pASL01a. The complete sequence of this

plasmid has been deposited in Genbank (Accession number

JQ480155). As shown in Figure 4, pASL01a is a 27,072 bp

plasmid largely comprised of a Tn21-family transposable element.

pASL01a contains 29 predicted open reading frames and has an

overall G+C content of 56.67%. The relatively low G+C content

5,168 bp plasmid backbone contains only three open reading

frames: the replicon, a putative mob gene and an orf of unknown

function. Although a precise origin of replication could not be

identified, a sharp change in GC skew just upstream of repAAS01a

indicates the location of the likely origin. Analysis using BLAST

revealed that the backbone region is most similar to several

unpublished or recently published sequences of small ColE-related

plasmids. The best matches (98% or greater identical at the DNA

level) include the 5,146 bp E. coli plasmid pIGJC156

(gb|EU090225.1|), the 7,462 bp E. coli plasmid pMG828-4

Table 1. Integron cassettes in E. coli from Nigeria and Ghana between 2005 and 2009.

Nigeria 2005
(n = 128)

Nigeria 2009
(n = 176)

Ghana 2006
(n = 130)

Ghana 2007
(n = 73)

Ghana 2008
(n = 88)

Integrons in E. coli isolates (%)

Single class 1 integron only 37 (28.9) 70 (39.8) 35 (26.9) 23 (31.5) 45 (51.1)

Multiple class 1 integrons – 4 (2.3) – 1 (1.3) –

Class 2 integron only 8 (6.3) 14 (8.1) 6 (6.6) 1 (1.3) 2 (22.7)

Class 2 integron and single class 1 integron 1 (0.8) 13 (7.6) 5 (3.8) 2 (2.7) 9 (10.2)

Class 2 integron and multiple class 1 integron - 1 (0.6) – – –

Gene Cassettes in Class 1 Integrons in
isolates bearing one integron (%)

(n = 37) (n = 74) (n = 35) (n = 23) (n = 45)

dfrA7 22 (59.5%) 45 (60.8%) 19 (54.3%) 11 (4.8%) 24 (53.3%)

dfrA1 aadA1 4 (10.8%) 11 (14.9%) 3 (8.6%) 5 (21.7%) 12 (26.7%)

dfrA5 3 (8.1%) 6 (8.1%) – – –

dfrA15 aadA1 3 (8.1%) – 9 (25.7%) 1 (4.3%) –

dfrA17 aadA5 2 (5.4%) 2 (2.7%) 3 (8.6%) 2 (8.7%) 3 (6.7%)

aadA5 1 (2.7%) – – – –

dfrA1 1 (2.7%) – – – –

dfrA2d – – 1 (2.9%) 4 (17.4%) 5 (11.1%)

aadA1 – 1 (1.4%) 2 (5.7%) 3 (13%) –

blaOXA-1 aadA1 – 3 (4.1%) 1 (2.9%) – 4 (8.9%)

dfrA17 aadA4 – – – – 2 (4.4%)

dfrA15 5 (6.8%)

aadA2 1 (1.4%)

dfrA12 orfF aadA2 1 (1.4%)

Gene Cassettes in Class 2 Integrons (all) (n = 9) (n = 27) (n = 11) (n = 3) (n = 11)

dfrA1, sat1 1 (11.1%) 4 (14.8%) 1 (9.1%) - 3 (27.2%)

dfrA1, sat1, aadA1 8 (88.9%) 23 (85.2%) 10 (82.6%) 3 (100%) 8 (72.7%)

doi:10.1371/journal.pone.0038142.t001

Transposon Disseminating dfrA7 in West Africa
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(gb|DQ995354.1|) and multiple plasmids from recently genome-

sequenced pathogens [72,73]. Plasmid pIGJC156 is 97% identical

to the backbone of pASL01a. The only dissimilar region between

pIGJC156 and the pASL01a backbone is the replicon. The

replicon of plasmid pMG828-4 is also not significantly similar to

that of pASL01a and 1 kb of downstream pASL01a sequence is

replaced by a putative NADH oxidase gene not present in

pASL01a. The replicons of the pathogen plasmids are over 98%

identical to that of pASL01a [72,73]. None of these plasmids carry

any virulence genes and all are present in strains that carry other,

larger plasmids.

pASL01a is principally comprised of a transposon with the basic

transposition module and mercury resistance genes of Tn21. With

the exception of the In2-associated tni module, which is truncated

in pASL01a, all the transposition components of Tn21 are present

and conserved with the transposon, suggesting that the element

may be mobile. Between these modules, as in Tn21, a class 1

integron(carrying dfrA7, sulI and qacED1 genes) is inserted.

Between the In2 and tni modules of the Tn21-like element is

inserted an IS26-derived resistance element, bearing widely

disseminated genes encoding resistance to beta lactams (blaTEM),

sulphonamides (sul2) and aminoglycosides (strAB). The gene

content and order of this module is identical to that of plasmid

pAKU_1 and pHCM1 from Salmonella enterica Paratyphi and

Typhi respectively [55,74]. This 9 Kb bla/sul/str module has also

been encountered on a number of other enterobacterial multidrug

resistance plasmids and our data add to the evidence that suggests

that the element is highly promiscuous [74,75,76] and, as Holt et

al [74] speculate, moves as a block. A separate study from

Australia proposes that the IS26-flanked sul/str portion of this

transposon, originally described in plasmid RSF1010, may itself be

a separable module [77]. The locations of repeats and alterations

in G+C content depicted in Figure 4, suggest that any or all of

these possibilities may account for our encountering this resistance

Table 2. Results of conjugation experiments using dfrA7-positive isolates as donors.

Strain Source (year) Cassette(s)
Donor Resistance
Profile

Trans-conjugant
Resistance Profile

dfrA7-positive strains

05/01a Nigeria (2005) dfrA7 A (N)SLTR None*

05/9c Nigeria (2005) dfrA7 AC (N)SLTR None*

05/23a Nigeria (2005) dfrA7 AC (N)SLTR AC NSLTR

05/25a Nigeria (2005) dfrA7 AC (N)SLTR None*

05/33a Nigeria (2005) dfrA7 AC (N)SLTR AC NSLTR

046 Ghana (2006) dfrA7 A SLTR A N LTR

116 Ghana (2006) dfrA7 AC SLTR AC NSLTR

Strains bearing cassettes other than dfrA7

115 Ghana (2006) aadA1 dfrA15 AC L R AC N LTR

05/27a Nigeria (2005) dfrA17 aadA5 AC SLTR AC NLTR

Control strains

R100.1 [92] aadA1 C SLT C SLT

SM10 [93] ND K None*

*Indicates that no transconjugants were isolated;
Antibiotic code key: A, ampicillin; C, chloramphenicol; N, nalidixic acid (high level); (N), Nalidixic acid (lower level); S, streptomycin; L, sulfonamides; T, tetracycline; R,
trimethoprim; K, Kanamycin.
doi:10.1371/journal.pone.0038142.t002

Table 3. Plasmid replicons detected in select dfrA7-bearing strains isolated from Nigeria in 2005.

Strain Resistance profile
Integron-borne trimethoprim
resistance gene Plasmid replicons detected by PCR

05/01a A (N)SLTR dfrA7 T, Y

05/09c AC (N)SLTR dfrA7 T, Y

05/23a AC (N)SLTR dfrA7 FIC, T, Y

05/30a AC (N)SLTR dfrA7 FIB, T, Y

05/31a AC (N)SLTR dfrA7 –

05/32c AC (N)SLTR dfrA7 B/O, FIB, Y

05/33a AC (N)SLTR dfrA7 B/O, T

DH5aE (pASL01a) A SLR dfrA7 –

DH5aE – None –

Antibiotic code key: A, ampicillin; C, chloramphenicol; (N), Nalidixic acid (low level); S, streptomycin; L, sulfonamides; T, tetracycline; R, trimethoprim.
doi:10.1371/journal.pone.0038142.t003
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transposon on a plasmid of unusual backbone from Nigeria. The

transposon described here lacks a Tn9-derived portion encoding

chloramphenicol resistance often seen in resistance plasmids

bearing Tn21-derived elements and could share an ancestor with

those that have mediated rapid acquisition of multiple resistance

genes in Salmonella [36,74,78]. The dfrA7-bearing transposon from

pASL01a is also in many ways similar to transposon Tn5086, a

Tn21-family transposon restriction mapped in 1993 [48]. Tn5086

possesses a Tn21 backbone, with dfrA7 and mercury genes

included, but lacks the bla/sul/str element.

Close examination of the predicted DfrA protein encoded by

pASL01a reveals that the gene, and its flanking sequence, is

identical to that of Tn5086 [48]. Sundström et al [48]

demonstrated experimentally that the start codon was a TTG,

and that the upstream ATG codons that are annotated as starts for

many dfrA7 and dfrA17 alleles in the Genbank database were in

fact not required for translation and overlapped the ribosomal

binding site. As there are some dfrA7 alleles in the database that

have an ATG codon at this locus, we resequenced the dfrA7 gene

alone, obtaining 6X sequence coverage from three independent

pASL01a subclones, and confirming the TTG codon. TTG start

codons are uncommon in E. coli and it is therefore unusual that a

resistance gene that begins with this codon has been so widely and

successfully disseminated. A variant dfrA7 allele, this time with

polymorphisms at the C-terminal end, has been previously

reported from Nigeria [63]. The existence of multiple dfrA7 alleles

in this population is likely linked to the high frequency of the gene.

However, conservation of the functional regions strongly suggests

that the gene remains under selection, consistent with intensive

local trimethoprim use [1].

pASL01a is Only One of Multiple Vectors for TnASL01a
We used PCR to screen the isolates from Nigeria for repC, a

gene that lies within the predicted transposon as well as repASL01a

and the putative mob locus on pASL01a, which are part of the

plasmid backbone. Using primers Lev5’CS (located immediately

upstream of dfrA7) and JSMrepCR (within the transposon-borne

repC gene), we verified by long PCR that the distance between

these two genes was 6 Kb for all 22 2005 isolates from Nigeria that

carry the dfrA7 and the repC genes as well as for the three dfrA7-

positive isolates from Ghana that were employed in conjugation

experiments.

Using primers for intI1 (TnASL01a class 1 integron gene), repC

from TnASl01a and the region of pASL01a encompassing the

plasmid origin of replication and putative mob genes (Table S1), we

screened the 2005 and 2009 isolates for different regions of

pASL01a. As shown in Table 4, only 12 (18.5%) of 65 dfrA7-

positive isolates from Nigeria possessed the pASL01a rep-mob

backbone region together with repC and intI1. However, 36

(55.4%) strains were positive for repC and intI1 but negative for the

pASL01a backbone markers. Similarly, we detected repC in 37

(64.9%) dfrA7-positive strains from Ghana but only four (7.0%)

dfrA7-positive strains also had the pASL01a backbone genes.

Interestingly, the pASL01a plasmid backbone was significantly less

common in dfrA7-positive isolates from Ghana, compared to

isolates from Nigeria, where it was originally identified (p = 0.038,

Yates-corrected Chi-squared test). However the repC was identified

at statistically similar levels at both sites (p = 0.9).

The data demonstrate that while presence of dfrA7 is strongly

associated with TnASL01a, there are other class 1 integron-borne

genes that are likely to be disseminated by Tn21-like transposons

that have the repC gene (Table 4). These include aadA1, dfrA1-

aadA1, blaOXA and dfrA5, which have previously been reported in

the literature and showed similar strong associations in this study

(Table 4) [76,78,79]. These findings emphasize that transposon-

borne integrons are flexible platforms that can evolve to carry

different genes, depending on cassette availability, integrase

activation and selective pressure. Such a model could account

for the origin of the dfrA7-bearing transposon we report here and

suggests that other cassettes may be incorporated when new

antibacterials are introduced.

Plasmids bearing dfrA7 genes in the context we describe have

been reported from Salmonella enterica Typhi and Paratyphi serovars

[36,74]. Although integrons are more commonly sought in E. coli

reports of class 1-integron-borne dfrA7 alleles are comparatively

less common. In Salmonella, dfrA7-bearing transposons are typically

found on large IncH1 plasmids, which have spread through Asia

[55,74]. However we did not identify IncH plasmids in this study

and the plasmid isolated from strain 05/01a was relatively small,

carrying only the resistance transposon, and a small 5 Kb core.

Resistance genes can gain success by hitchhiking on successful self-

transmissible elements or entering epidemic bacterial clones, both

mechanisms of which have been the focus of most published

studies. Resistance genes, such as the dfrA7 allele we have mapped

in this study, can equally achieve prominence by trans-mobiliza-

tion, either because they are carried on elements that can be

mobilized [80] or because they can transpose between mobile and

non-mobile elements [81].

Figure 3. Plasmid profiles of E. coli strain 05-01a and its plasmid
transformants. Lane 2: Plasmid-free DH5a; Lane 3: 05-01a, dfrA7-
positive 2005 isolate from Nigeria; Lanes 4–7: four independent
transformants produced by electroporating DH5a with a plasmid
preparation from 05-01a and selecting on plates containing 50 mg/ml
trimethoprim. The arrow indicates the position of chromosomal DNA, as
inferred from the DH5a profile. Lane 1: Hyperladder 1 marker.
doi:10.1371/journal.pone.0038142.g003
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Figure 4. Circular map of 27,072bp pASL01a. Circles display (from the inside) (a) GC skew ([G + C]/[G - C]) in a 1,000-bp window (b) GC content
in a 1,000-bp window (purple representing above average and yellow below average in both cases) (c) plasmid backbone in beige (d) predicted
coding sequences and (e) kilobase scale. Open reading frames predicted to encode drug resistance genes are colored red and those that encode
resistance to other chemical entities are gold. All other predicted open reading frames are marked in blue. Dark gray lines on the open-reading frame
and backbone tracks mark the position of inverted repeats.
doi:10.1371/journal.pone.0038142.g004

Table 4. Number and percentage of isolates bearing TnASL01a-associated sequences intI1 and repC, and pASL01a backbone
associated sequences repASL01a and mob.

Country, Year of
isolation Class 1 integron cassettes

repC, intI1 (without
repASL01a, mob)

repC, intI1
and
repASL01a, mob*

Neither repC nor
repASL01a, mob

Nigeria, 2005 dfrA7 14 (63.6) 7 (31.8) 1 (4.5)

Other class 1 integron cassettes 5 (33.3) 2 (13.3) 8 (53.3)

No class 1 integron 8 (9.8) 0 (0) 73 (89.0)

Nigeria, 2009 dfrA7 32 (71.1) 5 (11.1) 8 (17.8)

Other class 1 integron cassettes 19 (65.5) 5 (17.2) 9 (31.0)

No class 1 integron 30 (42.9) 1 (1.42) 39 (55.7)

Ghana, 2006 dfrA7 15 (78.9) 2 (10.5) 0 (0)

Other class 1 integron cassettes 3 (18.8) 0 (0) 13 (81.3)

No class 1 integron 19 (22.6) 0 (0) 65 (77.4)

Ghana, 2007 dfrA7 9 (81.8) 1 (9.1) 1 (9.1)

Other class 1 integron cassettes 5 (41.6) 0 (0) 7 (58.3)

No class 1 integron 8 (17.0) 0 (0) 38 (80.9)

Ghana, 2008 dfrA7 13 (54.2) 1 (4.2) 10 (41.7)

Other class 1 integron cassettes 13 61.9) 0 (0) 8 (38.1)

No class 1 integron 11 (25.6) 1 (2.3) 31 (72.1)

doi:10.1371/journal.pone.0038142.t004
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Conclusions
Our work demonstrates that a small repertoire of widely

disseminated mobile cassettes account for most of the trimethoprim

resistance among E. coli isolates in Nigeria and Ghana. Many dfrA

alleles associated with integrons, transmissible plasmids, or both, are

globally disseminated. For example, detection of dfrA1-containing

integrons in our study is not surprising and indicative of a globally

disseminated resistance pool, from which organisms in West Africa

are not isolated [82,83]. We identified a dfrA7 allele that is

extraordinarily over-represented in Nigeria, Ghana and possibly

elsewhere in sub-Saharan Africa. The allele lies within a class 1

integron borne on a potentially mobilizable Tn21-like transposon.

It is not clear when the dfrA7–bearing transposon entered the E.

coli commensal population in Nigeria because strains isolated prior

to 2005 were unfortunately not archived. dfrA7 was reported as

early as 1995 from South Africa when Adrian et al [59] described

it as the most common dfr allele. Interestingly, they were unable to

transfer the dfrA7 marker in that study by conjugation and

southern hybridization demonstrated that the gene was, in most

cases, located on the chromosome. Lamikanra and coworkers

[57,84], suggest that the predominant dfr allele in the 1980s and

early 1990s was a class 2 integron borne dfrA1, which we still detect

significantly in both Nigeria and Ghana. dfrA7 was detected in

those earlier studies, but less commonly, and was transferable by

conjugation [57,84]. Thus it is possible that the transposon we

describe has been in circulation in parts of Africa for some time.

However it is tempting to view its introduction, or selective

success, as a recent event because we have seen trimethoprim

resistance increase rapidly after 2005.

Minimal data on resistance elements from Africa are available

because few molecular studies are performed there. Kingsley et al

(2009) report that strains belonging to the recently evolved invasive

non-typhoidal Salmonella lineage isolated in Malawi and Kenya

carry resistance genes on Tn21-type transposons very similar to

that identified in this study [78]. The resistance genes on those

transposons largely account for the treatment failure associated

with these infections in recent years. Our study opens questions as

to how antimicrobial use patterns, or other risk factors, may have

provided enormous selective advantage for multi-drug resistance

plasmids. Much of Africa has seen unprecedented selective

pressure from trimethoprim and sulphamethoxazole in recent

times and Skurnik et al (2009) propose that integron-associated

resistance is linked to high levels of selective pressure [85]. Since

resistance rates remained stable until 1998, we hypothesize that a

recent change in antimicrobial use patterns would most likely

account for the spread of pASL01a and consequent upsurge in

trimethoprim resistance.

Rapid spread of HIV has been coupled with severe resource

constraints for managing infected people in Africa. In 1999, the

results of a clinical trial revealed that trimethoprim-sulphamethox-

azole prophylaxis decreased morbidity and mortality from oppor-

tunistic infections in patients in Abidjan, Ivory Coast [86,87]. These

findings resulted in trimethoprim-sulphamethoxazole prophylaxis

policies that have been applied almost continent-wide. Much-cited

‘cost effectiveness’ of long-term trimethoprim-sulphamethoxazole

prophylaxis for AIDS patients, who, but for slow roll outs, could be

on more effective but more expensive antiretrovirals [4], does not

factor in the losses from declining trimethoprim and sulphonamide

susceptibility due to resistance. In parallel with prophylactic use, this

and other recent studies from Africa have reported trimethoprim-

resistance rates in clinical isolates of E. coli and related organisms

that exceed 70% [88,89,90]. Studies that specifically examined

carriage of resistant E. coli and Streptococcus pneumoniae among

individuals on trimethoprim-sulphamethoxazole prophylaxis, in

comparison with those not receiving these drugs, document a

significantly greater level of resistance among patients receiving

prophylaxis [88,90,91]. Trimethoprim- sulphamethoxazole pro-

phylaxis did not select for trimethoprim and sulphonamide

resistance alone, but resistance to multiple antimicrobials. In E.

coli, this is consistent with a role for multiply-resistant elements, such

as pASL01a, and the transposon it carries.

In Finland, the rates of trimethoprim resistance among urinary E.

coli isolates increased from about 10% to 40% between 1978 and

1984, at a time when trimethoprim was used intensively for empiric

treatment of urinary tract infections [45]. This rapid increase in

resistance was largely due to epidemic dissemination of mobile

elements bearing dfrA1 genes in a scenario similar to dfrA7-mediated

resistance in West Africa today. When trimethoprim was with-

drawn, resistance rates not only failed to decline, they continued to

rise because the resistance gene in question was borne on a

transposon that could stably integrate into the chromosomes as well

as into plasmids [45]. Ultimately, dfrA1-bearing transposons were

disseminated globally. Because we found that trimethoprim

resistance is linked to resistance to other commonly used

antimicrobials (penicillins, sulphonamides and streptomycin), we

cannot directly implicate trimethoprim use alone in the selection of

the transposon identified in this study. In the same vein, we predict

that, as was demonstrated in the Finland case and experimentally

tested in Kronberg Country Sweden, withdrawal of trimethoprim-

sulphamethoxazole is unlikely to be sufficient to produce a return to

susceptibility [16,45]. Our study reveals that gene context is an

important determinant of evolutionary success. Since the structure

of the transposon demonstrates flexible incorporation of resistance

genes, it is essential to control selective pressure to newer agents to

prevent their resistance being incorporated into this or other

successful platforms.
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