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Binary nucleation kinetics. IV. Directional properties and cluster
concentrations at the saddle point

Gerald Wilemskia)

Department of Physics and Cloud and Aerosol Sciences Laboratory, University of Missouri-Rolla,
Rolla, Missouri 65409-0430

~Received 27 July 1998; accepted 29 December 1998!

Using a new approach, Stauffer’s expression for the rate of steady state binary nucleation and
Trinkaus’s expression for the steady state cluster concentrationsf are derived directly from the
diffusion equation that governs the evolution off in composition space. The behavior ofF
([ f /N, whereN is the equilibrium cluster concentration! is explored since this function provides
a characterization of the nucleating binary system that, to lowest order, is independent of the actual
composition of the mother phase. The anglev that describes the direction of¹F at the saddle point
differs, in general, from the anglef found by Stauffer for the direction of the nucleation current at
the saddle point. These two angles are related by the formula: tanf5r tanv, wherer is the ratio of
impingement frequencies defined by Stauffer. In general, at the saddle point,¹F also fails to lie in
the direction of steepest descent on the free energy surface. ©1999 American Institute of Physics.
@S0021-9606~99!50613-2#

I. INTRODUCTION

Recently, Wyslouzil and Wilemski1,2 published the re-
sults of extensive numerical studies of binary nucleation ki-
netics for six different systems over a reasonable range of
nucleation rates. The primary quantities calculated in this
work were the time-dependent nonequilibrium concentra-
tions f (n1 ,n2 ,t) of clusters of composition (n1 ,n2), where
ni is the number of molecules of speciesi in the cluster.
They found that their numerical results simplified consider-
ably for all the binary systems studied when thef (n1 ,n2 ,t)
were normalized by the equilibrium cluster concentrations
N(n1 ,n2). The resulting ratios, which they denoted asF
([ f /N), displayed a quasiuniversal behavior that was inde-
pendent of the monomer concentrations of each species to a
very good first approximation. Some of the theoretical
framework needed to understand this behavior is implicit in
an important and insightful paper by Trinkaus,3 but the direct
connections need to be drawn out. Besides the results pre-
sented here, detailed considerations may also be found in
two other recent papers.4,5

The main goal of this paper is to provide a basis for
interpreting the numerical results of Wyslouzil and
Wilemski2,5 using relatively simple, physically-based math-
ematics to derive quantitative expressions forF and the di-
rection of its gradient at the saddle point. These quantities
are significant because contour lines of constantF(n1 ,n2)
form a regular pattern when plotted in the two-dimensional
(n1 ,n2) cluster composition space. In particular, in the vi-
cinity of the saddle point the contour lines are locally straight
and parallel. The anglev between¹F and then1 axis is a
convenient way to characterize this behavior. As shown
elsewhere,5 v is nearly constant and independent of the com-
position of the mother phase for nucleated phases that form
ideal mixtures. For nonideal mixtures,v varies systemati-

cally with the mother phase composition. Thus, in either
case,v is a useful quantity to understand, and an explicit
formula governing its dependence on the physical properties
of the system will be developed. Using a different approach,
a very recent paper by Li and Nishioka4 treats some of the
same issues addressed here. In particular, they find the same
result forv that is presented below.

One key result that will be demonstrated is that in cluster
composition space (n1 ,n2) the anglev differs, in general,
from both the anglef found by Stauffer6 for the direction of
the nucleation flux vectorJ at the saddle point, and the angle
a of Shi and Seinfeld7 that characterizes the principal axis
transformation devised by Trinkaus. This demonstration also
resolves some existing confusion7,8 about the roles off and
a in binary nucleation theory. At the saddle point,J and¹F
generally point in different directions. In the space of trans-
formed variables (n1 ,n2), introduced by Trinkaus,a plays
the role of bothv andf. That is, the transformed gradient of
F and the transformed nucleation currenti at the saddle
point always lie in the same direction defined bya. The
same strategy used by Trinkaus to reduce both problems to a
single one-dimensional problem has been generalized in
more formal treatments of multiparameter,9 binary,10 and
multicomponent nucleation.11

The plan of this paper is as follows. In Sec. II, explicit
formulas forF andv are derived, and the direction of¹F is
established. In Sec. III, the expression forJ at the saddle
point and the relationship betweenv and f are derived. In
Sec. IV, Stauffer’s expression6 for the steady state rate of
binary nucleation is rederived starting from an explicit, but
general definition of the nucleation rate. This final exercise is
undertaken not only to consummate the preceding analysis
but also to provide a more transparent derivation than do the
elegant, but less physically intuitive treatments published
earlier.3,7,9–11 Finally, in the Appendix, the connection be-a!Electronic mail: wilemski@umr.edu
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tween the present results and those of Trinkaus,3 and Shi and
Seinfeld7 is established.

II. STEADY STATE SOLUTION FOR F

When the cluster composition variablesn1 ,n2 are
treated as continuous, the fundamental equation governing
the evolution off (n1 ,n2 ,t) in time t and composition space
can be written in the form of a continuity equation,12

2
] f ~n1 ,n2 ,t !

]t
5¹•J5

]J1

]n1
1

]J2

]n2
, ~1!

where the nucleation flux vectorJ is defined as

J5J1e11J2e2 , ~2!

the ei are unit vectors in the Cartesian (n1 ,n2) coordinate
system, andJ1 andJ2 are the time and composition depen-
dent fluxes given as

Ji52N~n1 ,n2!G iNi

]F

]ni
. ~3!

In Eq. ~3! G i(n1 ,n2) is the rate coefficient for adding a
monomer of typei to a cluster of composition (n1 ,n2), and
Ni is the monomer number density of speciesi in the mother
phase. To solve Eqs.~1! and ~3!, we introduce new coordi-
natesz and m that translate the origin to the saddle point
~where values are denoted by* ! and rotate then1 andn2 axes
by an anglev ~see Fig. 1!:

n12n1* 5z cosv2m sinv, ~4!

n22n2* 5z sinv1m cosv. ~5!

Since this is an orthogonal transformation, and since at
steady state] f /]t50, Eq. ~1! transforms into

05
]Jz

]z
1

]Jm

]m
, ~6!

where the new flux componentsJz andJm are defined as

Jz5J1 cosv1J2 sinv, ~7!

Jm52J1 sinv1J2 cosv. ~8!

Using Eqs.~3!, ~4!, ~5!, ~7!, and ~8!, Jz and Jm can be
expressed explicitly as

Jz52NS~v!
]F

]z
1ND~v!

]F

]m
, ~9!

and

Jm5ND~v!
]F

]z
2NY~v!

]F

]m
, ~10!

where

S~v!5R1 cos2 v1R2 sin2 v, ~11!

D~v!5~R12R2!cosv sinv, ~12!

Y~v!5R1 sin2 v1R2 cos2 v, ~13!

and whereRi5G iNi . To further simplify Eqs.~9! and ~10!,
we impose the condition that]F/]m50. This condition will
shortly be used to determinev uniquely. More generally, it
can be viewed as implicitly defining a curvilinear coordinate
system in whichF is a constant along lines of constantz. In
general, asm changes along a constantz line, v will also
vary, but in the vicinity of the saddle point it is a very good
approximation to holdv constant. With]F/]m50, the ex-
pressions forJz andJm reduce to

Jz52NS~v!
dF

dz
, ~14!

and

Jm5ND~v!
dF

dz
. ~15!

Note that although]F/]m50, each of the new flux compo-
nents is, in general, nonzero in this coordinate system.

Next, we substitute Eqs.~14! and ~15! into Eq. ~6!. In
carrying out the required differentiations,R1 andR2 are held
constant at their saddle point values,R1* andR2* . Because of
this simplification, all of the subsequent results in this paper
are generally valid only near the saddle point. The resulting
differential equation forF is,

05S* ~v!
d2F

dz2 1p~z!
dF

dz
, ~16!

where

p~z!5S* ~v!S ] ln N

]z D
m

2D* ~v!S ] ln N

]m D
z

. ~17!

Because Eq.~16! was obtained by using the condition
]F/]m50, F depends only onz. Thus,p(z) must also de-
pend only onz, and any apparent dependence onm must be
formal. To find an explicit expression forp(z), we exploit
the linear dependence of lnN on the reversible work of clus-
ter formationW(n1 ,n2),

kT ln N52W1const, ~18!

and make the usual quadratic expansion forW in the neigh-
borhood of the saddle point.12 With w5W/(kT) we have

FIG. 1. Thez–m andj–h coordinate systems used in solving forF andJ,
respectively. Near the saddle point,¹F and J are parallel to thez and j
axes, respectively. The anglesv andf, determined by Eqs.~24! and ~47!,
are also shown.

6452 J. Chem. Phys., Vol. 110, No. 13, 1 April 1999 Gerald Wilemski



w2w* 5
1

2 (
i , j

~ni2ni* !wi j* ~nj2nj* !, ~19!

where

wi j 5
]2w

]ni ]nj
. ~20!

With the help of Eqs.~4!, ~5!, ~18!, and ~19!, Eq. ~17!
can be explicitly written as

p~z!5zL1mM , ~21!

where

L52S* ~v!@w11* cos2 v1w12* sin 2v1w22* sin2 v#

1D* ~v!@w12* ~2 cos2 v21!

1~w22* 2w11* !sinv cosv#, ~22!

and

M5D* ~v!@w11* sin2 v2w12* sin 2v1w22* cos2 v#

1S* ~v!@w12* ~2 sin2 v21!

1~w11* 2w22* !sinv cosv#. ~23!

The formalm dependence in Eq.~21! is eliminated by setting
M equal to zero. The ensuing equation constitutes a defining
relationship forv, and it yields the following result,

tanv5@s1~s21r !1/2#/r , ~24!

where Stauffer’s simplifying notation has been used:

r 5R2* /R1* , ~25!

s5~rw22* 2w11* !/~2w12* !. ~26!

Equation~24! is valid for w12* ,0, which should be true for
all cases of binary nucleation involving two different chemi-
cal species. For other types of phase transformations9,13 that
are formally describable in terms of binary nucleation, it may
be possible thatw12* .0. In these cases, Eq.~24! requires a
sign change.13

With the m dependence removed, Eq.~21! reduces to

p~z!5zL, ~27!

andL may be written more simply as

L52~R1* w11* cos2 v1~R1* 1R2* !w12* cosv sinv

1R2* w22* sin2 v!. ~28!

Equation~27! may be used to recast Eq.~16! as

d2F

dz2 52zL
dF

dz
, ~29!

whereL is a positive constant,

L5L/S* ~v!. ~30!

With the usual boundary conditions

F~z!51, z→2`, ~31!

F50, z→`, ~32!

which correspond to the smallest clusters being present at
their equilibrium concentrations and the largest being absent,
Eq. ~29! admits the following solution that will later be
shown to be equivalent to Trinkaus’s:

dF

dz
52S L

2p D 1/2

expS 2
1

2
Lz2D , ~33!

F~z!5 1
2 erfc~AL/2z!. ~34!

As a minor sidelight, note that at the saddle point (z50) Eq.
~34! predicts that the steady state critical nucleus concentra-
tion is one-half of the equilibrium value, just as for the case
of unary nucleation14 and in agreement with numerical
results.2,5 The dependence ofF and dF/dz on n1 and n2

may be found simply by inverting Eqs.~4! and~5! to obtain

z5~n12n1* ! cosv1~n22n2* ! sinv, ~35!

which may then be substituted into Eqs.~33! and~34!. Simi-
larly, the nucleation flux componentsJ1 and J2 may be
evaluated in the neighborhood of the saddle point by first
inverting Eqs.~7! and~8! followed by using Eqs.~14!, ~15!,
and ~33! to determineJz andJm .

The direction of¹F near the saddle point is easy to
establish sinceF depends only onz. Use of the chain rule
yields

¹F5F S ]z

]n1
D

n2

e11S ]z

]n2
D

n1

e2G dF

dz
, ~36!

which can be simplified using Eq.~35! to read

¹F5ez

dF

dz
, ~37!

whereez is the unit vector in the~z,m! coordinate system that
makes an anglev with the n1 axis

ez5cosve11sinve2 . ~38!

III. MAGNITUDE AND DIRECTION OF NUCLEATION
FLUX AT THE SADDLE POINT

We now return to Eqs.~1! and ~3! and, like Stauffer,6

introduce two new coordinatesj andh, analogous to those of
the preceding section, that translate the origin to the saddle
point and rotate then1 andn2 axes by an anglef ~see Fig.
1!:

n12n1* 5j cosf2h sinf, ~39!

n22n2* 5j sinf1h cosf. ~40!

In the new coordinate system, the flux components are de-
fined as

Jj5J1 cosf1J2 sinf, ~41!

Jh52J1 sinf1J2 cosf. ~42!

The new flux components,Jj and Jh , satisfy equations
analogous to Eqs.~9! and ~10! with ~f, j, andh! replacing
~v, z, andm!, respectively. By means of the chain rule, these
equations can be written as
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Jj5NFD~f!S ]z

]h D
j

2S~f!S ]z

]j D
h
G dF

dz
, ~43!

Jh5NFD~f!S ]z

]j D
h

2Y~f!S ]z

]h D
j
G dF

dz
, ~44!

where it follows from Eqs.~4!, ~5!, ~39!, and~40! that

S ]z

]j D
h

5cosf cosv1sinf sinv, ~45!

and

S ]z

]h D
j

5cosf sinv2sinf cosv. ~46!

The functionsS, D, andY are defined by Eqs.~11!, ~12!, and
~13!. If f is properly chosen,Jh will equal zero at the saddle
point, leavingJj equal to the total nucleation current there.
To forceJh50, we set the coefficient ofdF/dz in Eq. ~44!
equal to zero. This defines a unique relation betweenv and
f that can be simplified to read

tanf5r tanv, ~47!

where r has previously been defined in Eq.~25!. With Eq.
~24!, Eq.~47! naturally reduces to Stauffer’s6 result for tanf.
From Eq.~47!, it is clear that the anglesf andv are equal
only when r 51, i.e., when the monomer impingement fre-
quenciesR1* andR2* are equal. In this special case,f andv
are identical to the angle12 defining the direction of steepest
descent. Using Eqs.~45!, ~46!, and ~47!, we can now sim-
plify Eq. ~43! to read

Jj52NR1* R2* @s~f!#21
dF

dz
, ~48!

where

s~f!5@~R1* !2 sin2 f1~R2* !2 cos2 f#1/2. ~49!

This result, which renders the saddle point nucleation flux
fully calculable, has thus been obtained by an explicit
method as an alternative to Stauffer’s6 more heuristic ap-
proach. At this point the total nucleation rate could be ob-
tained simply by integrating Eq.~48! with respect toh on a
path through the saddle point, but a somewhat more general
approach will be followed in the next section.

The direction ofJ in (n1,n2) space is easy to establish.
SinceJh50, it follows from Eqs.~2!, ~41!, and~42! that

J5Jjej , ~50!

whereej is the unit vector in the~j,h! coordinate system that
makes an anglef with the n1 axis

ej5cosfe11sinfe2 . ~51!

IV. STEADY STATE SADDLE POINT NUCLEATION
RATE

The goal of this section is to explicitly derive the steady
state rate of binary nucleation while avoiding Stauffer’s6

original intuitive and heuristic arguments. This has already
been done several times,3,7,10,11 but except for Wu’s very

formal presentation,11 these derivations rely on intuitive or
verbal definitions of the nucleation rate that are not so easy
to interpret because the initial definition already involves a
transformed variable space.

In an effort to be as clear as possible, this derivation will
start with an explicit mathematical definition of the rate in
(n1 ,n2) space that is systematically evaluated using the re-
sults of the preceding sections. As discussed by Temkin and
Shevelev,15 Wu,11 Wyslouzil and Wilemski,1 the steady state
rate of nucleation may be calculated by integrating the nor-
mal component of the nucleation flux crossing any line
drawn appropriately between then1 andn2 axes in the clus-
ter composition space. Since from analytical theories we
generally have detailed knowledge about the nucleation flux
only in the vicinity of the saddle point, it makes sense to
draw this line through the saddle point. It is also mathemati-
cally convenient to make the line straight when only one
saddle point is present. As long as it intercepts both positive
n1 and n2 axes, the orientation of the line is arbitrary, al-
though various special choices have usually been made in the
past for convenience.3,6,7,12,15Here, a slightly more general
approach will be taken, and the orientation of the line will be
described in terms of an anglec made by the normal to this
line with the n1 axis, as shown in Fig. 2. The line itself
serves as they axis of a new orthogonal coordinate system
centered on the saddle point.

It follows from this discussion that the nucleation rateJ
may be defined by the two-dimensional integral,

J5E ~J•ex!d~x!dn1 dn2 . ~52!

The integration range includes all physical values ofn1 and
n2 , since the delta function forces the integration to occur
only along the newy axis,x50. The nucleation flux normal
to this line is given by the dot productJ•ex , whereex is the
unit vector along the newx axis, ex•e15cosc. The new
coordinatesx andy, analogous to those used in the preced-
ing sections, translate the origin to the saddle point and rotate
the n1 andn2 axes by the anglec :

n12n1* 5x cosc2y sinc, ~53!

n22n2* 5x sinc1y cosc. ~54!

FIG. 2. Thex–y coordinate system used in evaluating the total nucleation
rate. Any value of the rotation anglec in the range, 0,c,p/2, is accept-
able.
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Since this transformation is orthogonal, its Jacobian is
unity, dn1 dn25dx dy, and with Eqs.~50! and~51!, Eq.~52!
may be written as

J5E Jj d~x!~cosc cosf1sinc sinf!dx dy. ~55!

Because of the delta function, thex integration is formally
trivial to perform, but the remainingy integral must then be
performed with the functionJj evaluated on thex50 line. In
order to carry this out, we first invert Eqs.~53! and ~54! for
x andy,

x5~n12n1* !cosc1~n22n2* !sinc, ~56!

y52~n12n1* !sinc1~n22n2* !cosc. ~57!

Next, after Eqs.~39! and~40! are substituted forn1 andn2 in
Eqs. ~56! and ~57!, Eq. ~56! is set equal to zero to relatej
andh along thex50 line. It follows from Eq.~57! that

h5y~cosc cosf1sinc sinf!. ~58!

Thus, along thex50 line, h andy are directly proportional,
and Eq.~55! simplifies to

J5E Jj d~x!dx dh. ~59!

From Eq.~48!, Jj is a known function ofz andm. To trans-
form it into a form suitable for integration, the simplest way
to proceed is through the use of an intermediate variable set,
jT , hT , discussed in the Appendix. Using Eqs.~A16! and
~A27!, Eq. ~48! may then be written as

Jj5N* R1* R2* AL/@2ps2~f!# exp~2bghT
2/2!, ~60!

whereb5(kT)21 andg is defined by Eq.~A9!. The integral
may then be completed by relatingh and hT along thex
50 line. To do this, first use Eqs.~A1!, ~A2!, and ~A7! to
expresshT in terms ofn1 and n2 . Next use Eqs.~53! and
~54! with x50 to obtainhT in terms ofy, and finally replace
y in favor of h using Eq.~58! to find

hT5h/r~f!, ~61!

where

r~f!5~R1* sin2 f1R2* cos2 f!1/2. ~62!

Thus, along thex50 line,h andhT are also directly propor-
tional, and with Eq.~60! for Jj and Eq.~A25! for L, Eq.~59!
further reduces to an explicit version of Trinkaus’s3 verbal
definition of the nucleation rate,

J5N*AR1* R2* bulu/~2p!E exp~2bghT
2/2!dhT , ~63!

where l is defined by Eq.~A8!. Using Eq. ~61!, J can
equivalently be written as an integral overh, as suggested
near the end of Sec. III. In either form, the integration now
runs along the stable direction through the saddle point. As-
suming integration limits16 of 6`, the remaining integral is
easily done. The result,

J5N*AR1* R2* ulu/g, ~64!

can be put into Trinkaus’s form by eliminatingg with the
following identity,

b2ulug5R1* R2* ~~w12* !22w11* w22* !. ~65!

Stauffer’s form is obtained by substituting Eq.~65! into Eq.
~64! and rewritingl as

2bl

R1* R2*
5

~w11* cos2 f12w12* cosf sinf1w22* sin2 f!

R1* sin2 f1R2* cos2 f
,

~66!

with the help of Eq.~30!, ~24!, ~47!, ~A23!, ~A24!, and
~A25!.

V. SUMMARY AND DISCUSSION

Two complementary ways have been illustrated to trans-
form the original two-dimensional binary nucleation kinetics
equations into effective one-dimensional problems: one for
the normalized cluster concentrationsF and the other for the
nucleation flux vectorJ. In the normal cluster composition
space (n1 ,n2), the directions of¹F andJ at the saddle point
are generally different. These directions are, however, not
independent. They are specified by the anglesv and f, re-
spectively, that are uniquely related by Eq.~47!. As dis-
cussed in the Appendix, in the transformed space of
Trinkaus’s3 scaled variables (n1 ,n2), these two distinct one-
dimensional descriptions are merged into one:¹nF and the
transformed nucleation flux vectori always lie in the same
direction given by the anglea, first introduced, but incor-
rectly characterized by Shi and Seinfeld.7,8 In the special
case of equal impingement rates (r 51) v, f, and a are
identical, and they define the direction of steepest descent.

Stauffer’s6 explanation for the direction ofJ at the
saddle point is still valid: The kinetic effect of different rates
of monomer impingement on critical clusters causes the
nucleation path to deviate from the path of steepest descent
on the free energy surface. Since theF are, in essence, non-
equilibrium cluster concentrations, they are subject to a ki-
netic influence similar to that affectingJ, and¹F also fails
to lie on the path of steepest descent. Moreover, since the
components ofJ are proportional to the components of¹F
and since the proportionality coefficients are themselves
functions of the impingement rates, it is understandable that
the directions ofJ and¹F will also differ, in general, due to
this kinetic effect.

The formula derived here forv, in Eq. ~24!, and else-
where by Li and Nishioka,4 provides the explicit dependence
of v on the impingement rates and on the second derivatives
of the free energy surface at the saddle point. This formula
will be useful for exploring the strikingly simple behavior
shown by F, and it allows further quantitative testing of
analytical binary nucleation theory to be performed. The re-
sults of these latter investigations have been reported in a
separate publication.5

Finally, Stauffer’s formula for the steady state rate of
binary nucleation has been derived from a clear, physically
justifiable definition of the nucleation rate using explicit,
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straightforward mathematical techniques that, it is hoped,
will be easier to follow than the elegant, but more abstruse
approaches used previously.3,7,10,11
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APPENDIX

In this Appendix, the relationship of the present results
to those of Trinkaus3 is established. To solve Eq.~1! at
steady state, Trinkaus3 introduced new variablesn1 andn2 :

n12n1* 5~R1* !1/2n1 , ~A1!

n22n2* 5~R2* !1/2n2 . ~A2!

In terms of these scaled variables, the quadratic expansion
for W, Eq. ~19!, takes the form

W2W* 5
1

2 (
i , j

n iG i j
T n j , ~A3!

where

bG i j
T 5~Ri* !1/2wi j* ~Rj* !1/2, ~A4!

b5(kT)21, and the superscript T~for Trinkaus! is used to
avoid confusion between the matrix elementsG i j

T and the
forward rate coefficientsG i used earlier in Eq.~3!. The ad-
vantage of this approach is that in terms of the principal axes
coordinatesjT andhT ~again, subscript T for Trinkaus! that
diagonalize Eq.~A3!, the stationary form of Eq.~1! becomes
separable and amenable to direct solution.

Trinkaus’s extremely economical presentation left many
details implicit, but Shi and Seinfeld7 provided explicit re-
sults for his principal axis transformation. These are repro-
duced here in a different notation that is closer to that of
Trinkaus. The diagonalized form of Eq.~A3! is

W2W* 5~ljT
21ghT

2!/2, ~A5!

where the rotated coordinates for the unstable (jT) and stable
(hT) directions are defined in terms of a rotation anglea in
the (n1 ,n2) coordinate system~see Fig. 3!:

jT5n1 cosa1n2 sina, ~A6!

hT52n1 sina1n2 cosa. ~A7!

The corresponding negative~l! and positive~g! eigenvalues
are

l5~G11
T 1G22

T 2G!/2, ~A8!

and

g5~G11
T 1G22

T 1G!/2, ~A9!

where

G5A~G11
T 2G22

T !214~G12
T !2. ~A10!

Finally, a is determined by the equation

tana5~G22
T 2G11

T 2G!/~2G12
T !, ~A11!

which differs from the Shi and Seinfeld7 result by the sign of
the G term. As discussed by Berezhkovskii and Zitserman17

and Wyslouzil and Wilemski,18 the negative sign is needed
to ensure the proper orientation at the saddle point when
w12* ,0. Using Eqs.~25!, ~26!, and ~A4!, Eq. ~A11! can be
put in the form,

tana5r 21/2@s1~s21r !1/2#5r 21/2 tanf, ~A12!

first noted by Berezhkovskii and Zitserman.19 It shows
clearly thata and f are mathematically distinct quantities
contrary to the assertion of Shi and Seinfeld.7 It should also
be clear that, contrary to another assertion of Shi and Sein-
feld, a does not determine the direction of the saddle point
nucleation flux with respect to then1 axis, since this is done
by f. Rather, it is the direction of the transformed nucleation
flux i, defined by Trinkaus, that is determined bya in the
(n1 ,n2) coordinate system.

This will be clear after examining Trinkaus’s results,
which can be written in the present notation as

F5 1
2 erfc~Abulu/2jT!, ~A13!

J5N* uAbulu/~2p! exp~2bghT
2/2!, ~A14!

where

u5~R1* !1/2cosae11~R2* !1/2sinae2 . ~A15!

Equation~A14! shows explicitly howJ varies with hT on
either side of the saddle point. This expression forJ follows
from the definition, Eq.~2!, when the flux componentsJi are
evaluated near the saddle point using Eqs.~3!, ~A1!, ~A2!,
~A5!, ~A6!, and~A13!. The identity,

N exp~bljT
2/2!5N* exp~2bghT

2/2!, ~A16!

which is valid near the saddle point and follows from Eqs.
~18! and ~A5!, has also been used to simplify Eq.~A14!.
Trinkaus’s transformed nucleation flux vectori in the
(n1 ,n2) coordinate system is

FIG. 3. Then1–n2 andjT–hT coordinate systems introduced by Trinkaus3

to solve forF and J. The transformation of¹F and J into ¹nF and i is
figuratively illustrated. Near the saddle point¹nF and i are each parallel to
the jT axis. The anglea, determined by Eq.~A11!, is also shown.
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i5N* vAR1* R2* bulu/~2p! exp~2bghT
2/2!, ~A17!

where

v5cosae11sinae2 , ~A18!

is the unit vector making an anglea with then1 ~or n1) axis.
It is obvious thati, not J, makes an anglea with then1 axis.
The direction ofJ is not so clear from Eq.~A14!, but it may
be discerned by using Eq.~A12! to express sina and cosa in
terms off,

sina5~R1* !1/2sinf/r~f!, ~A19!

cosa5~R2* !1/2cosf/r~f!, ~A20!

wherer~f! is defined by Eq.~62!. With these substitutions,
Eq. ~A14! simplifies to

J5ej~ i•v!/r~f!, ~A21!

whereej has previously been defined in Eq.~51!. The direc-
tion and magnitude ofJ are, thus, in accord with the results
of Sec. III provided it can be shown that

Jj5~ i•v!/r~f!, ~A22!

is identical to the combination of Eqs.~48! and ~33!.
To do this, we first consider the quantityL in Eq. ~33!,

which is defined by Eqs.~30!, ~28!, and~11!. From Eq.~47!
it follows that

sinv5R1* sinf/s~f!, ~A23!

cosv5R2* cosf/s~f!, ~A24!

wheres~f! is defined by Eq.~49!. With these relations and
with the help of Eqs.~A4!, ~A11!, and ~A12!, L can be
rewritten as

L52
bl

R1* R2*
S s~f!

r~f! D
2

. ~A25!

We next need to relatez and jT . To do this, combine
Eq. ~35! with Eqs. ~A1!, ~A2!, ~A6!, and ~A7! while using
Eqs. ~A19!, ~A20!, ~A23!, and ~A24! to simplify the inter-
mediate expression. The final result is

z5jT~R1* R2* !1/2r~f!/s~f!. ~A26!

From Eqs.~A25! and ~A26!, it thus follows that

Lz252bljT
2, ~A27!

and the two expressions forF, Eqs. ~34! and ~A13!, are
identical. To complete this exercise, combine Eqs.~33! and
~48! with Eqs.~A25! and~A27!, and use Eq.~A16! to obtain

Jj5N*AR1* R2* bulu/~2pr2~f!! exp~2bghT
2/2!,

~A28!

which agrees with Eq.~A22!.
Our last task in this section is to establish the direction

of ¹nF near the saddle point. SinceF depends only onjT ,
use of the chain rule yields

¹nF5F S ]jT

]n1
D

n2

e11S ]jT

]n2
D

n1

e2G ]F

]jT
, ~A29!

which can be simplified using Eq.~A6! to read

¹nF5v
]F

]jT
. ~A30!

Thus, in the (n1 ,n2) coordinate system, depicted in Fig. 3,
both i and ¹nF point in the same direction asv, and the
anglea plays both of the roles held by the anglesv andf in
the (n1 ,n2) coordinate system.

1B. E. Wyslouzil and G. Wilemski, J. Chem. Phys.103, 1137~1995!.
2B. E. Wyslouzil and G. Wilemski, J. Chem. Phys.105, 1090~1996!.
3H. Trinkaus, Phys. Rev. B27, 7372~1983!.
4J.-S. Li and K. Nishioka, Chem. Phys. Lett.295, 211 ~1998!.
5B. E. Wyslouzil and G. Wilemski, J. Chem. Phys.110, 1202~1999!.
6D. Stauffer, J. Aerosol Sci.7, 319 ~1976!.
7G. Shi and J. H. Seinfeld, J. Chem. Phys.93, 9033~1990!.
8P. Debenedetti,Metastable Liquids~Princeton University Press, Princeton
NJ, 1996!, p. 157.

9V. A. Shneidman, Sov. Phys. JETP64, 306 ~1986!.
10A. A. Melikhov, V. B. Kurasov, Yu. Sh. Dzhikaev, and F. M. Kuni, Sov.

Phys. Tech. Phys.36, 14 ~1991!.
11D. T. Wu, J. Chem. Phys.99, 1990~1993!.
12H. Reiss, J. Chem. Phys.18, 840 ~1950!.
13L. M. Berezhkovskii and V. Yu Zitserman, J. Chem. Phys.102, 3331

~1995!.
14J. Frenkel,Kinetic Theory of Liquids~Clarendon, Oxford, 1946!, p. 396.
15D. E. Temkin and V. V. Shevelev, J. Cryst. Growth66, 380 ~1984!.
16Althougha priori arguments can be made for these limits, it is simpler to

justify them by citing the excellent agreement between Eq.~64! and ex-
tensive numerical calculations of binary nucleation rates~Ref. 1!. Failures
of Eq. ~64! are rare and are usually due to more fundamental inadequacies
of the theory than the choice of limits.

17The discussion follows Eq.~10! of Ref. 13. Similar considerations apply
to Eq. ~A11! of this paper and to Eq.~13! of Ref. 13, although the latter
equation unfortunately contains a typographical sign error.

18See Ref. 42 of Ref. 2.
19Ref. 13 usesc instead ofa for the angle in question.

6457J. Chem. Phys., Vol. 110, No. 13, 1 April 1999 Gerald Wilemski


	Binary Nucleation Kinetics. IV. Directional Properties and Cluster Concentrations at the Saddle Point
	Recommended Citation

	tmp.1515778432.pdf.Vb2mV

