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Binary nucleation kinetics. IV. Directional properties and cluster
concentrations at the saddle point

Gerald Wilemski®
Department of Physics and Cloud and Aerosol Sciences Laboratory, University of Missouri-Rolla,
Rolla, Missouri 65409-0430

(Received 27 July 1998; accepted 29 December 1998

Using a new approach, Stauffer's expression for the rate of steady state binary nucleation and
Trinkaus’s expression for the steady state cluster concentrati@ie derived directly from the
diffusion equation that governs the evolution bfin composition space. The behavior &f

(=f/N, whereN is the equilibrium cluster concentratipis explored since this function provides

a characterization of the nucleating binary system that, to lowest order, is independent of the actual
composition of the mother phase. The anglthat describes the direction &b at the saddle point
differs, in general, from the anglé found by Stauffer for the direction of the nucleation current at

the saddle point. These two angles are related by the formuld=tatanw, wherer is the ratio of
impingement frequencies defined by Stauffer. In general, at the saddle Pdirtiso fails to lie in

the direction of steepest descent on the free energy surfacd99® American Institute of Physics.
[S0021-960809)50613-3

I. INTRODUCTION cally with the mother phase composition. Thus, in either
case,w is a useful quantity to understand, and an explicit

Recently, Wyslouzil and Wilemskf published the re- formuila noverning its dependence on the nhysical broperties
sults of extensive numerical studies of binary nucleation ki- ula governing | P physical propert

netics for six different systems over a reasonable range ocff the system will be devgloped. .US|.ng a different approach,
nucleation rates. The primary quantities calculated in thi@ VETY recent paper by Li and N|sh|§1<ueats some of the
work were the time-dependent nonequilibrium concentraS&Me issues addressed here. In particular, they find the same
tions f(n;,n,,t) of clusters of compositionr(;,n,), where  result forw that is presented below.

n; is the number of molecules of specibs'n the cluster. One key result that will be demonstrated is that in cluster
They found that their numerical results simplified consider-composition spacen(,n,) the anglew differs, in general,
ably for all the binary systems studied when t{@;,n,,t)  from both the angle found by Stauffet for the direction of
were normalized by the equilibrium cluster concentrationghe nucleation flux vectai at the saddle point, and the angle
N(n;,n,). The resulting ratios, which they denoted @s « of Shi and Seinfeltthat characterizes the principal axis
(=fIN), displayed a quasiuniversal behavior that was indetransformation devised by Trinkaus. This demonstration also
pendent of the monomer concentrations of each species torasolves some existing confusidhabout the roles of and
very good first approximation. Some of the theoreticaly in pinary nucleation theory. At the saddle poidtand Ve
framework needed to understand this behavior is implicit ingenerally point in different directions. In the space of trans-
an important and insightful paper by Trinkatisut the direct formed variables #;,v5), introduced by Trinkause plays

connections need to be drawn out. Besides the results pre. 1o of bothw and¢. That is, the transformed gradient of
sented here, detailed considerations may also be found '@ and the transformed nucleation currénat the saddle

two other recent papef‘sr’._ . . . point always lie in the same direction defined hy The
The main goal of this paper is to provide a basis for .
same strategy used by Trinkaus to reduce both problems to a

interpreting the numerical results of Wyslouzil and ™ ; i i i
Wilemsk?® using relatively simple, physically-based math- single one-dimensional problem has been generalized in

ematics to derive quantitative expressionsdoand the di- more formal treatments of multiparametehinary;'® and
rection of its gradient at the saddle point. These quantitie§ulticomponent nucleatioft

are significant because contour lines of const&(h, ,n,) The plan of this paper is as follows. In Sec. Il, explicit
form a regular pattern when plotted in the two-dimensionaformulas for® andw are derived, and the direction &b is
(ny1,n,) cluster composition space. In particular, in the vi- established. In Sec. lll, the expression fbrat the saddle
cinity of the saddle point the contour lines are locally straightpoint and the relationship betweenand ¢ are derived. In
and parallel. The angle betweenV® and then, axis is a  Sec. IV, Stauffer's expressibror the steady state rate of
convenient way to characterize this behavior. As showrbinary nucleation is rederived starting from an explicit, but
elsewheré, w is nearly constant and independent of the com-general definition of the nucleation rate. This final exercise is
position of the mother phase for nucleated phases that forfindertaken not only to consummate the preceding analysis
ideal mixtures. For nonideal mixtures varies systemati- pyt also to provide a more transparent derivation than do the
elegant, but less physically intuitive treatments published
aElectronic mail: wilemski@umr.edu earlier>” - Finally, in the Appendix, the connection be-

0021-9606/99/110(13)/6451/7/$15.00 6451 © 1999 American Institute of Physics
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Using Egs.(3), (4), (5), (7), and(8), J, andJ,, can be
expressed explicitly as
J;=—NX o NA o 9
= (w)&_§+ (w)%, 9
and
J,=NA o NY i 10
where
3 (w)=R;cof w+R,sirf o, (11
FIG. 1. The{—u and é&—» coordinate systems used in solving fbrandJ,
respectively. Near the saddle poiMgp andJ are parallel to thel and ¢ Alw)= (R1— RZ)COSw Sinw, (12
axes, respectively. The anglesand ¢, determined by Eq924) and (47),
are also shown. Y (w)=R; sirf w+R;cof , (13

and whereR;=T';N;. To further simplify Eqs(9) and (10),

we impose the condition thatb/du = 0. This condition will

shortly be used to determine uniquely. More generally, it

can be viewed as implicitly defining a curvilinear coordinate

system in whichd is a constant along lines of constahtin

Il. STEADY STATE SOLUTION FOR ® general, asu changes along a constafitine, o will also

vary, but in the vicinity of the saddle point it is a very good

When the cluster composition variables,,n, are  approximation to holdv constant. Withg®/du=0, the ex-

treated as continuous, the fundamental equation governingressions fod, andJ, reduce to

the evolution off (n4,n,,t) in timet and composition space

tween the present results and those of Trinkaaisgd Shi and
Seinfeld is established.

can be written in the form of a continuity equatith, 3= —NE(m)%, (14)
af(nl,nz,t)_V 3 3 !
T VT, @ and
where the nucleation flux vectdris defined as do
J,=NA(w) 5= (15
J=J1e1+ 328, P) ¢

the e are unit vectors in the Cartesian,(n,) coordinate Note that althougl#®/du =0, each of the new flux compo-

system, and]l andJ2 are the time and Composition depen_ nents is, in general, nonzero in this coordinate SyStem.
dent fluxes given as Next, we substitute Eqg14) and (15) into Eq. (6). In

carrying out the required differentiatiorR; andR, are held
Al (3y  constant at their saddle point valu&y, andRj . Because of
ton;” this simplification, all of the subsequent results in this paper
In Eq. (3) T;(ny,n,) is the rate coefficient for adding a &€ generally valid only near the saddle point. The resulting

monomer of typé to a cluster of compositionng,n,), and  differential equation forb is,

Ji=—N(ny,ny)I'iN

N; is the monomer number density of spediés the mother d2 dd
phase. To solve Eq$l) and (3), we introduce new coordi- OZE*(w)W+p(§)d_§’ (16

nates{ and u that translate the origin to the saddle point
(where values are denoted*yand rotate th@; andn, axes  where
by an anglew (see Fig. &

dInN dlnN
n,—nj ={cosw—u sinw, (4) p(§)=2*(w)(—) —A*(w)( ) . (17
® {

L au

Because EQ.(16) was obtained by using the condition
Since this is an orthogonal transformation, and since av®/du=0, ® depends only ord. Thus,p({) must also de-
steady stat@f/dt=0, Eq. (1) transforms into pend only on{, and any apparent dependenceromust be
formal. To find an explicit expression f@({), we exploit
, (6)  the linear dependence of fon the reversible work of clus-
I¢  Ip ter formationW(n,,n,),
where the new flux componends andJ,, are defined as

n,—n3={sinw+ u cosw. (5)

KT In N=—W+const, (18

J,=J;cosw+J,sinw, 7 . . : .
g7 tEseT R STe 0 and make the usual quadratic expansionVibin the neigh-

J,=—J;sinw+J,cosw. (8)  borhood of the saddle poitt.With w=WI/(kT) we have
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* — 1 * * *
wW—Ww —EiEj (ni=nH)wij(n;—nf), (19
where
_Pw 20
Wij_ani &nj ( )

With the help of Eqs(4), (5), (18), and(19), Eq. (17)
can be explicitly written as

pP({)={L+puM, (21
where
L=—3*(w)[W};cog o+ W},Sin 2w+ w3, sir? o]
+A* (w)[WH(2 cod w—1)
+(W35,—W73;)sinw cosw], (22
and
M= A* (w)[ W}, Sir* @ —w},sin 2w+w3,cos w]
+ 3% (0)[Why(2 Sif o—1)
+ (W7i;—W3,)Sinw cosw]. (23

The formalu dependence in E@21) is eliminated by setting
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which correspond to the smallest clusters being present at
their equilibrium concentrations and the largest being absent,
Eq. (29) admits the following solution that will later be
shown to be equivalent to Trinkaus’s:

dd A |12 1,
d—g =— Z) EX[{ - EA; , (33)
d(¢)=terfo(\VA/20). (34)

As a minor sidelight, note that at the saddle poiit=Q) Eq.

(34) predicts that the steady state critical nucleus concentra-
tion is one-half of the equilibrium value, just as for the case
of unary nucleatiotf and in agreement with numerical
results>® The dependence ob and d®/d on n; andn,
may be found simply by inverting Eq&4) and (5) to obtain

(39

which may then be substituted into E¢33) and(34). Simi-
larly, the nucleation flux component$;, and J, may be
evaluated in the neighborhood of the saddle point by first
inverting Eqs.(7) and(8) followed by using Eqs(14), (15),
and(33) to determinel, andJ,, .

The direction of V® near the saddle point is easy to
establish sincab depends only orf. Use of the chain rule
yields

{=(n;—n}) cosw+(n,—n3) sinw,

M equal to zero. The ensuing equation constitutes a defining

relationship forw, and it yields the following result,
tanw=[s+(s*+r)Y3/r, (24)

where Stauffer's simplifying notation has been used:
r=R3/R}, (25)

s=(rwi,—wip/(2wi). (26)

vo| [24] e 2] o T 36
== eat|—| &|l=,
oy, 171 on, . 21 d¢
which can be simplified using E@35) to read
do
Vd):egd—g, (37)

whereeg, is the unit vector in théZ,u) coordinate system that

Equation(24) is valid for wi,<0, which should be true for mpakes an angle with the n, axis

all cases of binary nucleation involving two different chemi-

cal species. For other types of phase transformatittihat

€,=COSwe, *+ Sinwe,. (38

are formally describable in terms of binary nucleation, it may

be possible thawvi,>0. In these cases, EQ4) requires a
sign changé?
With the u dependence removed, EQ@1) reduces to

p(o)={L, (27
andL may be written more simply as

L=—(R}w},cod w+ (RF +R% )W}, cosw sinw

+REW3,sir? w). (28)

Equation(27) may be used to recast E(.6) as

d’® do

aZ = §Ad—§, (29)
whereA is a positive constant,

A=L/I2* (w). (30)
With the usual boundary conditions

(=1, {——, (31)

d=0, (—ox, (32

IlI. MAGNITUDE AND DIRECTION OF NUCLEATION
FLUX AT THE SADDLE POINT

We now return to Eqs(1) and (3) and, like Stauffef,
introduce two new coordinatésand », analogous to those of
the preceding section, that translate the origin to the saddle
point and rotate th@, andn, axes by an angle (see Fig.

1):

n,—n3}=£&cos¢— nsing, (39

n,—n3=¢sing+ 7 cose. (40

In the new coordinate system, the flux components are de-
fined as

J¢=J1c0s¢p+J;sing, (42

J,=—Jising+J;,cose. (42

The new flux components], and J,, satisfy equations
analogous to Eq99) and (10) with (¢, & and 7) replacing
(w, £, and ), respectively. By means of the chain rule, these
equations can be written as
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J.=N|A (ﬁ) -3 (%) ab (43)
N 2| 7,) @5 [ar
J,=N A((b)(a—g) _Y(¢)(a_§) av (44)
K i€, an) .| d¢’

where it follows from Eqgs(4), (5), (39), and(40) that

(3_9 =C0S¢ CoSw+Sin¢ Sinw, (45
7
and
(%):cosda Sinw—sin ¢ cosw. (46)

The functionsX, A, andY are defined by Eq$11), (12), and

(13). If ¢ is properly chosen],, will equal zero at the saddle
point, leavingJ, equal to the total nucleation current there.

To forceJ, =0, we set the coefficient af®/d{ in Eq. (44)
equal to zero. This defines a unique relation betweeand
¢ that can be simplified to read

tang=r tanw,

(47)

wherer has previously been defined in EQ5). With Eq.
(24), Eq.(47) naturally reduces to Stauffef'sesult for tang.
From EQq.(47), it is clear that the angleg and w are equal

only whenr=1, i.e., when the monomer impingement fre-

quenciesR} andRj are equal. In this special casg,and

are identical to the anglédefining the direction of steepest

descent. Using Eq€45), (46), and (47), we can now sim-
plify Eq. (43) to read

Je= ~NRER[o(d)] 2 on

i 49

where

a($)=[(R})?sir’ ¢+(R3)*cos ¢]"2 (49

Gerald Wilemski

ny

FIG. 2. Thex—y coordinate system used in evaluating the total nucleation
rate. Any value of the rotation anglgin the range, & ¢<7/2, is accept-
able.

formal presentatioft! these derivations rely on intuitive or
verbal definitions of the nucleation rate that are not so easy
to interpret because the initial definition already involves a
transformed variable space.

In an effort to be as clear as possible, this derivation will
start with an explicit mathematical definition of the rate in
(nq1,n,) space that is systematically evaluated using the re-
sults of the preceding sections. As discussed by Temkin and
Shevelev*® Wu,* Wyslouzil and Wilemskt the steady state
rate of nucleation may be calculated by integrating the nor-
mal component of the nucleation flux crossing any line
drawn appropriately between timg andn, axes in the clus-
ter composition space. Since from analytical theories we
generally have detailed knowledge about the nucleation flux
only in the vicinity of the saddle point, it makes sense to
draw this line through the saddle point. It is also mathemati-
cally convenient to make the line straight when only one
saddle point is present. As long as it intercepts both positive
n, andn, axes, the orientation of the line is arbitrary, al-
though various special choices have usually been made in the

This result, which renders the saddle point nucleation flupast for convenienct®”'?**Here, a slightly more general
fully calculable, has thus been obtained by an explicitapproach will be taken, and the orientation of the line will be
method as an alternative to Stauffrimore heuristic ap- described in terms of an angiemade by the normal to this
proach. At this point the total nucleation rate could be ob-ine with the n; axis, as shown in Fig. 2. The line itself
tained simply by integrating Eq48) with respect toon a  Serves as thg axis of a new orthogonal coordinate system
path through the saddle point, but a somewhat more generggntered on the saddle point.

approach will be followed in the next section. It follows from this discussion that the nucleation rdte

The direction ofJ in (n;n,) space is easy to establish. may be defined by the two-dimensional integral,

SinceJ, =0, it follows from Egs.(2), (41), and(42) that

(50

wheree; is the unit vector in thé&,») coordinate system that The integration range includes all physical valuesipfand
makes an angle with the n; axis n,, since the delta function forces the integration to occur
only along the new axis,x=0. The nucleation flux normal

to this line is given by the dot produdt e , whereg, is the

unit vector along the new axis, ,-e;=cosy. The new
coordinatex andy, analogous to those used in the preced-
ing sections, translate the origin to the saddle point and rotate
then; andn, axes by the angle:

J=f (J-e)6(x)dny dn,. (52

J = Jgeg y
€;=C0S¢pe; +singe,. (51

IV. STEADY STATE SADDLE POINT NUCLEATION
RATE

The goal of this section is to explicitly derive the steady

state rate of binary nucleation while avoiding Stauffer’s n,—n¥=xcosy—ysiny, (53
original intuitive and heuristic arguments. This has already . _
been done several timé$;!% but except for Wu's very N;—N; =XSsiNy+y cosy. (54)
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Since this transformation is orthogonal, its Jacobian iscan be put into Trinkaus’s form by eliminating with the

unity,dn; dn,=dx dy, and with Eqs(50) and(51), Eq.(52)
may be written as

sz J¢ 8(X)(cosycosg+sinygsing)dx dy. (55

Because of the delta function, theintegration is formally
trivial to perform, but the remaining integral must then be
performed with the functiod, evaluated on thg=0 line. In
order to carry this out, we first invert Eg&3) and (54) for
x andy,

X=(Nny—n3)cosy+(n,—n3)siny, (56)

y=—(ny—n})siny+(n,—n)cosy. (57)

Next, after Eqs(39) and(40) are substituted fon; andn, in
Egs. (56) and (57), Eqg. (56) is set equal to zero to relate
and » along thex=0 line. It follows from Eq.(57) that

n=Yy(cosy cosg+sinygsing). (59

Thus, along thex=0 line, » andy are directly proportional,
and Eq.(55) simplifies to

J:f Jg S(x)dx dy. (59)

From EQ.(48), J; is a known function of and . To trans-

following identity,
BZINy=RE RS ((Wi)2— Wi W3y). (65

Stauffer's form is obtained by substituting E5) into Eq.
(64) and rewriting\ as

— BN (W3,COS ¢+ 2W7,C08¢ Sin ¢+ W3, Sin’ )
RIRS R} sir? ¢+ R cog ¢ '
(66)

with the help of EQq.(30), (24), (47), (A23), (A24), and
(A25).

V. SUMMARY AND DISCUSSION

Two complementary ways have been illustrated to trans-
form the original two-dimensional binary nucleation kinetics
equations into effective one-dimensional problems: one for
the normalized cluster concentratiobsand the other for the
nucleation flux vectod. In the normal cluster composition
space f11,n,), the directions oV® andJ at the saddle point
are generally different. These directions are, however, not
independent. They are specified by the angbeasnd ¢, re-
spectively, that are uniquely related by Ed7). As dis-

form it into a form suitable for integration, the simplest way cussed in the Appendix, in the transformed space of
to proceed is through the use of an intermediate variable selfinkaus's scaled variablesi( , v,), these two distinct one-

&1, mr, discussed in the Appendix. Using Ed&16) and
(A27), Eq. (48) may then be written as

Je=N*R{R3 VA/[2m0%(¢)] exp(— By75/2),  (60)

whereg=(kT) ! andyis defined by Eq(A9). The integral
may then be completed by relating and 71 along thex
=0 line. To do this, first use Eq$Al), (A2), and (A7) to
expressyr in terms ofn; andn,. Next use Eqgs(53) and
(54) with x=0 to obtainzy in terms ofy, and finally replace
y in favor of % using Eq.(58) to find

nr=1nlp(P), (62
where
p(¢)= (R} sir? ¢+ R3% cog ¢)*2. (62)

Thus, along th=0 line, » and 5 are also directly propor-
tional, and with Eq(60) for J, and Eq.(A25) for A, Eq.(59)
further reduces to an explicit version of Trinkad'sieerbal
definition of the nucleation rate,

JIN*VRIRE,BlM/(ZW)f exp(—Bymr/2)dzyy, (63

where \ is defined by Eq.(A8). Using Eq.(61), J can
equivalently be written as an integral over as suggested

dimensional descriptions are merged into o¥ied and the
transformed nucleation flux vectdralways lie in the same
direction given by the angle, first introduced, but incor-
rectly characterized by Shi and Seinféftlin the special
case of equal impingement rates=1) w, ¢, and « are
identical, and they define the direction of steepest descent.

Stauffer'd explanation for the direction ofl at the
saddle point is still valid: The kinetic effect of different rates
of monomer impingement on critical clusters causes the
nucleation path to deviate from the path of steepest descent
on the free energy surface. Since there, in essence, non-
equilibrium cluster concentrations, they are subject to a ki-
netic influence similar to that affectingg andV® also fails
to lie on the path of steepest descent. Moreover, since the
components of) are proportional to the components b
and since the proportionality coefficients are themselves
functions of the impingement rates, it is understandable that
the directions ofl andV® will also differ, in general, due to
this kinetic effect.

The formula derived here fow, in Eq. (24), and else-
where by Li and Nishiok4 provides the explicit dependence
of w on the impingement rates and on the second derivatives
of the free energy surface at the saddle point. This formula
will be useful for exploring the strikingly simple behavior
shown by ®, and it allows further quantitative testing of

near the end of Sec. lll. In either form, the integration nowanalytical binary nucleation theory to be performed. The re-
runs along the stable direction through the saddle point. Assults of these latter investigations have been reported in a

suming integration limit¥ of + o, the remaining integral is
easily done. The result,

J=N*{RTR5|\|/y, (64)

separate publication.

Finally, Stauffer's formula for the steady state rate of
binary nucleation has been derived from a clear, physically
justifiable definition of the nucleation rate using explicit,
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straightforward mathematical techniques that, it is hoped,
will be easier to follow than the elegant, but more abstruse
approaches used previously1o11
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Engineering. FIG. 3. Thev;—v, and &—»; coordinate systems introduced by Trinkdus
to solve for® andJ. The transformation oV® andJ into V,® andi is
figuratively illustrated. Near the saddle pomi® andi are each parallel to

APPENDIX guratively powt P

the & axis. The angley, determined by Eq(Al1), is also shown.

In this Appendix, the relationship of the present results
to those of Trinkausis established. To solve Edl) at

steady state, Trinkadisntroduced new variables;, and v,: G= \/(FL_F;Z)ZJFMFIZ); (A10)
ny—ni=(RE)Y?vy, (A1) Finally, a is determined by the equation
na—n3 =(R3)"v,. (A2) tana=(I'%,—T'1,—G)/(2I']), (A11)
In terms of these scaled variables, the quadratic expansioghich differs from the Shi and Seinféldesult by the sign of
for W, Eq.(19), takes the form the G term. As discussed by Berezhkovskii and Zitserfian
1 and Wyslouzil and Wilemski® the negative sign is needed
W—W*=§Z viFEVJ-, (A3) to ensure the proper orientation at the saddle point when
" w3,<0. Using Eqgs.(25), (26), and (A4), Eq. (A11) can be
where put in the form,
BIT =(R¥)Vawk (R¥)Y2, (Ad) tana=r"Y{s+(s?+r)Y?=r "2 tang, (A12)

B=(kT) "1, and the superscript Tfor Trinkaus is used to first noted by Berezhkovskii and Zitserm&h.t shows
avoid confusion between the matrix elemeﬁﬂ% and the Cclearly thata and ¢ are mathematically distinct quantities
forward rate coefficient§; used earlier in Eq(3). The ad-  contrary to the assertion of Shi and Seinféld.should also
vantage of this approach is that in terms of the principal axe§€ clear that, contrary to another assertion of Shi and Sein-
coordinatest; and 77 (again, subscript T for Trinkaiighat feld, « does not determine the direction of the saddle point
diagonalize Eq(A3), the stationary form of Ec(1) becomes nucleation flux with respect to the, axis, since this is done
separable and amenable to direct solution. by ¢. Rather, it is the direction of the transformed nucleation
Trinkaus’s extremely economical presentation left manyflux i, defined by Trinkaus, that is determined byin the
details implicit, but Shi and Seinfeldrovided explicit re-  (v1,72) coordinate system.
sults for his principal axis transformation. These are repro-  This will be clear after examining Trinkaus's results,
duced here in a different notation that is closer to that ofvhich can be written in the present notation as

Trinkaus. The diagonalized form of EA3) is ® = Lerfo( VBIN|12¢1), (A13)
_ _ 2 2
W=W= (A&t yn/f2, (AS) I=N*uJBINI(2m) ex — Byn2l2), (A14)
where the rotated coordinates for the unstalji$ énd stable
S : : . : where
(77) directions are defined in terms of a rotation angle
the (v;,v,) coordinate systentsee Fig. 3 u=(R})Y?cosae, + (R%)¥?sinae,. (A15)
&r=v,CoSa+ v, Sing, (AB) Equation(Al14) shows explicitly howJ varies with 71 on

either side of the saddle point. This expressionXdollows

7=~ viSinat v, cosa. (A7) from the definition, Eq(2), when the flux components are
The corresponding negati&) and positive(y) eigenvalues evaluated near the saddle point using E&3, (A1), (A2),
are (A5), (A6), and(A13). The identity,

A=(T1+T3,—G)/2, (A8) N exp( BN €3/2) =N* exp( — By73/2), (A16)
and which is valid near the saddle point and follows from Eqgs.

T T (18) and (A5), has also been used to simplify EGA14).
y=T T+t G2, (A9) Trinkaus’s transformed nucleation flux vectdr in the
where (v1,v5) coordinate system is
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i=N*V{RYRS BIN|/(2m) exp( — By7712), (A17)
where
V=Co0Sae; +Sinae,, (A18)

is the unit vector making an angtewith the »; (or n;) axis.
It is obvious thai, notJ, makes an angle with then; axis.
The direction ofJ is not so clear from EqA14), but it may
be discerned by using EGA12) to express siar and cosx in
terms of ¢,

sina=(R¥)Y2sing/p( ), (A19)

cosa=(R})Y2cos¢/p( ), (A20)
wherep(¢) is defined by Eq(62). With these substitutions,
Eq. (A14) simplifies to

I=eii-V)/p($), (A21)

wheree; has previously been defined in E§1). The direc-
tion and magnitude od are, thus, in accord with the results
of Sec. lll provided it can be shown that

Je=(i-V)/p(),

is identical to the combination of Eq&8) and (33).

To do this, we first consider the quantity in Eq. (33),
which is defined by Eqg30), (28), and(11). From Eq.(47)
it follows that

sinw=R} sing/a(¢),

(A22)

(A23)

cosw =R} cos¢/a( ), (A24)

wherea(¢) is defined by Eq(49). With these relations and
with the help of Egs.(A4), (Al1l), and (Al12), A can be
rewritten as

B\ (
RIR;

2

o))" (A25)

p(b)

We next need to relaté and £&;. To do this, combine
Eq. (35 with Egs.(Al), (A2), (A6), and (A7) while using
Egs. (A19), (A20), (A23), and (A24) to simplify the inter-
mediate expression. The final result is

A:

{=E(RIRS) () o( ). (A26)
From Egs.(A25) and (A26), it thus follows that
AP=—BNE, (A27)
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and the two expressions fab, Eqgs. (34) and (Al3), are
identical. To complete this exercise, combine E&3) and
(48) with Eqs.(A25) and(A27), and use Eq(A16) to obtain

J:=N*JRIR3 BIN|/(2mp%($)) exp(— By732),
(A28)

which agrees with EqA22).

Our last task in this section is to establish the direction
of V,® near the saddle point. Sinde depends only o+,
use of the chain rule yields

| [ 9¢r d&t P
V, o= ((9_1/]_) eﬁ—(a—yz e (9_§-|-, (A29)
V2 v1
which can be simplified using EgA6) to read
vV, o o (A30)
DP=v—.
dér

Thus, in the ¢,,v,) coordinate system, depicted in Fig. 3,
bothi andV,® point in the same direction as and the
anglea plays both of the roles held by the anglesind ¢ in
the (n,,n,) coordinate system.
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