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Long-Range Random Walks on Energetically Disordered Lattices

B. D. Bookout and P. E. Parris
Department of Physics and the Electronic Materials lnstituteT, he University of Missouri R-olla, Rolla, Missouri 6540I

(Received 16 March 1993)

Although the master equation describing long-range random walks on an energetically disordered lat-
tice is governed by a nonsymmetric transition matrix 8', it may be mapped through a similarity trans-
form onto an imaginary-time Schrodinger equation governed by a Hermitian (Hamiltonian) operator Ho
having a nondegenerate ground state. Under this mapping the diffusion constant D can be expressed in

terms of the exact ground state energy of operators that are infinitesimally perturbed from Ho.

PACS numbers: 05.60.+w, 72.20.—i, 82.20.Rp

Historically, the similarities between the diA usion

equation and the Schrodinger equation have been
profitably exploited by workers interested in both [1,2].
It is well known, for example, that the master equation
describing a symmetric lattice random walk (by which we

mean one in which the hopping rate between two sites is

the same going both forwards and backwards) is iso-
morphic to an imaginary-time Schrodinger equation
evolving under a one particle tight-binding Hamiltonian.
The symmetry of the hopping rates between forward and
backward jumps is reflected in the Hermiticity of the cor-
responding lattice Hamiltonian. What is not often appre-
ciated, however, is that under most physically relevant
conditions even a nonsymmetric random walk (describ-
ing, for example, hopping diAusion in an energetically
disordered system) may be mapped through a similarity
transform onto a quantum system evolving according to
an imaginary time Schrodinger equation [2]. The lattice
Hamiltonian Ho which governs this evolution is Hermi-
tian and possesses an easily calculable, nondegenerate
ground state. In this Letter we present details of this
transformation and use it to derive an exact spectral rep-
resentation for the diA'usion constant D. We also show
how the diAusion constant can be expressed in terms of
the exact ground state energy of operators infinitesimally
perturbed from Ho. This observation leads to a new and
useful method for calculating the diAusion constant for
such systems. As an application of the approach we

derive in a simple way exact results for the long-range
symmetric random well problem [3].

A long-range random walk on an energetically disor-
dered d-dimensional lattice can be described through the
master equation

dP, =g(F, , P, F, ,P, ), — (1)
dt s'

in which P, (t) describes the probability of finding the
particle at the site of lattice vector s = (s ~, . . . , sd ) at
time t. The hopping rate F, , =F(~s —s'~;c„c,) from site
s' to s is assumed to depend upon the distance ~s

—s'~ and
upon the randomly and independently distributed ener-
gies e, and c, of the two sites involved in the transition.
Because of this energy diAerence, the rates connecting
two sites are not generally symmetric; i.e. , forward and
backward hopping rates are not generally equal. In most

systems of physical interest, however, a detailed balance
relation [4] of the form F, , p(c, ) =F, ,p(c, ) relates for-
ward and backward hopping rates to one another through
the relative equilibrium probability p(c) of finding the
particle at a site of energy e. Indeed, in most cases the
equilibrium distribution associated with the system is

unique and known a priori based upon the statistics (for
example, Boltzmann or Fermi-Dirac) of the transport
particles of interest. We assume this to be the case in

what follows, although we will not need to specify the
precise functional form of the distribution.

To proceed, it is convenient to consider an infinite lat-
tice that is periodically extended from the original (finite
but large) energetically disordered crystal in all direc-
tions. This new system is infinite in extent and invariant
under translations TL along crystal axes by multiples of
the edge length L of the crystal (assumed cubic), with
each superunit cell (or supercell) containing an identical
random array of N=L" sites (unit lattice spacing is as-
sumed throughout). Corresponding sites in each cell have
the same energy, i.e., e, =e, +L, . The distance and energy
dependence of hopping rates in the new infinitely replicat-
ed system are assumed to be functionally identical to
those in the original crystal. This leads to equations of
motion for the periodically repeated crystal

dp,"' —gW,", P, =0, (2)
m s'

in which P," denotes the probability for the particle to be
at lattice vector r,"=n+s of the infinite system, and
W„=F„—6 06, , 0, . In these expressions the super-
lattice vector (or supercell index) n = (n ~, . . nd )L locates.
the origin of the corresponding supercell, the intracell po-
sition vectors s =(s~, . . .sd) locate sites within each su-
percell, and we have defined 0,=g, F„Translation-.
al invariance on length scale L implies that the hopping
rate connecting sites in different supercells F„"=F(~m
+s —n —s'~; c„c,) =F„"depends upon the supercell
indices m and n only through the net displacement vectorI—a connecting them. Note that these rates connect
sites within a single cell (m —n =0), as well as sites in
cells separated by an arbitrarily large superlattice vector.
Thus, no truncation of long-range eA ects will occur,
despite the finite supercell size. The detailed balance
condition in the repeated system can now be expressed,
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W„p, =W„p, , in terms of equilibrium populations
p, =lim, g„P,"(t) =p(c, )/g, p(c, ) normalized to one
particle. Again, these populations are assumed to be
known or calculable from the density of states, tempera-
ture, etc.

The detailed balance relation implies that the transi-
tion matrix W is generally not symmetric except when all
sites are degenerate. As we have suggested, however, it is
possible to introduce a similarity transformation to a set
of variables governed by a Hermitian transition matrix
[2,4]. We introduce the (directly calculable) quantities
p, =(p, ) '~, which we use to define similarity transforms
+,"(t)=—(I/p, )P,"(r) of the probabilities and of the transi-
tion matrix

H„"= (I /yo—) W„"yo =(I/yo) (W,", po/po) yo

( I/yo) Wn tnyo Hnm

Applying this to (2) yields an "imaginary-time"
Schrodinger equation,

d%," —gH,", e, =0 (3)
m, s'

governed now by a Hamiltonian matrix H„=H, ,
which is Hermitian (in fact, real symmetric) and which
therefore possesses a complete orthonormal set of eigen-
vectors. The Laplace transform of (3) is

cy,"—g H,",™y, =e,"(0), (4)
m, s'

in which y,"(c) is the Laplace transform at "energy" (fre-
quency) c of the "wave" function +,"(t) The init. ial con-
dition of interest P,"(0)=8'„08, 0, corresponding to one
particle placed initially at the origin, has as its similarity
transform the expression 4',"(0)= (I/po) S„OB,o. We
now introduce a spatial Fourier transform y, (c)
=g„e '"' "+' y,"(c) over the supercell index n, obtain-
ing

cd) gH,", y,"=e,"(0)—=e, (0), (5)
s

in which +,"(0)=+,(0) =(I/po)B, O is, as our notation
suggests, independent of k. Introducing Dirac notation
we identify (5) as the projection onto site state Is) of the
equation

(c Hl, )ly"& =I+0),
in which Hk is the N & N matrix with elements
H„=g e '"' +' ' H„, and the N-dimensional vec-
tors Iy") =I@ (c)) and I+0) have components y,"(c) and
+, (0), respectively. This equation admits the formal
solution ly") =G"(c)l+0), where G"(c) =(c—HI, ) ' is
the Green's function or resolvent matrix associated with
the Hamiltonian Hk. A few features of this formal solu-
tion are all that we use. We observe, first, that the
small-k, small-c limit of the components of the column
vector I

y") are directly related to the equilibrium quanti-
ties P, which generate the similarity transformation. Us-
ing a Tauberian theorem, along with the definition of
@,"(t), it follows that

lim cy,"= lim g cy,"= lim g +,"(t) =p, , (7)
k 0 c 0 g

0

where the p, are (through their definition) square nor-
malized to unity. Indeed, the normalized state vector
lpo)—:limp, Ocly"(c)) with components po is the
(unique) eigenvector corresponding to the zero energy ei-
genvalue of the (k =0) Hamiltonian Ho =liml, OHI, To.
see this, multiply (6) by c and take the limit

lim (c HI, )c—
I
y"(c))= lim cl eo) =0,

k 0 c 0
c 0

which implies that HOI&n&=0. The vector l&0) therefore
plays the role of the "ground state" for the Hermitian
operator Ho. (It is actually the ground state of the posi-
tive operator —Ho, a distinction which has no conse-
quence to what follows [5].) Note that it is the assumed
uniqueness of the equilibrium distribution which implies
the nondegeneracy of the ground state of this efTective
H amiltonian.

The mapping of the nonsymmetric diA'usion problem
onto this related quantum system, while of some formal
interest, would be of limited utility if it did not lead to
new results or simpler expressions for calculating relevant
quantities such as transport coefticients. In what follows
we use this mapping to derive new expressions for the
diA'usion constant D, which characterizes the linear
asymptotic growth of the mean squared displacement for
a particle initially localized at the origin. In the periodi-
cally extended lattice, this can be written

2dD = lim g (n+ s) 'P,"(r) .
d

(g)~ dt's, s

The diAusion constant may be obtained from the small-k,
small-c limit of y, (c). Through the similarity transfor-
mation already defined and a Tauberian theorem we find

2dD = lim g(n+s)'y, '+,"(t)d
dt n, s

= —lim g yoc'Vjy,"(c)
k 0 s
c 0

= —lim gyo[c'V)G, , (c)]e, (0)
k Os s'
c 0

= —lim (go I
c'V) G (c) I eo) . (9)

0
c 0

It is convenient to transfer the derivatives of the operator
G (c) appearing in (9) to those of the operator HI, . Us-
ing the compact notation G =G, H =Hk, we note that
GG ' = I. Thus,

Vi, [GG 'I =0=[VI,G[G '+G[VI, (G ')j.
Since Vl, (G ) = —VI, H, this implies that

VpG =G(VI, H)G .

It is then a straightforward extension to show that
VI, G =G[VI,H —2(VI, H). G(VI, H)]G. This allows us to

17
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pass to the zero wave-vector limit. We define for nonzero
s the k =0 limits; g(s)—= limk pG";Vp =limk p

—VkHk,
and the vector operator V—= limt, p( Vt, Hk). The
diffusion constant (9) can then be written 2dD
=lim, o(gpleg[Vp —2V gvjegl+o). To put this in a
more convenient form, the operator g=(e —Hp) ' can
be expanded in the orthonormal basis [lpi)j of eigenvec-
tors of Hp,' i.e., we can write

I+~ I(
g 8 (10)

where we have again used the uniqueness of the equilibri-
um configuration to explicitly separate out the zero eigen-
vector. It is apparent that the operator lim, peg(e)
= leap)(&pl is the projector onto the ground (i.e., equi-
librium) state. Using this result and the fact that

(Pol+o) =Z, (P, /Po)B, p=i, we can express the diA'usion

constant as a ground state expectation value

D = (1/2d) lim &Pol [I o 2V' gvj I go& =&PolD I &o&

of the operator D =lim, o[Vp —2V. gVj/2d. The second

part of this diAusion operator D contains information
about fluctuations induced in the ground state by the
operator V. To see this we use (10) to write

(
I ( ) I

& ~ (t'o I I P~ yi. I I (t'o
( )

A. , a 8 Gy

where V„with e = 1, . . . , d, represents the Cartesian
components of V—= limk p( VkHk). It follows from the

= —i+ (m+ s' —s)H„= —(s'I V I s) . (i 3)

Thus V is also Hermitian. The reality of the components
p, of lpo) can then be used to show that the ground state
expectation value of V vanishes, i.e. ,

&y, lvly, & =g y,'(s'Ivls&y, '= —2 y,'&slvls'&y, '
$,$ $,$

= —g y,'&slvls')y, '= —
&y, IVI', &.

$,$
(i 4)

Thus, the k =0 term in (12) can be omitted, allowing us
to take the zero frequency limit without worrying about
singularities:

iim (y, I
v. g(e) vip, ) = —g 1&y, I v. I y, & I

'
e p A. Wp, a

(i 5)

This leads to the following exact spectral representation
of the difT'usion constant in the eigenstates of Hp.

Zap, a
(i6)

The first term on the right-hand side of (16) is readily
calculable in terms of the known ground state leap). From
the definitions appearing above it follows that

definition and symmetry of Hk that the operator V is

both antisymmetric and strictly imaginary in the site rep-
resentation, i.e. ,

(slvls') =i+ (m+s —s')H„=i+ (m+s —s')H, ,

Do=(poli'oleo& =Z e, &s'I vols&e. = 2 (m+s
m, s,s'$,$

(m+ s' —s) 8™,p, p, = g (m+ s' —s) F(I m+ s' —s I;e, , s, )p, .
m, s,s' m, s, s'

In the last line, we may replace the sum over m and s' ishing correction to the ground state energy will therefore

with a sum over all lattice vectors r=m+s', and set be second order in g. Since the unperturbed ground state

s„=s, to obtain the simple result energy itself vanishes, this implies that the exact ground
state energy eo(ti) of the Hamiltonian H, (q) will vanish

Do = „gIr —sl 'F(lr —sl;e„,e, )po, as g for infinitesimal g, and that the second term ap-
pearing in (16) will be the coeScient of this tiz term. We

the form of which remains invariant in the thermod nam- thus make the identification
ic limit (L ~). The second term on the right-hand
side of (16) is not so trivial. We have included the

superAuous value op =0 in the denominator to emphasize
the structure of this term, which (although exact) is a

sum of terms having precisely the form of the second or-
der energy shift [6] induced by a small perturbation in

the ground state energy of the unperturbed Hamiltonian

Hp. Of course the perturbing operators H' =J2V, im-

plied by this expression are not generally small compared
to H p. Consider, however, the family of operators
H, (g) =Ho+rtH' that are infinitesimally close to Hp.
We know from perturbation theory that since [as shown

by (14)] the operator H' has zero expectation value with

respect to the unperturbed ground state
I pp), the first or-

der corrections to the perturbed ground state energy (i.e. ,

corrections linear in ti) will vanish. The lowest nonvan-

18

D.—=2g ' = lim [q 'ep (g)] . (19)1&@pl I'.Ie.&

I'
g p

Equations (16)-(19) are the main formal results of
this Letter. These expressions may be used both analyti-
cally and computationally to investigate the transport
properties of energetically disordered systems. They al-
low us, for example, to derive in a simple way the exact
difTusion constant for the long-range symmetric ~el|I
problem [3]. In this model, the hopping rate between two

sites is allowed to depend upon the distance between the
two sites and upon the energy of the site (or well) from
which a particular hop occurs, but is independent of the

energy of the site to which the particle is hopping. The
physical picture behind this model is that of a set of wells

of random depth separated by tall barriers of uniform
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height. Thus, after obtaining the energy to leave the ini-
tial well, the particle is able, in principle, to make jumps
to any other site in the crystal with a hopping probability
that depends only upon the distance. This is a natural ex-
tension of the nearest-neighbor symmetric well problem
treated elsewhere [3]. Under these conditions, the hop-
ping rates can be written in the simplified form F, ,

=F(ls —s'l;e, ). We wish to show that in this limit the
second term in (16) vanishes, so that the entire diffusion
constant is contained in the easily calculable first term
(18). A close inspection of (16) reveals that this second
term will vanish if the quantity (tttx!V!pp& =g, (pxls&
x(s!V!&p& is equal to zero. To demonstrate this we
evaluate the factor

(s !V!pp& =g &s!V!s'&p, =i g (m+s —s')H„ tit,
S m, s'

=i g (m+s —s')H, , tit,
'= i g—(m+s' —s)[(I/tt,') W„y,']ll,'

Pl, 5 Pf, S

= —ittt, g (m+s' —s)F(lm+s' —sl;s, ) = —ig, grF(lrl;s, ) .
m, s'

(2O)

In the last line, we have replaced the sum over m and s'

with a sum over all lattice vectors r =m+s', and shifted
the origin to the site s. However, the last sum is clearly
zero for a centrosymmetric lattice, since the summand is

an odd function of the lattice vector r. It follows that the
dift'usion constant for the long-range symmetric well

problem on a centrosymmetric lattice is given by the first
term in (16), which reduces in this limit to

! terms of the exact ground state energy of well-defined
operators this approach naturally lends itself to the devel-
opment of variational bounds which involve the (analyti-
cal or numerical) minimization of the mean energy for a
suitable family of trial vectors.

This work was supported by the Basic Energy Sciences
Division of the Department of Energy through Grant No.
DE-FG0285 ER45219.

The general expression (16) also lends itself to a num-

ber of computational schemes for computing the diA'usion

constant for energetically disordered lattices which we

sketch below. The first is a straightforward implementa-
tion of (16): A large cubic region of the crystal contain-
ing a random distribution of site energies is generated in

the computer and its transition matrix is determined.
The corresponding Hamiltonian is constructed, and diag-
onalized numerically. The resulting eigen values and

eigenvectors are then used to evaluate the diffusion con-
stant directly through (17).

A second scheme which we have implemented exploits
the observed relationship of the diA'usion constant to per-
turbation theoretical expressions, such as (17). Thus we

search for the ground state energy sp(tl) of H, (tl), writ-

ing the infinitesimally perturbed ground state in the form

leap(t7)&

=

!ihip&+

tl!6&, where the vector !6& can be assumed
orthogonal to the unperturbed ground state l(l)p&. From
(19) the ground state energy itself can be written in the
form sp(tl) =tl D, . Substituting these expressions into
the eigenvalue equation H, (ti)lpp(ti)& =Gp(ti)ltttp(ti)& and

equating coefticients of corresponding powers of g we find

that H, leap&= —Hp!8'&, and D, leap&=H, !8&. This latter
relation allows the quantity of interest D =(pp!H !6& to
be calculated once the vector l8& is obtained. Since leap&

and H, are known, !B& can be evaluated from the first of
the two relations expressed above as the solution to the
equation Hp!8& = lf), where lf) =H, leap&. A comparative
report dealing with both of these numerical procedures
will be reported in a later publication. As a final point we

note that since the dift'usion constant can be expressed in
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