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1Max-Planck Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg, Germany
2Department of Physics, St. Petersburg State University, Oulianovskaya 1, Petrodvorets,
198504 St. Petersburg, Russia

E-mail: harman@mpi-hd.mpg.de

Abstract.
The radiative lifetime and mass isotope shift of the 1s22s22p 2P3/2 − 2P1/2 M1 transition

in Ar13+ ions have been determined with high accuracies using the Heidelberg electron beam
ion trap. This fundamentally relativistic transition provides unique possibilities for performing
precise studies of correlation and quantum electrodynamic effects in many-electron systems. The
lifetime corresponding to the transition has been measured with an accuracy of the order of one
per thousand. Theoretical calculations predict a lifetime that is in significant disagreement
with this high-precision experimental value. Our mass shift calculations, based on a fully
relativistic formulation of the nuclear recoil operator, are in excellent agreement with the
experimental results and confirm the absolute necessity to include relativistic recoil corrections
when evaluating mass shift contributions even in medium-Z ions.

1. Introduction

Measurements of transition energies, radiative transition probabilities and isotope shifts in
few-electron systems represent a continuing challenge for theory because of the interplay of
relativistic, correlation, quantum electrodynamic (QED), and nuclear recoil effects. Especially
in the range of medium nuclear charges, these effects are all intertwined. Measurements of excited
state lifetimes are particularly useful to test atomic structure theories since they are especially
sensitive to the long-scale structure of the electronic wave function. Experimental investigations
of optical isotope shifts in the spectra of highly charged ions (HCI) have the advantage of an
increased sensitivity to nuclear effects. The study of mass shifts in few-electron ions of medium
nuclear charge, besides providing the possibility of testing electron correlation calculations, is
an ideal tool to investigate relativistic contributions to the nuclear recoil operator.

Here, we present results of an accurate lifetime measurement of the 1s22s22p 2P3/2 metastable
level of B-like Ar13+ in comparison with our theoretical calculations. Furthermore, the isotope
shifts of this transition in B-like Ar13+ and of the M1 ground state transition in Be-like Ar14+

have been measured and calculated with high precision.
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2. Lifetime of the 1s22s22p 2P3/2 level in Ar13+

The measurement was performed at the electron beam ion trap (EBIT) of the Max-Planck-
Institut für Kernphysik [1]. In this experiment, the electron beam was periodically switched on
(500 ms) to excite ions with energies well below the ionization threshold and, then, switched
off (200 ms) to detect the transition. The lifetime of the 2P3/2 level in B-like Ar13+ was
measured by monitoring its decay to the 2P1/2 ground state through an M1 transition and
by analyzing the decay curves. After correcting a number of parameters influencing the lifetime,
the final value was determined. For further details see Ref. [2]. Our experimental result of
τ = 9.573(4)(5) ms (stat)(syst) is in agreement with the latest measured value of 9.70(15) ms [5]
and it is more than an order of magnitude more accurate than three previous experiments [3, 4, 5].

A comparison with theoretical and previous experimental results is shown in Fig. 1. The
theoretical results shown are as follows: MCDF [6], MCBP [7], C-S [8], CI–DFS [9], SS’98 [10],
RQDO [11] and MCDFa [12], and the previous experimental value is from Ref. [5]. A more
recent calculation using the configuration interaction Dirac–Fock–Sturmian method (CI–DFS,
Ref. [9]) leads to a theoretical value of τ = 9.538 ms. The decay rate depends on the third
power of the transition frequency which has been accurately measured recently (Ref. [13],
λ = 441.2559(1) nm). In order to give a more complete representation of the theoretical
data, theoretical values are plotted in various ways: (1) as published, (2) corrected for the
experimental transition wavelength, and (3) excluding and (4) including the contribution due
to the electron anomalous magnetic moment (EAMM), which leads to a decrease of the lifetime
by a relative factor of 1− 2 α/π. Theoretical lifetime results appear to scatter around a lifetime
of 9.53 ms, which is within a 3σ disagreement with our experimental value. Presently there is
no explanation for this discrepancy.
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Figure 1. A comparison of the present
result with calculated lifetimes of the 2P3/2

state in Ar13+ [6, 7, 8, 9, 10, 11, 12]
and (rightmost) the experimental result
of Ref. [5]. The solid line indicates
the mean value of the present data
and the dotted lines represent its error.
The electron anomalous magnetic moment
(EAMM) contribution had been ignored
in all theoretical calculations except for
Refs. [7, 9]. (See the text and the references
cited above for explanations.)

3. Relativistic many–body recoil effects in highly charged Ar ions

We investigated the isotope shift of the M1 transitions 1s2 2s2 2p 2P1/2–2P3/2 in Ar13+ and
1s2 2s 2p 3P1–3P2 in Ar14+ by performing accurate wavelength measurements with the isotopes
36Ar and 40Ar loaded into the EBIT. The corresponding wavelength shifts have been determined
with sub-ppm accuracy. The details of the measurement can be found in Ref. [14].

Isotope shifts arise from the combined effect of the finite nuclear mass and volume on the
electronic binding energy. The mass-dependent, or recoil part, is commonly divided into the
so-called normal mass shift and the specific mass shift (mass polarization) contributions. The
volume effect, also called the field shift (FS), is caused by the penetration of the electronic wave
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function into the nuclear regime. The relativistic nuclear recoil operator for a system of atomic
electrons is given by the formula (in relativistic units, see Refs. [15, 16])

Rij =
pi · pj

2M
− Zα

2Mri

(
αi +

(αi · ri)ri

r2
i

)
· pj . (1)

Here, ri and pi are the position and the momentum vectors of the ith electron, respectively, and
αi represents the Dirac matrices. Z is the atomic number, M is the mass of the nucleus and α
denotes the fine-structure constant. The normal mass shift correction to a given atomic state
is obtained as the expectation value of the diagonal sum of Rij , whereas the specific mass shift
term is given by the sum of the off-diagonal components 〈∑i�=j Rij〉. The first term in Eq. (1)
corresponds to the mass shift operator also known in the nonrelativistic theory.

Transition energies and their respective isotope shifts, including the contributions due to
the total relativistic recoil operator in Eq. (1) have been calculated by large-scale CI–DFS
calculations [17]. A detailed breakdown of the normal and specific mass shift contributions
NMS and SMS, together with the relativistic operator corrections RNMS and RSMS to the
states under study is given in Table 1. The NMS and SMS nonrelativistic operator contributions
were also calculated in the framework of the multiconfiguration DF method with independent
coding [18] to provide a numerical test. The NMS, SMS, RNMS, and RSMS contributions in
Table 1 define the nuclear recoil corrections within the (αZ)4m2

e/M approximation (me denotes
the mass of the electron). The calculation of the QED contributions to the recoil effect is
based on the works [19]. The calculation of these terms require using QED beyond the Breit
approximation [15, 19]. QED corrections are given in the third and sixth rows of Table 1. The
contributions due to the field shift (FS) effect are given in the seventh row of Table 1. In the
case of the Ar isotopes studied here, the mass shift terms clearly dominate over the FS.

Table 1. Contributions of the relativistic recoil operator and QED recoil terms to the mass shift
and field shift (36Ar – 40Ar) in Ar13+ and Ar14+ ions (in cm−1). (See the text for explanations.)

Ar13+ Ar14+

NMS 0.1052 0.0796
RNMS −0.0822 −0.0627
One-electron QED 0.0002 0.0002
SMS −0.0741 −0.0697
RSMS 0.1151 0.0887
Two-electron QED −0.0008 −0.0015
FS −0.0005 −0.0001
Sum 0.0629 0.0345

The final experimental and theoretical results for the transition wavelengths in Ar13+ and
Ar14+ and their isotope shifts are presented in Table 2. Theoretical isotope shifts including
relativistic normal and specific mass shift contributions show an excellent agreement with the
measured results, confirming the relativistic theory of recoil effects in many-body systems [17].
A calculation with the nonrelativistic recoil operator would give values for the mass shift which
are smaller than the correct relativistic result by approximately a factor of two (Ar13+) or even
three (Ar14+), as it is evident from Table 1.
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Table 2. Transition wavelengths for 40Ar13+,14+ ions and isotope shifts (36Ar – 40Ar) (in nm,
air). The π- and σ-components and their average (av) are given in the case of Ar13+.

Wavelength (40Ar) Isotope shift (36Ar – 40Ar)
Ion Theory Experiment Theory Experiment
Ar13+ 441.16(27) 441.2556(1) 0.00123(5) 0.00120(10)π

0.00125(7)σ

0.00123(6)av

Ar14+ 594.24(30) 594.3879(2) 0.00122(5) 0.00120(10)

4. Summary

The lifetime of the Ar13+ 1s22s22p 2P3/2 metastable state was experimentally determined to be
9.573(4)(5) ms (stat)(syst). The accuracy level of 0.1% makes this measurement sensitive to QED
corrections like the electron anomalous magnetic moment and to relativistic correlation effects.
Theoretical predictions, including recent calculations based on the configuration interaction
Dirac–Fock–Sturmian method, cluster around a lifetime that is approximately 3σ shorter than
the experimental result. At present we have no explanation for this interesting disagreement.

Isotope shifts of the ground state 1s22s22p 2P3/2 − 2P1/2 and 1s22s2p 3P1 − 3P2 M1 lines in
highly charged Ar13+ and Ar14+ ions, respectively, have been determined with high precision.
The observed isotope effect has confirmed the relativistic theory of nuclear recoil effects in
many-body systems, which removes major inconsistencies in earlier theoretical methods. A
comparison with accurate calculations and a theoretical analysis of the contributing effects (see
Table 1) shows that it is inevitable to take into account the total relativistic recoil operator when
predicting relativistic mass shift contributions even in medium-Z ions. To our knowledge, the
relativistic recoil effect has never been observed experimentally in HCI thus far.
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[4] Moehs D P and Church D A 1998 Phys. Rev. A 58 1111
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[11] Charro E, López-Ferrero S and Mart́ın I 2001 J. Phys. B 34 4243
[12] Verhey T R, Das B P and Perger W F 1987 J. Phys. B 20 3639
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