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PHYSICAL REVIEW A, 66, 022114 (2002
Double-logarithmic two-loop self-energy corrections to the Lamb shift
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Self-energy corrections involving logarithms of the param@tercan often be derived within a simplified
approach, avoiding calculational difficulties typical of the problematic nonlogarithmic corre¢tisrmistom-
ary in bound-state quantum electrodynamics, we denot lige nuclear charge number, and bythe
fine-structure constantFor some logarithmic corrections, it is sufficient to consider internal properties of the
electron characterized by form factors. We provide a detailed derivation of related self-energy “potentials” that
give rise to the logarithmic corrections; these potentials are local in coordinate space. We focus on the
double-logarithmic two-loop coefficiefg, for P states and states with higher angular momenta in hydrogen-
like systems. We complement the discussion by a systematic derivatiBg, based on nonrelativistic quan-
tum electrodynamics. In particular, we find that an additional double logarithm generated by the loop-after-loop
diagram cancels when the entire gauge-invariant set of two-loop self-energy diagrams is considered. This
double logarithm is not contained in the effective-potential approach.

DOI: 10.1103/PhysRevA.66.022114 PACS nuntBer12.20.Ds, 31.15:p, 31.30.Jv
[. INTRODUCTION bound states can be described by a modified Dirac Hamil-
tonian i=c=¢3=1),
Lamb-shift measurements and related theoretical calcula- )

tions for bound atomic systems with increasing accuracy Hp'=a-[p—eFy(A)A]+pBm+eF(A)d

have historically provided accurate tests of quantum electro- o

dynamics(QED), and the measurements have recently been +F.(A)—(iv-E— Bo-B 1
improved in accuracy beyond previous limjiis-3]. In order 2( )Zm( Y po-B), @

to account for a theoretical description, corrections of vari- ) _ _
ous physica| Origir‘(one-k)op Se|f-energy and vacuum p0|ar- which apprOXImater describes an electron SUbJeCt to an ex-
ization, two-loop, and higher-order radiative, recoil, ternal scalar potentiab= ¢(r) and an external vector poten-
radiative-recoil, nuclear-size correctionsave to be evalu- tial A=A(r) (the vector potential vanishes for a point
ated[4]. nucleus that gives rise to a static Coulomb potential; we may
Here, we focus on logarithmic self-energy corrections thaheglect the nuclear magnetic field and the hyperfine struc-
are evaluated within th@a expansion5]. Within the ana-  ture). We have
lytic treatment, self-energy radiative corrections can be taken
into account by means of a nonanalytic expansions in powers a
of the fine-structure constaat, the product ofZ«, and the ed(r)=eAy(r)=—— @
logarithm Ij(Za) 2] (Z is the nuclear charge numbefhe
expansion in powers af corresponds to the loop expansion in coordinate space, which corresponds (g% =
in the framework of the usual perturbative treatment for—4mZa/g? in momentum space. In this paper, following the
QED. The higher-order terms in powers &a and commonly accepted convention, the functigr) and its
In[(Za)~?] are related to atomic-physics effects; they are re+ourier transformp(g?) are denoted by the same symbl
ferred to as the “binding corrections.” _ _ We avoid possible ambiguities by denoting witandr the
The purpose of t_hIS“ |nvest_|gat,!on is t\_Nofo_Id: first, to illus- arguments in coordinate space and witbr p those in mo-
trate how Lamb-shift “potentials” that give rise to the loga- antum space. The argument=(4/r)? of the electron

rithmic corrections can be derived within the context of ; : ; :

. ) form factorF, in Eq. (1) is to be interpreted as a Laplacian
{Jqlur:jd(-jstgte t.QED% f‘hng s%conbcli, tlo pro_\t/rllde. at\rl:/golrous ar:? d%’perator acting on all quantities to the right, but not on the
alled derivation o 62 COUDIE-0GArMIC WO-I00P S o0 fnction of the bound electrai(r).

energy coefficient foP states and states with higher angular . . -
momenta based on nonrelativistic quantum electrodynamicls Et;quatt|ont(1|) entails a replacement of the binding Cou-
(NRQED). The P-state coefficienBg, has already appeared omb potential as
in the literaturg[6]; however, the derivation has been rather

sketchy. ep(r)—eF(A)(r)

and leads to a correction to the Coulomb potentig(r)

II. MODIFIED DIRAC HAMILTONIAN, ONE-LOOP according to

CORRECTIONS AND A,

It has been observed by many auth@g.,[7-9)) that a AV “TE(A)—1
rather important class of self-energy radiative effects for o(N=[Fa(4)~1]

Za
- T) ©)
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in coordinate space, and

Al
) (4)

AVc(qz)z[Fl(_qz)_l]( - o

in momentum space. In first-order perturbation theory, this gives rise to the following perturbative correction that we write
down in coordinate and momentum space:

—-Z
AE,= (YA |) = (WITFa(4) - 1Tegly) = [ ryt [ﬂ(A)—l](T“me

- LB I TS 1](_472“ ) ®)
(2m3) (2m)3 p 1(—q o p),
|
yvith q= p’—.p. An expansiqn of the eIect.ron form factby . t—2m?2 (1—4m?/t)Y2—1
in terms of its argument gives rise to higher-order terms in B(t)y=—|1+ PR SYRRT
the Za expansion, because the atomic momentum is of the t(1—-4m7t)™ (1—-4m7t)"+1

order of Za in natural units. Therefore, within thea ex-

pansion, it is admissible to expand both the bound-state =—L+O(t2). (10)

Dirac wave functions) in powers ofZ«a (the leading-order 3m?

term is then the Schdinger wave functioy as well as the

electron form factor in Eq(5) in powers of its argument.  |n Eq. (8), A denotes the fictitious photon mass. How should
The one-loop (L) self-energy (SE) correction forS  the problem of the infrared divergence of the form factors be

states within th&Za expansion reads interpreted in the context of bound-state QED? The free elec-

o tron can emit an infinite number of infrared photons, because
an_[ & a_ -2 it may undergo transitions between free states with infinitesi-
ABse _(w)(za) n3(A4l|n[(Za) It AtR), ©) energy differences. However, this is not the case for a
bound electron that has a discrete bound-state spectrum; en-
where the remaindeR vanishes aZ«— 0, mis the electron  ergy levels are separated from each other by intervals of the
mass, andh is the principal quantum number. order of Za)?m (the energy-level differences are deter-
As indicated in Eq(5), the form factor;(A) in momen-  mined by Schrdinger theory. This leads to an infrared cut-
tum space assumes arguments according to the replacemeyit in bound-state QED of the order af~(Za)’m. There-
A——q’=—(p'—p)® in momentum space. With the con- fore, we may replaca — (Z«)2m for the determination of
vention g®=q*q,=(q°)*~ 7, the evaluation of the radia- |eading logarithms of the Lamb shift. At some risk to over-
tive corrections to the binding Coulomb field is mediated bysimplification, one may therefore argue that the infrared ca-
spacelike virtual photonsgf=0), and the momentum trans- tastrophe is avoided in a natural way for bound states. For
fer can be written agy?= — g?=t (this is consistent with the the description of bound states, we have M)~
conventions employed in Refgl0,11)). —In[(Za)~?] within logarithmic accuracy, i.e., neglecting
The form factorF,(t) can be expanded in powers af  nonlogarithmic contributions that are given, e.g.,Ay; co-
which corresponds to the loop expansion. According to Egsefficients[see Eq.(6)].
(1.2 and(1.20 of Ref.[10], we have up to two-loop order  The focus of the current paper is on double-logarithmic
2 corrections that are present from the first term on the right-
Ft)+0(a® (7) hand side of Eq(9). Note that single-logarithmic two-loop
corrections are not being considered in this paper. Correc-
tions of this latter type are generated, for example, by the
secondterm on the right-hand side of E(P).

Fut) =1+ S| F@ (1) +| =
1 B aa 1 a

with

\ At this point, it may be helpful to point out that the cutoff
FO)= B(t)|nm+f(12)(t), (8)  of the infrared divergence of QED at the “bound-state pho-

ton mass”\ — (Za)?m is consistent with the matching pro-

1 A A cedure that involves an explicit infrared cuteffwhich can

F(14)(t)= EBz(t)In2 5) + InE)B(t)f(f)(t)%—]-‘(f)(t), be interpreted as an infrared cutoff for the bremsstrahlung
@) spectrum7,9,12. The procedure is described in some detail

in Eqs.(32)—(34) of Ref.[9]. This matching procedure offers
where theF are infrared finite(i.e., finite in the limit\ an alternative interpretation for the infrared catastrophe: the
—0), and the definition of the functidB(t) [see Eq(1.189  infrared divergence crucially relies on transitions between
of Ref.[10]] reads as follows: asymptotically free electron states. Any infinitesimally small

022114-2
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additional interaction of the electrons within that interferes t

with the emission of bremsstrahlung will avoid the infrared FOMt=-—
catastrophe and provide an infrared cutoff whose order of 3m
magnitude is determined by the energy scale of the add

tional external field. tial in Eq. (4) and the bound-state “infrared-cutoff prescrip-

In combining the resul(8) with the expansion oB(t) in i A — (Za)?m, this leads to the following IL self-energy
powers oft, we reproduce the well-known expression potential:

+0(t?). (11

R
"m"8

LTogether with the definition of the modified Coulomb poten-

2
16 —q Arla 4o
AVED(P) = —| - —{-In[(Za) 2]} || - = —(Za)In[(Za)? (12)
eV = | 5 {-InlZa) 7]} 7| g ZN(Za) 7]
|
in momentum space; this translates into a potential lll. EFFECTIVE LOCAL POTENTIAL FOR TWO-LOOP
CORRECTIONS AND Bg,
Ao 59)(r) | - . . .
ALy — % _2 n combining the resulf9) with the expansion 0B(t) in
AVeT(n) 37T(Za)|n[(Za) ] m2 (13 powers oft [see Eq(10)] and the modified Coulomb poten-

tial in Eq. (4), and using the bound-state “infrared-cutoff
rescription”A— (Za)?m, we obtain the following two-loop

in coordinate space. This potential can also be found as E 51 self-energy potential:

(2) of Ref.[13], given there without derivation. The first-
order one-loop perturbation, evaluated according to(BJ.
reads

2 2 \2
sveoier={] 3wz - 22
AE&]_L):<¢|AV%LL)([.)|¢>:4_a(za)4m|n[(zcy)_2]5lo_ 2
e 3 a\“1 5 2
(14) :<;) " 12 ]

This correction is nonvanishing only f@&states (=0), and
it reproduces the leading logarithmig, coefficient as given  This correction has previously appeared as €).of Ref.
in Eq. (6). It may be interesting to point out that sinpg(r [6], without a detailed derivation. After Fourier transforma-
=0)|?=(Za)3(m?/ ) 8,0, wherem, is the reduced mass of tion, we have
the system, the correctidil4) also has the correct reduced-
mass dependendghis is of relevance for systems such as 2 3)
positronium and pionium In the limit of a large nuclear (2L) :E(ﬁ) 2 o, MAS(T)
AVEZ(r) In“[(Za) 7] . A7

mass, we have of course=m,. 9\ 7w 4

Note that the potentidfL3) is local in coordinate space. In
contrast, the nonrelativistidNR) one-loop self-energy opera- o ) ) o )
tor (as well as its relativistic counterpart that assumes &vhich is a highly singular potential in coordinate space. Its
S||ght|y more Complicated forbnmay be expressed in the eXpeCtatlon value oB states d|VergeS, giving rise to a further

AnZa

o (—9). (18

length-gauge form aff. Eq. (29) of Ref.[14])], logarithm, and we will not discuss here the associated prob-
lems, which have recently attracted remarkable attention
2w [e 1 [15-22.
E(NlFL_)(r'r,):__J dww3r'<l” . r> The first-order perturbation, evaluated according to Eq.
37)o H-—E+w (5), reads

(19

wheree is the upper cutoff for the photon energy originally

@ mla B
introduced in Ref[12]. The self-energy operatdt5) in- AE(l )_<7T) 9 4 In’[(Za) Z]A[|¢n:':1m(r)|z]

. . : . m
volvestwo spatial coordinates. The locality of the potential r=0
(13) expresses the fact that the high-energy virtual photons

that mediate the form-factor corrections in Ed) act on a (18)

relativistic length scale given by the Compton wavelength of
the electron, which is smaller by one order 2% than the In Eq. (18), the Laplacian operator acts on a SalingerP
atomic length scale given by the Bohr radius. wave function. The following analytic resultm=m):

022114-3
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involves a Diracs function in coordinate space that vanishes
on P states, and consequently it can be argued that no further
double-logarithmic corrections originate from this te(but

(a)

see the discussion in Secs. IV and V
The second term in Eq21), which involves the deriva-
tive of the self-energy operator with respect to its argument

[see also Eq(2.6) of Ref.[12] or Eq. (2) of Ref. [6]] and
).r’"‘“-s constitutes the reducible part of the diagram in Fi¢c),1
—— does not give rise to any further double logarithm, either. The

first factor(y|> Y (E)| ) does not create any logarithm for
(b) P states in the order of/(Za)*. The second factor, which
contains the derivative of the self-energy operator, is not
separately gauge invariant, and consequently, there exists no
“effective potential” that could be inserted for this term.
This is in itself a rather unsatisfactory situation for the
effective-potential approach. However, it is possible to ana-
(c) lyze the logarithm that is generated by the nonrelativistic
photon integration region in this term. Consider the nonrela-
tivistic “velocity-gauge” form of Eq.(15) and differentiate
with respect to the energy,

FIG. 1. The crosseda), rainbow (b), and the loop-after-loop
diagram (c) which contribute to the two-loop self-energy for a
bound electron. The propagator of the bound electron is denoted by

a double line. d
—>ALE >
Allni=am(DIFle=0=5 [(Za)°mT—=, (19 ou 1 \%p
== 3,400l (m)w'

where n is the principal quantum number, has previously
appeared in the literatur@.g.,[6,8]). Within the current in- (22)
vestigation, we would like to present a complete derivation
of the analytic expression for this matrix element in Appen-
dix A. Finally, we rewrite the energy correction in the form

where ¢ is the nonrelativistiqSchralinge)y wave function.
There is only asingle logarithm I €/(Z)?m] generated in
the integration regiorw e [(Za)?m,e] which may be ex-
2(Za)m 4 n2 tracted by replacing 1{—E+ w)— 1/w. The logarithmic
) ———Inq(Za) %)== (200  term is proportional to the matrix eleme@|(p*/m?)| ),
3 27 which is finite onP states. Consequently, no further double

logarithms arise from the second term of EBY).
This double- IOgarithmiC correction Originates SO|E|y from the The two- |00p effect forP states is usua”y characterized

two-loop F, form factor of the electron. This corresponds to by the following semianalytic expansion in powers D
the diagrams in Figs.(&) and Xb). To complete the gauge- [cf. Eq. (6)]:

invariant set, the loop-after-loop diagram in Figc)lshould
also be taken into consideration.

AEPD =( —

n2

2
The diagram in Fig. (c) gives rise to a “second-order AE@ZD = ) (Za)* {B40+(Za)2[Bszln2(Za) 2
perturbation” involving to one-loop self energies as first-
order perturbationsgthe “irreducible part” of the diagram +Belln(Za)’2+Beo+R]}, (23)

supplemented by a further term involving the derivative of
the bound electron’'s Green functigthe “reducible part).  whereR vanishes aZa—0. Using Eq.(20), one can im-

The correction is known to rea@ee e.g.[23]) mediately read off the two-loop double-logarithmic spin-
_ independent coefficient
s (1) |l//,><lr//| (L)
(Y2R7(E) E g SR (E)Y) 4 n2-1
W Y Bean,l1=1)= 5 —— (24)
27 n

SRV E) (] 45 2<1”<E>|w (21)

We confirm the result obtained for this correction in Hél.

(1L) : . A ) :
where ;- (E) is the rgnormahzed relativistic one Ioop self IV. DOUBLE LOGARITHMS AND THE LOOP-AFTER-
energy operator, ant is the energy of the electron in the LOOP DIAGRAM

state| ). Within the effective-potential approacthe one-
loop potential(13) describes the two one-loop self-energy In the preceding section, we have seen tWéhin the
insertions in the first term of Eq21). The potential(13)  effective-potential approacmo double logarithm originates

022114-4
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!

1L
iy

in the order Za)® from the loop-after-loop diagram in Fig.

1(c). This is because, within this approach, we insert the AELAL=—<</>n,1,m

S-like local potential(13) for the two one-loop self-energies

in the first term of Eq(21). where the nonrelativistic §e|f-energy operator is given by Eq.
However, if we consider the diagram in FigicLwithin (15, and¢, 1 is the SchrdingerP wave functionsee also

the Coulomb gauge and formulate the contribution due tEd- (A1)], the prime denotes the reduced Green function, and

low-energy virtual photons, then we obtain for the irreduc-E is the energy O_f the_'P State(“é‘ﬁé‘” is_ I_oop_—after-loop).
ible part the expression The double-logarithmic term\E[,* originating from Eq.

(25) reads

E(NlRL)(ﬁ>

¢n,1,m> 1 (25)

4/(a\?
AEEA"[9=——(—) In?

p pf 1 \'p P
E(H_E)E(ﬁ) E(H_E)E¢n,l,m>- (26)

< ¢n,1,m

(Za)’m

In order to obtain this result, the denominator of the Green fundtierE + w has been expanded in powershbf- E within
the integration regiom e[ (Za)?m,]. Using the commutator relation

ABA= %([A,[B,A]]+AZB+ BA?) (27)

with A=p/m andB=H —E, the matrix element can be rewritten in a much simpler fashion, and the double-logarithmic term
becomes

€

(Za)’m

1
E<¢n,1,m| pZ(H_ E)p2|¢n,1,m>- (28)

We have

(29

(Za)°m®(4 8
<¢n,l,m| pz(H_E)p2|¢n,1,m>: 623 (g_ 15[’]2) .

Note that forS states, the above matrix element is divergent, and a regularization of the matrix element gives rise to an
additional(triple) logarithmBg5. With the natural ultraviolet cutofé~m for nonrelativistic QED, we obtain from Eq&28)
and (29) the following double-logarithmic contribution:

2 6
AEEf@(nJ:l):—(%) wmz[(zarz](i— 8 ) (30)
n

45 13m?

Note that the presence of an additional double-logarithmidrefs.[15,18,19, but the result originally obtained 6] for
term originating from the loop-after-loop diagram in Fig. thetotal value ofBg; was confirmed in Ref417,22. In the
1(c) in the Coulomb gauge does not imply that the resultfollowing section, we will derive the resul24) by an inde-
given in Eq.(24) for the total value ofBg, is necessarily pendent calculation which includes the entire gauge-
incomplete, but it means that additional double logarithmgnvariant set of the diagrams in Fig. 1 in a rigorous way.
have to expected if, e.g., this diagram is treated numerically,
and numerical and analytic results are compared. $or
states, an additional contribution to the triple logaritBgy
originating from the loop-after-loop diagram was found in  We start from the expressidsee Eq(16) of Ref.[22]],

V. DERIVATION BASED ON NRQED

022114-5
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_ 2« € € i j 1 i 1 j
AENRQED__ m2 fo dwlwlfo d(l)zwz P H—E+w1p H—E+w1+w2pH—E+w2p
1 1 _
p’ p
2 H E+w; H—E+w1+w2 H—E+w,
1 N 1 1 i ! 1y i
T2\P E+pr Erorro, i Ere” )\ P A Er e, liE PREre,?
1/ j 1 2\ o1 1 AV 1 2
T 2\PHTEF¥ o, P \P\AETw,) P/ 2\PHEET 0, [\ P\ H=Ef e, P
—m{ p b)) (p (31)
H-— E+wl H-E+w, witwy\" H-E+w, w1+ wy H—E+w; '

All of the matrix elements are evaluated on the referenceributions can be expressed by matrix elements, evaluated on

state| ¢), which can be taken as the Sctilger wave func-
tion.

Within the e method[9,12,24, we extract those divergent
contributions from Eq(31) that involve double logarithms
a?(Za)®In7 el(Za)®m] (we may pute=e;= €, for simplic-

ity). These logarithms correspond to the ultraviolet diver-
gence of NRQED and are generated by the contributions of

two infrared photons ¢, <e€,w,<¢€). The divergences i

necessarily cancel at the end of the calculation due to con-

tributions proportional to IntVe)In[ €/(Za)?m] which are gen-
erated by intermediate integration regions, & €,w,<e€),

and by terms proportional to 4mve) originating from high-
energy virtual photonsd;> €,w,>€). The latter terms cor-

respond to the infrared divergent terms proportional to
In?(\/m) of the electron form factors. For a discussion of the

related cancellations in the context of taenethod, we refer
to Ref.[12] and the Appendix of Refl9]. For the double
logarithms, the dependence encancels between the low-

energy, the intermediate, and the high-energy regions accord-

ing to I e(Za)’m]+2 In(me)n[e(Za)?m]+In%(mie)

=In[(Ze) 2.

There are nine terms in curly brackets on the right-hand

side of Eq.(31) which we would like to denote by;—7,.

These fall quite naturally into six groups, giving rise to six

double logarithmsC,;—Lg according to the following corre-
spondence:

(1) Thi— Ly,

(2) To+T3— L,

() 14— Ls,

(4) Ts+T5— Lo,

(5) Tr— Ls,

(6) Tg+ 79— Ls.

After an integration in the logarithmic regionw;
e[(Za)?m,e;] andw, e [(Za)?m, €,], the logarithmic con-

€

2(p'pl(H—E)p'p')—

the reference state, according to the following formulas
(again, we put for simplicite= €, = €,):

a\? € |Xp'(H-E)p'p?)
El:(;) In® (Za)? 9m? . 829
o 2 €
Ezz(;) In? (Za)?
X2<I0ipj(H—E)Pjpi>_4<Pi(H—E)pip2>
om?* ’
(32b
2 [ 1_ Z(H—E) 2
53:(%> In” (zzz)2 . om* p>’ (320
L4%(p'(H-E)p')=0, (320
2 T i 2i
_ g 2 € 4<p(H_E) p>
ES_(W) n |(Za)?] om? - 829
2 -4 i H-E 2 i
£6:(%) i (22)2 <|0(9m3 ") e

All of these matrix elements are finite when evaluatedPon
states and on states with higher angular momenta. In deriv-
ing these results, use is made of the integraid 5 listed in
Appendix B. In particular], is used in derivingZ,,1, is
used in deriving,, and Lg can be derived using;. The
double logarithmZ; corresponds to Eq28). Summing all
contributions£,—Lg, we obtain

e |2m(A8B)(r))

4

6 a 2
= =|—1 In?
iZ:lLI (W) " (Za)? 9m

(33

4 ’

{pZ(H—E)pZ)_(a)ZI )
=|{—] In
o

(Za)? 9m

022114-6
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in agreement with formulakl7) and(18). Here, use is made provide for a reliable comparison of numerical vs analytic
of the equality results, it is helpful to thoroughly analyze and understand the
logarithmic terms from each one of the diagrams in Fig. 1.
i N 3) 1, 5 As outlined in Sec. V of Refl9], the most accurate theoret-
(p'P(H=E)p'p'y=m(Za)(A5B)(r)) + 5 (P (H=E)p%), ical predictions for the energy levels can be obtained using a
(34)  combination of analytic and numerical results.

which is valid for P states and states with higher angular ACKNOWLEDGMENTS
momenta and can be derived using the commutator relation o ) )
(27). We thereby confirm that the additional double loga- ~The authors acknowledge many insightful discussions
rithm L5 generated by the loop-after-loop diagram Fi¢p)1 with K. Pachucki. .ThIS work has bgen supported by the
is canceled by an additional contribution frofy according ~ Deutscher Akademischer Austauschdiel@AAD ).
to Egs.(32b) and (34).

As a byproduct of the current investigation, we obtain the APPENDIX A: ANALYTIC EVALUATION
rigorous result thaBg, vanishes for states with higher angu- OF A MATRIX ELEMENT
lar momenta =2. This is because the expectation value of hi di di he derivati f th
the effective potentia(17), when evaluated on hydrogenic _. In this appendix, we discuss the derivation of the expres-
D,F,G, ... states, vanishes: states with higher angular mo='o" (19,
menta behave as for smallr, wherel is the angular mo- A[l¢ (2l
mentum. We thereby confirm a statement made in Ra&f. n,I=1m r=0

[following Eq. (5)] where it was pointed out that a formula ¢, hygrogenicP states. In Eq(18), the Laplacian operator
analogous to Eq(18) holds for all states with#1 [see the  5¢t5'on nonrelativistic, Schidinger wave functions, which
text following Eq.(5)]. are given by

VI. RESULTS AND CONCLUSIONS Dni=1m(N=Rn1(r)Yin( 6, 0), (A1)

The results of the current investigation can be summayhere Ry (r) is the radial componenty,.(6,) is the
rized as follows: In Sec. Il, we attempt to clarify the deriva- spherical harmonics with the polar coordinates, and ¢
tion and physical origin of effective potentidl§] used for 54 with quantum numbersil =1m). Since the quantum
the approximate description of self-energy corrections in, mberl=1 than the magnetic quantum number cannbe
leading logarithmic accuracy, and to provide a more detailed:o andm=1,—1. For the sake of simplicity we consider
derivation of known double-logarithmic corrections to the .o =0 casé
Lamb shift. In Sec. lll, restricting the discussion Rostates ’
and states with higher angular momenta, we rederive, within 3 |12
the effective-potential approach, known resulég for the Y1m=0(0,¢)=(4—) cosé. (A2)
leading spin-independent double logarithm ferstates as m

iven heB fficien Eq.(24)]. In IV, w L . . .
ghoew tbgatt r?orf\iailci):hir?ge dtcgflﬁfe Igg(arizr]ms ﬁZSe to’ bg eX:I'he Laplacian in Eq(18) can be written in polar coordinates
pected from the loop-after-loop diagram if this nongauge-as
invariant term is treated separateb.g., within a numerical
evaluation. By contrast, within the effective-potential ap-  , _, ,n (17 27| 1) 1 [ J
proach, the double logarithm for this diagramanishes(see R0l 29r ar| (2| sing 96 a0
the entry in column 2, row 4 of Table 1 of R¢B]). In Sec.

V, we show that a rigorous derivation &p, based on the 1 4
entire gauge-invariant set of diagrams in Fig. 1 confirms the +si_n20 &752
result(24) for the total value ofBg,. In particular, the addi-

tional double logarithm originating from the loop-after-loop where A, corresponds to the radial component afg
r b

diagram cancels when the contributions of all diagrams ar - nds for the anaular-dependent part of the Lanlacian opera-
added, andBg, vanishes for all states with angular momenta 9 P P P P

tor. One easily obtains

: (A3)

[>1.
A reliable understanding of the problematic two-loop cor- 3
rections is important for the determination of fundamental 27— 2 = 2 =
p All¢n1=1m=0(N|*]=AR7%; 7—co$ 6+ R,

constants from precision spectroscdi@p]. We would also 4m am

like to stress that analytic calculations, even in the Bw- 5

region, could be supplemented by accurate numerical evalu- X—(1—3 cog#). (A4)
2

ations in the near future. Recently, a complete evaluation of r

the two-loop self-energy effect for high-has been reported

[26]. A comparison of the numerical to the analytic resultsThe final result(19) should be independent of the angle
represents a crucial test for both methag]. In order to i.e., independent of the spatial direction in which the origin is
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approached, and independent of the magnetic quantum 2

numbgr. Therefore, we may postulate th'at thdependent Al n1oN]?] —ZRﬁl

terms in Eq.(A4) mutually cancel. Alternatively, we observe r

that since Eq(19) should be independent of the angleso

that so that we may setd=mx/2. Reading off the The radial component of the Schiinger wave function for
#-independent part of EqA4), the following result can be hydrogenlikeP states R,;) is defined by the associated La-

4

r—0

(A5)

r—0

obtained: guerre ponnomiaIsL(ﬁH) which read
|

~ (n—2)1 \" 2 \52 A

m(")== (n+1132n)) \nag) " FPnag)ntnag)
3 n+1

(n+1\(n+1)!
Lya(p)=—= 2 (=11 ) ———pl, (AB)

ap3 =0 J J!

where the Bohr radius iag=1/(Zam). Using this relation, it is straightforward to obtain

n2

—, (A7)

A[l¢>n,1,o(f)|2]|r_>o=%[(2a)5m5] -

which is equivalent to Eq19).

APPENDIX B: DOUBLE-LOGARITHMIC INTEGRALS

In this appendix, we provide the results for certain integrals that may be used in order to extract the double-logarithmic
contributions of orderZ«)®In7 e/(Za)?] from the NRQED two-loop self-energ1). We have two photon energies andw,
and denote arbitrary matrix elements of the various occurrences of the opdratBr scaled by Za)?, by the symbols
A1,A,, andAg, respectively. The symbot in this appendix is meant to indicate that only the double-logarithmic terms of
order Z«)® are selected. We have

€1 @ (Za)? 1 (Za)? 1 o €1 €
|1=j dwlwlf dw,w, 5 5 2~——(Za) In 2|n—2
0 0 w1+A(Za)? w1+ wy+AyZa)? wytAg(Za) 2 (Za)? (Za)

(A1t Ag),
(B1)

e e (Za)? 1 (Za)? 1 o €1 €
Izzf dwlwlf dw2w2 > D) ZN_(ZCY) In 2|n 2(A1+A3_A2),
0 0 w1t AL(Za)? w1t wyt Ay(Za)? wot Ax(Za)? 2 (Za)? (Za)
(B2

| fﬂd fezd 1 (Za)2 1(2 )6| €1 | €r A2 (BS)
= w1 wow ~—s(ZLa)"In n .
o TN TP Pt 0 wyt A(Z)? 2 (Za)? (Za)?
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