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Abstract. (e,2e) ionization differential cross sections are presented for several molecules. We 

will compare experimental results with theoretical calculations using the molecular three body  

distorted wave (M3DW) approximations for H2 , N2 , H2O and Formic Acid (FA) using better 

wave-function for the molecules than we had in previous works. Generally, good agreement is 

found between the M3DW approach and experiments. 

1.  Introduction 
There has been impressive progress in the area of theoretical treatments of charge particle collisions 

with atoms and molecules in the last decade. There have been many (e, 2e) studies for ionization of 

atoms and this area is now fairly mature. There have been some experimental and theoretical studies 

performed for the (e, 2e) processes with molecular targets but most of these studies have been 

performed either for high incident energies or for small molecules [1-4]. Most recently, low to 

intermediate incident energies have been reported for relatively simple molecular systems [5-6]. For 

these cases the dynamics of the ionization collisions become important and therefore more 

sophisticated models are needed to get good agreement with the experimental data. 

In this paper, we will use the molecular three-body distorted wave (M3DW) approximation method 

coupled with the orientation averaged molecular orbital (OAMO) approximation. We apply this 

treatment to calculate the triple differential cross section (TDCS) for a variety of electron angles and 

energies for H2, N2, H2O and HCOOH (Formic Acid - FA) using better wave-function for the 

molecules than we had in previous works. 

2.  Theory 
The molecular 3-body distorted wave (M3DW) approximation has been presented by our group in 

previous publications [7-9] so only a brief outline of the theory will be presented. The triple 

differential cross section (TDCS) for the M3DW is giving by:   
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 are the wave vectors for the initial, scattered and ejected electrons. The 

amplitude is given by: 
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Where 1
r and 2

r are the coordinates of the incident and the bound electrons, , ,
i a

χ χ  and b
χ  are the 

distorted waves for the incident, scattered, and ejected electrons respectively, and 2( )OA

j
rφ  is the initial 

bound-state wave-function which is approximate as the orientation averaged molecular wave-function 

for the molecular orbital of interest. The molecular wave function was calculated by Ning using 

density functional theory (DFT) along with the standard hybrid B3LYP 
 
[10]  functional by means of 

the ADF 2007 (Amsterdam Density Functional) program [11] with the TZ2P (triple-zeta with two 

polarization functions) Slater type basis sets. The present molecular wave-functions are better than the 

ones we used in previous works.  The factor 
12

( )
scat eject

C r
−

is the Coulomb-distortion factor between the 

two final state electrons, V is the initial state interaction potential between the incident electron and the 

neutral molecule, and i
U  is a spherically symmetric distorting potential which used to calculate the 

initial-state distorted wave for the incident electron 1( , )
i i

kχ + r
�

. 

The molecular distorted waves are calculated using a spherically averaged distorting potential as 

described in previous works [7-9]. The Schrödinger equation for the incoming electron wave-function 

is given by:  

2

( ) ( , ) 0
2

i

i i i

k
T U k rχ ++ − =

��
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where T  is the kinetic energy operator. The initial state distorting potential contains three components  

i s E CPU U U U= + + , where sU
 
is the initial state spherically symmetric static potential which is 

obtained from the molecular charge density averaged over all angular orientations, E
U  is the 

exchange potential of Furness-McCarthy [12] which approximates the effect of the continuum electron 

exchanging with the passive bound electrons in the molecule, and CP
U  is the correlation-polarization 

potential of  Perdew and Zunger [13,14]. 

The final state for the system is approximated as a product of distorted waves for the two 

continuum electrons times the average Coulomb-distortion factor. The final state distorted waves are 

calculated as the initial state except that the final state spherically symmetric static distorting potential 

for the molecular ion which is used for sU . 

3.  Results and discussion 

3.1.  Molecular hydrogen( H2) 

Our recent study using the M3DW method yielded good agreement with the experimental 

measurements for triply differential cross sections (TDCS) for ionization of both H2 and He by 

electron impact in a plane perpendicular to the incident beam direction with symmetric final state 

energies [15].  Figures 1 and 2 contain a comparison between our calculations and some recent 

experimental data [16] for ionization of H2 taken by Andrew Murray and Christian Kaiser at 

Manchester University.  The Manchester apparatus is designed such that the angle between the 
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incident beam direction and the detection plane (defined as ψ) can be varied.  The scattering plane 

corresponds to ψ=00 and the perpendicular plane corresponds to ψ=900.  The TDCS results in figures 1 

and 2 are plotted as a function of the half-angle between the two final state electrons in the detection 

plane (i.e. 2ξ is the angle between the electrons in the detection plane).  For low incident electron 

energies, we have found that using the full Coulomb-distortion factor C(r12) in M3DW calculations 

overestimates the effect of the final state electron-electron repulsion, normally called the post collision 

interaction (PCI), while the Ward-Macek average C-factor
12( )ave

C r  [17]  yields better agreement with 

experimental data so we have used the Ward-Macek approximation. 

Although the experimental data are not absolute, only one normalization factor is needed for the 

different ψ angles and we have chosen to normalize experiment to theory for ψ=900.  Two different 

M3DW calculations are presented – one including the correlation polarization potential and one 

excluding it. As can be seen from figures 1 and 2, there is good agreement between the experiment and 

the theory for large values of ψ especially in the perpendicular plane when the correlation-polarization 

potential is included. At low ψ values, the agreement between the experiment and the theory is not as 

satisfactory. The largest experimental cross sections for both equal (Ea=Eb=10 eV) and unequal (Ea=18 

eV, Eb=2 eV) energy sharing were not in the scattering plane but rather in a plane where ψ =450.  The 

M3DW also predicts the largest cross sections for the 450 plane if correlation and polarization is 

included in the calculations. 

 

 

 

Figure 1. TDCS for electron impact 

ionization of H2 for equal final state 

energies Ea=Eb=10 eV. See text for 

definition of angles. The measurements 

are compared with M3DW calculations 

obtained with and without the 

correlation-polarization potential. 

 Figure 2. TDCS for the electron impact 

ionization of H2 for unequal final state 

energies Ea=18 eV and Eb=2 eV. See text 

for definition of angles. 

3.2.   Molecular nitrogen (N2) 

N2 measurements are of particular interest due to the possibility of observing the effects of 2-center 

Young’s-type interference terms in the cross sections [18]. Gao et al. [19] predicted a very strong 

Young’s type interference effect for ionization of the 3σg state of N2 for small projectile scattering 

angles when the ejected electron comes out at 1800 (i.e. the backward beam direction) but this 
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prediction is yet to be verified experimentally.  This prediction resulted from a M3DW calculation 

using a polarization potential containing arbitrary cut-off parameters and a fairly elementary molecular 

orbital. We repeated these calculations using the M3DW method with an improved correlation-

polarization potential [13-14] and improved molecular orbitals. The M3DW with the improved 

polarization potential and original molecular orbital is shown as the blue dotted line in figure 3 and the 

agreement with experiment improved but there was a predicted peak near 100
0 
which is not seen in the 

experimental results.  Then we did another M3DW calculation and this time we used a better wave- 

function calculated by Ning. The M3DW with Ning’s wave-function is shown also as the solid red 

line. As can be seen from figure 3, the new calculation is in even better agreement with experimental 

data and the theory still predicts a Young’s type interference peak around 1800. Since the agreement 

between theory and the experiment is fairly good, we are encouraged to think that the predicted 1800 

peak may be real.  Until now, the existing experimental data is inconclusive concerning the existence 

of Young’s interference effects for N2.  

 

Figure 3. TDCS for the 3σg state of N2 with E0=75.6 eV, 

Ea=Eb=30 eV and θa=22
0
. The experiment data are compared to 

two sets of M3DW. The dotted blue line is the M3DW using an 

old wave-function and the solid red line is the M3DW using an 

improved wave-function.  The experimental data are those of 

Murray et al. [20]. 

3.3.  Water (H2O) 

A couple years ago we compared the results of the M3DW method with experimental results for 

ionization of the 1b1 state of H2O [21] and we found qualitative agreement with experiment but the 

results were somewhat disappointing.  We now believe that the disappointing results stemmed from 

the OAMO being invalid for the 1b1 state.  Kate Nixon and Andrew Murray have very recently 

measured triple differential cross sections for low incident energy electron-impact ionization of the 3a1 

molecular state of H2O and the OAMO approximation should be much better for this state. They used 

the same experimental apparatus as for H2. Figure 4 shows the experimental and theoretical TDCS for 

H2O in the symmetric coplanar geometry with excess energy of 10 eV and 20 eV. There is a relatively 

good agreement between the experimental data and the M3DW (including the correlation-polarization 

potentials) and the DWBA calculations which is the same calculation as the M3DW except the PCI 

term is not included in the calculations.  The DWBA without PCI has unphysically large cross sections 

for 20 eV excess energy when the two electrons leave the collisions in the same direction and this is a 

common failure of the DWBA.  The agreement between experiment and theory found here for the 3a1 

state is better than we previously found for the 1b1 state indicating that the OAMO approximation is 

much better for this state. 
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Figure 4. TDCS for electron impact ionization of H2O in symmetric coplanar geometry as a 

function of ξ (2ξ is the angle between the two outgoing electrons). The cross sections are 

presented for excess energies of 10 eV and 20 eV.  

3.4.  Formic acid (HCOOH) 

Birgit Lohmann’s group at the ARC Center of Excellence for Antimatter-Matter studies at the 

University of Adelaide, Australia have recently measured (e,2e) ionization differential cross sections 

ionization of formic acid (HCOOH) for an incident electron energy of 100 eV and an ejected electron 

energy of 10 eV. This is a planar molecule with carbon near the center of mass which is of biological 

interest.  The HOMO (highest occupied molecular orbital) is the 10a′ (ionization potential of 11.6 eV) 

and the next state is the 2a″ (ionization potential of 12.45 eV) and these two states cannot be resolved 

in the experiment so the experimental data represent a sum of the 10a′ and 2a″ states.  Unfortunately 

the OAMO approximation is not valid for the 2a″ state so we can only calculate results for the 10a′ 
HOMO state. 

 

Figure 5. Triple differential cross section of ionization of Formic 

Acid with E0=100 eV, Eb=10 eV and θa=100 as a function of the 

ejected electron angle.  The Experimental measurements represent 

a sum of the 10a′ and 2a″ states while the M3DW results are for 

the 10a′ state only. 

Figure 5 shows a comparison between the experimental data and the M3DW results without the 

correlation-polarization potential.  The experimental data have been normalized to theory in the recoil 

region.  Although the M3DW agrees well with the shape of the recoil peak, the theory predicts a larger 

and more pronounced binary peak than found in the experimental data.  Since the effect of the 2a″  is 

Ea=Eb= 5 eV Ea=Eb= 10 eV 
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unknown, it would be highly desirable to have experimental results which resolved the 10a′ state to 

ascertain how well the M3DW works for a larger molecule such as this. 

4.  Conclusions 
In this paper, we presented TDCS for electron impact ionization of different molecules and compared 

the experimental results with the M3DW. Overall the theory is in reasonably good agreement with the 

experiments.  Including the correlation polarization potential in the M3DW improved the agreement 

with the experiment for H2, N2, and H2O.  Replacing our old wave-function with Ning’s wave-function 

has also improved the agreement with experiment for N2 (the H2 results did not change).  We looked at 

two larger molecules – water and formic acid.  We found better agreement with experiment for the 3a1 

state of H2O than we had previously found for the 1b1 state.  For formic acid, we found good 

agreement with the shape of the recoil peak but not the binary peak.  However, the experimental data 

represented a sum of the 10a′ and 2a″ states while we were only able to calculate results for the 10a′ 

state so validity of the M3DW method using OAMO for large molecules has not been adequately 

tested. 
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