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Photopatternable Polymeric Membranes for
Optical Oxygen Sensors

Raghu Ambekar, Jongwon Park, David B. Henthorn, and Chang-Soo Kim, Senior Member, IEEE

Abstract—A new class of optical oxygen sensor that can be pho-
topatternable by traditional UV lithography is presented. They are
fabricated using photopatternable spin-on silicone (polydimethyl-
siloxane, PDMS) with oxygen sensitive luminescent dyes. It has a
good adhesion property and can be applied on glass or on pho-
topolymer (SU-8) without any additional surface treatments. The
optimum mixture composition for patternable oxygen sensitive
membranes is investigated and its optical properties are charac-
terized. Proof-of-concepts for two applications, intensity-based
oxygen sensing with SU-8 based structure and self-calibration flu-
idic oxygen sensor, are described. These photopatternable optical
membranes will find many applications wherever small patterns
of oxygen sensitive membranes are required.

Index Terms—Fluidics, oxygen, porphyrin, ruthenium, silicone.

1. INTRODUCTION

ETERMINATION of oxygen concentration is very im-
D portant in many environmental, medical, and clinical
applications. One popular type of oxygen sensor is the optical
oxygen sensor because they offer a lot of advantages com-
pared to its electrochemical counterpart, such as no electrical
interference, no oxygen consumption, and compatibility with
imaging. Most of the optical sensors are based on the principle
that oxygen quenches the luminescence emitted from the lumi-
nescent dyes which are immobilized in an oxygen permeable
membrane such as silicone [1]-[4].

In many applications of bio-MEMS devices, there is a large
need of microscopically patterned optical membranes to mea-
sure chemical parameters in a small local area. Most of the
oxygen sensitive membranes are, however, nonpatternable by
photolithography and very little progress has been made towards
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producing patternable optical membranes. For this work to be
possible, a membrane matrix material is needed that is trans-
parent, oxygen-permeable, and photopatternable.

In this report, an effort has been made to produce small pat-
terns of thin oxygen sensitive membranes using photopattern-
able silicone [5]. To our best knowledge, this is the first report
of using photopatternable silicone for chemical sensing appli-
cations. We investigated optimum mixture composition for pat-
ternable oxygen sensitive membranes and its optical properties
were characterized. There are two applications that prompted us
to produce photopatternable oxygen sensitive membranes. Our
first application is oxygen sensors on SU-8 structures in a chip.
SU-8 is an epoxy-based, negative tone, high aspect ratio pho-
toresist that has excellent optical properties useful for chemical
sensing [6]—[8]. Attaching chemically sensitive membranes on
the surface of SU-8 serving as the structuring material for fluidic
channels or waveguides enables very attractive optical sensing
applications [9]. The second application is a self-calibration flu-
idic oxygen sensor [10], wherein the patterned oxygen sensitive
membrane is located inside the fluidic channel. New integration
processes of patterning oxygen sensitive membranes for inten-
sity-based chemical sensors were described.

II. EXPERIMENTS

A. Preparation of Patternable Oxygen Sensor Membranes

Two oxygen sensitive luminescent dyes were used for the
preparation of oxygen sensor membranes. One was a phospho-
rescent dye, platinum porphyrin and the other was a fluorescent
dye, ruthenium complex. The oxygen sensor membranes using
these dyes were prepared as follows.

Platinum porphyrin complex, Pt (I) meso-tetra(pentafluo-
rophenyl) porphine (Frontier Scientific) was used for this study.
A photopatternable spin-on silicone (WL-5150, Dow Corning)
was used as the matrix to immobilize porphyrin. Since platinum
porphyrin was soluble in silicone, it could be evenly dispersed
in the silicone. First, a small amount of platinum porphyrin was
dissolved in 0.3 ml toluene in a glass container and stirred for
10 min. Then, 3.3 ml of WL-5150 (photopatternable silicone)
was added and stirred for 30 min.

Ruthenium complex, dichlorotris (1,10-phenanthroline)
ruthenium (II) hydrate 98% (Sigma Aldrich) was the oxygen
sensitive fluorescent compound used for this study. The same
photopatternable spin-on silicone was used as the matrix to
immobilize the ruthenium. Since ruthenium was not soluble
in silicone, it was first loaded onto fumed silica particles
(Cab-0O-Sil Fumed silica EH-5, Mozel Inc.) and then the loaded
silica particles were evenly dispersed in the silicone [2]. A small
amount of ruthenium complex was dissolved in 10 ml ethanol

1530-437X/$25.00 © 2009 IEEE
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Fig. 1. Fabrication of photopatternable oxygen sensitive membrane array on
bare glass.

in a glass container and stirred for 30 min. 0.70 g of silica was
added to the container and stirred for 24 h. The silica particles,
which were initially white in color, became yellow and the
ethanol solution became very pale, thus providing evidence that
most of the ruthenium has been loaded onto silica particles.
The mixture was allowed to dry for 12 h, and then the container
was placed in a vacuum chamber to ensure that the ethanol
was completely evaporated. Now, the dried ruthenium-loaded
silica was mixed with 6.6 ml of photopatternable silicone.
Photopatternable silicone is viscous at room temperature and,
hence, it is difficult to mix it with silica. Therefore, 0.6 ml of
toluene was added to the mixture and was stirred again for 24 h
to ensure that the silica is evenly dispersed in silicone.

B. Fabrication of Oxygen Sensors on Glass and SU-8 Surfaces

The photopatternable oxygen sensitive membranes on bare
glass were prepared, as in Fig. 1, as a preliminary step to find
the optimum membrane composition. A standard 4-inch glass
wafer was cleaned by immersing it in acetone, methanol and DI
water each for 3 min as per the standard cleaning procedure. The
wafer was then dehydrated at 200 °C for 15 min on a hot plate. A
layer of patternable oxygen sensing mixture was spin coated at
500 rpm for 40 s to obtain a thickness of about 35 pm. It was then
subjected to soft bake at 70 °C for 2 min and at 110 °C for 4 min.
UV exposure was done for an energy dose of 1 350 mJ/cm?
(5.5 mW/cm? at 365 nm for 245 s). Post exposure bake was done
at 150 °C for 150 s. Patternable oxygen sensing membrane was
developed using negative resist developer (NRD, Air Products),
then followed by a hard bake at 140 °C for 3 min.

Fig. 2 shows the fabrication process of oxygen sensor mem-
brane on SU-8 based structure. A glass wafer was cleaned and
dehydrated as per the standard cleaning procedure. An anti-re-
flective coating (DARC 300, Brewer Science) was then spin
coated at 1000 rpm for 90 s to achieve a thickness of 1.2 pym.
DARC 300 was used to minimize any possible interference from
adjacent SU-8 structure and also to enhance the vertical side-
wall profile of SU-8. DARC 300 is not photosensitive but it can
be patterned when used in conjunction with positive photore-
sist. After spin coating DARC, it was soft baked at 80 °C and
(3-baked at 150 °C, each for 1 min. Positive photoresist (S1813,
Shipley) was then spin coated on the existing DARC at 2000 rpm
for 90 s. Soft baking was done at 115 °C for 1 min, and then
followed by UV exposure at an energy dose of 150 mJ/cm?
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(8.0 mW/cm? at 436 nm for 19 s) with a mask. After exposure,
S1813 developer (Rohm and Haas Electronic Materials) was
used to develop both S1813 and the underlying DARC simulta-
neously. DARC patterns were obtained by stripping S1813 fol-
lowed by a hard bake at 225 °C for 5 min.

SU-8 2050 (MicroChem) was then spin coated at 2000 rpm
for 30 s to achieve a thickness of about 75 pm. Soft baking was
done at 65 °C for 3 min and at 90 °C for 10 min. The same mask
was aligned and exposed for an energy dose of 210 mJ/cm?
(5.5 mW/cm? at 365 nm for 38 s). After exposure, post expo-
sure bake was done at 65 °C for 2 min and at 90 °C for 8 min.
With the SU-8 left undeveloped, a layer of patternable oxygen
sensing mixture was spin coated and patterned as described pre-
viously except the exposure procedure. As the exposure time for
silicone is long, cycles of 30 s exposure and rest time of 1 min
was repeated to avoid possible adverse effects of overexposing
SU-8. Finally, SU-8 was developed using SU-8 developer. The
final fabricated structure is as shown in Fig. 2(h). One of the ad-
vantages of this fabrication procedure is that the same mask can
be used for all the three photopolymers.

C. Fabrication of Self-Calibration Fluidic Oxygen Sensor

Fig. 3 shows the fabrication process of self-calibration
fluidic oxygen sensor. The substrate was a silicon wafer with
a silicon nitride coating as an insulating layer. A platinum/ti-
tanium thin film was deposited by e-beam evaporation and
patterned by liftoff technique to define the electrodes. A PDMS
sheet (750pm thick) was prepared by spin-coating and curing
on a silicon wafer to serve as a spacer layer. A channel of
2.5 cmx 1.75 mm was made within the PDMS sheet by a
surgical blade. The PDMS sheet was attached to the substrate
by simply pressing on it to seal the interface between the sheet
and the silicon nitride layer. Inlet and outlet holes were drilled
in a glass slide. Then, an oxygen sensitive membrane was
patterned on it as described earlier and flipped over the channel.
The electrodes within the microchannel are used in electrolysis
of sample solution generating oxygen and hydrogen bubbles,
which serve as the calibrants for in sifu two-point self-calibra-
tion of the oxygen sensor [10].

D. Instrumentation

The luminescence intensity measurements were performed,
as shown in Fig. 4. A spectrofluorometer (USB2000-FLG,
Ocean optics) was used as the detector. Since the excitation
wavelength of ruthenium complex and porphyrin are different,
two different light-emitting diodes (LEDs) (LS450 and LS380,
Ocean Optics) were used as the light source. A reflection probe
(R400-7-UV-VIS, Ocean Optics), consisted of a bundle of
illumination and read fibers, was connected between the LED
and the spectrometer. The common end was placed in close
proximity to the sample which was placed inside a container.
By adjusting the oxygen and nitrogen gas flows through the
mass flow controllers, different oxygen concentrations were
obtained inside the container. The read fiber captures lumines-
cence and was high-pass filtered (>540 nm) before it was read
by the spectrometer. The spectrometer was connected to the
computer and the spectrum was displayed.
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Fig. 2. Fabrication of photopatternable oxygen sensitive membrane array on SU-8 based structures.
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Fig. 3. Fabrication of self-calibration fluidic oxygen sensor.

III. RESULTS AND DISCUSSION

A. Platinum Porphyrin Membrane on Bare Glass

Pt (II) meso-tetra(pentafluorophenyl) porphyrin was first dis-
solved in toluene and the excitation and emission wavelengths
were found to be 390 nm and 644.59 nm, respectively. The exci-
tation and emission spectra of porphyrin in photopatternable sil-
icone is shown in Fig. 5(a). The emission peak is at 644.59 nm,
same as that of platinum porphyrin dissolved in toluene. This
implies that platinum porphyrin emission wavelength is not af-
fected by photopatternable silicone.

For the optimization of composition, several mixtures of dif-
ferent concentrations of platinum porphyrin in patternable sil-
icone were spin coated on glass wafer. I /I versus the oxygen

—>
-+ Contamer
Sample
o2 N2 Mylar sheet
out in
«—
Spectrometer || LED
Reflection probe
High pass filter

Fig. 4. Luminescence measurement setup.

concentration (i.e., the Stern—Volmer plots) for different plat-
inum porphyrin concentrations are plotted in Fig. 5(b). It is ev-
ident that higher the platinum porphyrin concentration, higher
is the sensitivity. Concentrations of 1.70, 0.51, and 0.25 mM
showed good sensitivity towards a wide range of oxygen con-
centrations but were not patternable. Concentrations of 0.08 and
0.01 mM, however, did not exhibit any significant sensitivity al-
though they could be patterned photolithographically. Fig. 5(c)
shows a 250 pm diameter (35 pm thick) circular pattern of
0.08 mM concentration on bare glass. Thus, it was not possible
to produce patternable phosphorescent membranes with satis-
factory sensitivity using platinum porphyrins in patternable sili-
cone. All or most of the membranes with higher porphyrin con-
centration was wiped out while developing, leading to poor pat-
terning. The plausible reason for this could be that the exposure
wavelength for patternable silicone (365 nm) was close to ex-
citation wavelength of platinum porphyrin (390 nm). At higher
porphyrin concentrations, significant UV energy was exhausted

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 12, 2009 at 14:44 from |IEEE Xplore. Restrictions apply.
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Fig. 5. Optical properties of platinum porphyrin layers on bare glass. (a) Exci-
tation and emission spectra of platinum porphyrin in patternable silicone on bare
glass. (b) Stern—Volmer plots versus gaseous oxygen with different porphyrin
concentrations in silicone membranes (not patterned). (c) Typical 250 pm di-
ameter circular pattern of 0.08 mM concentration on bare glass.

for the excitation of porphyrin, thus affecting the crosslinking
of photopatternable silicone. Our next effort would be to use

IEEE SENSORS JOURNAL, VOL. 9, NO. 2, FEBRUARY 2009

other porphyrins whose excitation wavelengths does not inter-
fere with the exposure wavelength of photopatternable silicone.

B. Patterned Ruthenium Complex Membrane on Bare Glass

The excitation and emission spectra of dichlorotris
(1,10-phenanthroline) ruthenium (II) hydrate 98% in pho-
topatternable silicone is shown in Fig. 6(a). The emission peak
is at 589.90 nm, which is the same as that of ruthenium com-
plex dissolved in ethanol. This implies that ruthenium emission
wavelength is not affected by photopatternable silicone and
fumed silica as in a previous report [2].

The sensor mixture composition was optimized with respect
to the patternability, which largely depends on the amount of
silica and toluene in silicone. Small amount of silica in silicone
lead to small sensitivity whereas large amount of silica blocked
or minimized the crosslinking leading to poor patternability.
Likewise, small amount of toluene in silicone makes mixing dif-
ficult, whereas large amount of toluene diluted silicone leading
to poor patternability, respectively. After extensive experiments
using silica in 0.5-0.9 g range and toluene in 0.3-0.9 ml range,
0.7 g of silica and 0.6 ml of toluene were found to be the opti-
mized amounts that could be mixed with silicone to obtain sat-
isfactory patternability.

For the optimization of ruthenium content in silicone, several
mixtures of different concentrations were patterned on glass
wafer. I/ I versus the oxygen concentration for different ruthe-
nium concentrations are plotted in Fig. 6(b). It is evident that
higher the ruthenium concentration, higher is the sensitivity.
There is, however, a maximum amount of ruthenium that can
be adsorbed on silica. Above this, the extra ruthenium which is
not loaded on silica is likely to remain in silicone as clusters
since ruthenium is not soluble in silicone. This nonuniform
distribution of ruthenium causes higher nonlinearity in the
Stern—Volmer plot [3]. Io/T190 (i.e., the sensitivity at 100%
oxygen) versus the ruthenium concentration is also plotted in
Fig. 6(c). Increasing ruthenium concentration above 0.80 mM
barely increases the sensitivity as self-quenching becomes
severe [4]. Among these, the sensitivity of 0.80 mM was the
highest with a better linearity and it was chosen as the optimum
concentration of ruthenium in silicone.

C. Application I: Oxygen Sensor With SU-8 Based Structure

Ruthenium complex was immobilized in silicone and pat-
terned on the top of each SU-8 based structure of same height.
The glass surface not covered by SU-8 was blocked with a
black anti-reflective opaque coating. The ruthenium complex
emits fluorescence depending on the oxygen concentration
and sends light back through the SU-8 “vertical waveguide” to
the detector below the glass wafer. The detector such as CCD
camera can thus capture the image of the oxygen concentration
from the waveguide array. It is considered that this platform
exhibits a high possibility to achieve three dimensional optical
oxygen imaging utilizing novel structures such as SU-8 pillar
array based on multiple layer photolithography [11]. In this
phase of proving the concept, however, optical properties of
each sensor were individually characterized. The diameter of
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Fig. 6. Optical properties of patterned ruthenium complex membranes on bare
glass. (a) Excitation and emission spectra of ruthenium complex in patterned sil-
icone on bare glass. (b) Stern—Volmer plots versus gaseous oxygen with different
ruthenium concentrations in patterned silicone membranes (2 mm diameter) on
bare glass. (¢) Io/I100 versus ruthenium complex concentration in patterned sil-
icone membrane on bare glass.

SU-8 structure was kept rather large (2 mm) for easy measure-
ment with the reflection probe. However, typically 100 pum
wide silicone/SU-8 structure have been successfully prepared
by this fabrication protocol, as shown in Fig. 7(a).
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Fig.7. Optical properties of patterned ruthenium complex membranes on SU-8
layer. (a) Typical 100 gm diameter patterned ruthenium membrane on SU-8.
(b) Excitation and emission spectra of ruthenium complex in patterned silicone
on SU-8 layer. (c) Stern—Volmer plots versus gaseous oxygen with patterned
silicone membranes (2 mm diameter) on SU-8 layer and on bare glass. (d) Time
response to gaseous oxygen.

Based on the preliminary characterization with the samples
on bare glass, the photopatternable silicone membrane, i.e.,
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Fig. 8. Optical properties of patterned ruthenium complex membrane in fluidic
channel. (a) Stern—Volmer plots of patterned silicone membrane in gaseous, dis-
solved oxygen environments, and in bubbles. In each case, oxygen percentage
refers to amount of oxygen contained in the gaseous phase. Dissolved oxygen
is considered at equilibrium with this phase. (b) Time response to dissolved
oxygen with self-calibration fluidic oxygen sensor.

0.80 mM was patterned on SU-8 layer. From Fig. 7(b), the
emission peak of ruthenium complex on SU-8 layer is also
589.90 nm as expected. The Stern—Volmer plot of the oxygen
sensing membrane on SU-8 is plotted in Fig. 7(c) and was
compared with that on the glass. The sensitivity decreased from
3.17 on glass to 2.32 on SU-8. This could be due to the atten-
uation caused by the SU-8 layer. The time response of oxygen
sensitive membrane is shown in Fig. 7(d). It can be noticed that
the response from low to high concentration of oxygen is much
faster than that from high to low concentration. It is considered
that the diffusion of oxygen into the membrane is fast (about
60 s for 90% response from 21% to 100% oxygen), but removal
of oxygen from the membrane takes longer time (about 160 s
for 90% response from 100% to 0% oxygen). A sensitivity of
2.32 (Ip/T100) and a signal-to-noise ratio of 19.4 (I1gp = 485
counts, noise = 25 counts) is good to be used as an oxygen
sensor. Another observation is that the patterned oxygen sensor
did not exhibit any recognizable photobleaching after about
10 h of cumulative LED illumination.

D. Application II: Self-Calibration Fluidic Oxygen Sensor

A self-calibration fluidic oxygen sensor was fabricated as ex-
plained previously. The inlet and outlet holes allow the sam-
ples to flow in and out of the microchannel. Fig. 8(a) shows the
measurements of samples with different oxygen concentrations,

IEEE SENSORS JOURNAL, VOL. 9, NO. 2, FEBRUARY 2009

both gaseous and dissolved phases. For dissolved oxygen mea-
surements, phosphate buffer solutions (pH 7.4, 10 mM) were
first saturated with different oxygen concentrations in a beaker
and then transferred to the fluidic channel. The electrode pair
within the microchannel electrolyzes the solution to generate
a pair of oxygen and hydrogen bubbles at each electrode de-
pending on their polarity. These bubbles serve as calibrants for
in situ two-point self-calibration of the oxygen sensor [10]. The
generated bubble was shifted to enclose the oxygen sensitive
membrane. The fluorescence intensity measurements were then
taken. Since this on-chip oxygen self-calibration method is still
in the proof-of-concept phase, the exact oxygen concentrations
within these bubbles are not known. It is assumed that the gener-
ated oxygen and hydrogen bubbles are 100% (i.e., [19¢) and 0%
(i.e., Iy) oxygen microenvironments, respectively. These two
data points for oxygen and hydrogen bubbles in Fig. 8(a) exhibit
good agreement with gaseous and dissolved phase data. Time
response is shown in Fig. 8(b) that is continuous recording of
the movement of bubbles within the channel. The time response
shows a similar trend with that of Fig. 7(d) in that the diffusion of
oxygen into the membrane is faster (about 40 s for 90% response
from 21% solution to presumably 100% oxygen bubble) than
the removal from the membrane (about 75 s for 90% response
from 21% solution to presumably 0% hydrogen bubble). The re-
sults imply that the patternable sensor membrane is a promising
optofluidic integration process that can be employed in the fu-
ture development of integrated calibration module to achieve the
on-chip, on-demand, and in situ self-calibration functionality.

IV. CONCLUSION

We have presented a new class of optical oxygen sensors
that can be photopatternable by traditional UV lithography. The
photopatternable silicone proved to be a good candidate mate-
rial for patterning luminophores for optical sensing applications.
The composition of oxygen sensing mixture has been optimized
and can be directly used to make oxygen sensitive patterns. Be-
cause of its good adhesion properties, it can be prepared on glass
surfaces or on chemically inert photopolymers such as SU-8
without additional surface treatment. Proof-of-concepts for two
applications, intensity-based oxygen sensing with SU-8 based
structure and self-calibration fluidic oxygen sensor have been
demonstrated. This type of membrane is anticipated to make vi-
able integrated components of waveguide-based chemical mi-
crosensors such as planar type evanescence sensors and vertical
type reflectance sensors. This new integration process will find
many other applications wherever small patterns of oxygen sen-
sitive membranes are required in both intensity-based and life-
time-based optical sensors.
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