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Behavioral/Cognitive

Mirror Movement-Like Defects in Startle Behavior of
Zebrafish dcc Mutants Are Caused by Aberrant Midline
Guidance of Identified Descending Hindbrain Neurons

Roshan A. Jain,' Hannah Bell,! Amy Lim,>> Chi-Bin Chien,2" and Michael Granato!

Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, 2Department
of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, and *Molecular Medicine Program, University of Utah, Salt Lake City, Utah
84112

Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the
contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where
unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by
incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic
ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc
mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associ-
ated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate
that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser
ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning
movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant
ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient

to induce incorrect movement patterns.

Key words: axon guidance; DCC; movement disorders; zebrafish

Introduction

Right/left body coordination is disrupted in mirror movement
disorder (MMD), where voluntary unilateral hand or finger
movements are accompanied by involuntarily synchronous
movements on the opposite side of the body (Galléa et al., 2011).
Mirror movements, although transiently observed in normal hu-
man early development, persist through adulthood in genetically
diverse familial neurological disorders (Peng and Charron,
2013). Congenital “essential MMD,” where highly penetrant
mirror movements are observed without other symptoms, has
been linked to haploinsufficient Deleted in Colorectal Carcinoma
(DCC) mutations (Srour et al., 2010; Depienne etal., 2011). DCC
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encodes a Netrin receptor, which guides neuronal processes
across the CNS midline, consistent with its behavioral role in
left/right movement coordination (Keino-Masu et al., 1996; Se-
rafini et al., 1996; Fazeli et al., 1997). DCC’s conserved role in
bilateral motor coordination has been demonstrated in Dec and
Netrin knock-out mice, where isolated spinal cords revealed de-
fects in left/right alternating spinal activity (Rabe et al., 2009;
Rabe Bernhardt et al., 2012). Strikingly, mice carrying the hypo-
morphic Dec*¢ allele are viable and display synchronous rather
than alternating hindlimb movements, although it is unclear
whether local spinal disruptions or inappropriate descending in-
puts produce this (Finger et al., 2002; Rabe Bernhardt et al,,
2012). Thus, despite a clear role for DCC in commissural axon
guidance, distinguishing the specific neuronal deficits causing the
behavioral disruptions has been difficult (Peng and Charron,
2013).

Several overlapping models have been proposed to explain the
neuronal basis of human mirror movement behavior resulting
from DCC disruption. Loss of commissural inhibitory axonal
connections of the corpus callosum might produce inappropriate
bilateral activation of the sensorimotor cortex (Galléa et al., 2011;
Lepage etal., 2012; Fothergill etal., 2013). Alternatively, inappro-
priate ipsilateral targeting of a subset of corticospinal tract axons
could cause the behavioral deficits (Peng and Charron, 2013),
consistent with unilateral motor cortex stimulation in DCC pa-
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tients producing bilateral motor activation (Cincotta et al., 2003;
Depienne et al., 2011). The relative causal contributions of re-
duced left/right neuronal connectivity versus ectopic ipsilateral
connectivity to the aberrant behavioral pathology has remained
unclear.

Here, we take advantage of the well-characterized neuroanat-
omy of the zebrafish hindbrain to probe the role of identified
neurons in the etiology of mirror movement-like behavioral def-
icits in dcc mutants. Specifically, we show that zebrafish spaced
out (spo) mutants carry dcc mutations, including a single amino
acid substitution disrupting Netrin binding. Millisecond-resolution
analyses demonstrate that dcc mutants perform involuntary turns
on the inappropriate body side after localized touch stimulation,
and these behavioral defects correlate with aberrant ipsilateral
axonal projections of MiD2c¢m, MiD3cm, and MiD3dl reticulospinal
neurons. Although selectively ablating these commissural neurons
does not affect touch-evoked responses in wild-type animals,
MiD2/MiD3 neural ablation in dcc mutants restricts involuntary
turns back to the appropriate body side. Together, our data dem-
onstrate that in zebrafish dcc mutants, it is not the lack of hind-
brain commissural connectivity, but rather a small subset of
aberrant ipsilaterally misprojecting MiD2/MiD3 reticulospinal
hindbrain neurons, that is sufficient to activate movements on
the inappropriate body side.

Materials and Methods

Zebrafish lines and maintenance. All lines were crossed into and main-
tained in the wild-type Tiipfel Long Fin strain, with the exception of the
mapping cross, which used the polymorphic WIK-L11 strain (Rauch et
al., 1997). The spo™?’?" and spo™?*® mutants were generated in the
Tiibingen background (Granato et al., 1996). The dcc™'7%"%% 5.2 kb ret-
roviral insertion allele was generated by Znomics (Jao et al., 2008). We
have previously described the Tg(T2KSAG)j1229a GFP enhancer trap
line, hereafter referred to as simply j1229a (Burgess et al., 2009). In all dcc
mutant analyses, all mutant, sibling, and control larvae were raised to-
gether at 21°C-24°C, as neural and behavioral phenotypes were more
severe and penetrant at this temperature range than at warmer temper-
atures. Unless otherwise specified, spaced out/dcc mutant data presented
used the spo/dcc™?7?? allele. Larval zebrafish of either sex were used for all
experiments, in accordance with Institutional Animal Care and Use
Committee regulatory standards.

Mapping, sequencing, and genotyping spaced out/dcc mutants. Bulk
segregant mapping was performed on spo”?*° as previously described
(Burgess et al., 2009), using a pool of 25 behaviorally mutant larvae and a
pool of 25 behaviorally normal siblings. The linked SSLP markers 224994
(GenBank #G47488.1) and 223466 (GenBank #G45410.1) were exam-
ined by PCR, and mapped to the zebrafish genome assembly Zv9
(GCA_000002035.2). 224994 mapped 1182 bp downstream of the first
coding exon of dec and 223466 mapped 778 bp upstream of the third
coding exon of dec. The dcc™!3%1% allele carries a retroviral insertion of
~5.2 kb in the 5"UTR of dcc, located 106 bp upstream of the start codon
(see Fig. 1H) (Jao et al., 2008).

Full-length dcc cDNA was amplified from 6 days postfertilization
(dpf) Tiipfel Long Fin and behaviorally mutant larval RNA using Super-
Scriptll reverse transcriptase (Invitrogen) and Phusion polymerase
(NEB). Genotyping for the spo™?’?" allele was performed by amplifying
genomic DNA using a pair of dCAPS (Neff et al., 2002) genotyping primers:
5'-CCCAGCTCTCATTACGTGG-3" and 5'-GTCTGTCATGGATCTG
GTG-3', followed by HinfI digestion, which cuts only the mutant
product. Genotyping for the dec™17°?%% allele was performed by am-
plifying genomic DNA using a mixture of the following 3 primers: (dcc-
5'UTR-F1) 5'-GCGCAGCTGTCTGTCAGTAG-3', (DCCzm-130198)
5'-CGCAGATCTGTGCGTAGGAGAGC-3', and (DCCzm-5'LTR) 5'-
GACGCAGGCGCATAAAATCAGTC-3', which together amplify a 203
bp band for the wild-type allele and an ~700 bp band for the dcc™171%
allele. Quantitative RT-PCR was performed using the SYBR Green Jump-
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Start QPCR mix on total cDNA generated from 3 or 4 independent pools
of 3 embryos. For 50hpf dcc™!*%'?® mutant samples, total RNA and
genomic DNA was extracted from individuals using TRIzol reagent (In-
vitrogen), and only homozygous wild-type or dec™'*°** individuals
were used for analysis.

The reference DCC protein sequences used in alignments of Figure 1C
were as follows: D. melanogaster Frazzled isoform A (NP_523716.2), C.
elegans Unc40 (NP_491664.1), M. musculus DCC (NM_007831.3), and
H. sapiens DCC (NM_005215.3).

Netrin binding analysis. Full-length zebrafish dcc and dec coding
sequences were PCR amplified without a stop codon, fused at the C
terminus to a Gly-Gly linker followed by EGFP lacking the initial Met
codon, and cloned between the EcoRI and SnaBI sites of the pCS2+
expression vector. The MuSK-GFP expression construct (SV1 isoform)
was previously described (Gordon et al., 2012). Cos-7 cells were tran-
siently transfected in parallel with DNA using FuGENE 6 (Promega). At
48 h after transfection, cells were washed 2 X with Netrin Binding Buffer
(HBSS, pH 7.4, supplemented with 5 mm CaCl,, 1 mm MgCl,, 0.2% BSA,
1 mg/ml NaNj, 1 ug/ml heparin), then overlaid with 5 ug/ml recombi-
nant human FLAG-Netrin-1 (Enzo Life Sciences) in Netrin Binding Buf-
fer on ice for 90 min. Cells were washed 5X with cold Netrin Binding
Buffer and then fixed 15 min with 4% paraformaldehyde/PBS, and
stained with rabbit anti-GFP (1:500, Clontech) and mouse anti-FLAG
M2 (1:100, Sigma), followed by Alexa-488-goat-anti-rabbit (1:1000, In-
vitrogen), Alexa594-goat-anti-mouse (1:1000, Invitrogen), and DAPI,
then mounted in Vectashield (Vector Laboratories). Cells were imaged in
the same session on a Zeiss LSM710 confocal microscope using identical
acquisition settings. Background-corrected total cell fluorescence of
GFP-positive cells was calculated using FIJI (Schindelin et al., 2012), and
all cells exceeding a 80,000 minimum GFP corrected total cell fluores-
cence threshold were analyzed for Netrin-FLAG binding by measuring
background-corrected total immunofluorescent intensity of anti-FLAG
staining (Burgess et al., 2010).

Behavioral analysis of intact larvae. Acoustic stimuli were delivered to
free-swimming d5-d7 larvae housed in individual wells of a 4 X 4 grid
and recorded from above at 1000 fps as previously described (Wolman et
al., 2011). Larvae received 20 nondirectional acoustic stimuli. Tactile
stimuli were manually delivered using a short piece of nylon fishing line
attached to a glass capillary tube handle. Each larva received at least 5
stimuli per side for head and tail stimuli, for a total of 20-30 tactile
stimuli per larva. Automated analysis of larval movement kinematics
(response frequency, latency, turning angle, body curvature) was per-
formed using the FLOTE software package (Burgess and Granato,
2007b). Counterbend performance and direction were scored manually
from the video, blind to the genotype of the larvae. Responses where
bending direction was ambiguous due to larval orientation were not
included in the analyses. Spontaneous swimming movements were re-
corded for larvae in 8 s blocks and scored manually for left/right alter-
nating tail bends. Spontaneous tail curvature was calculated using
FLOTE. All larvae were individually genotyped after behavioral testing.

Statistical analysis. Statistical comparison of behaviors between groups
was performed with GraphPad Prism v5.0d software using the two-tailed
Student’s ¢ test with Welch’s correction for unequal variance, unless
otherwise specified. Where multiple kinematic parameters were analyzed
for a given dataset, Bonferroni correction was applied to p values. Mau-
thner array axonal phenotypes were analyzed using a 1-tailed Fisher exact
test.

Immunofluorescent hindbrain labeling. The 60—72 hpf embryos for
hindbrain reticulospinal immunofluorescence were raised in 0.2 mMm
phenylthiourea/E3 from 24 hpf to prevent pigmentation, fixed with 2%
trichloroacetic acid/PBS, and stained with anti-intermediate neurofila-
ment M («RMO44) as described by Waskiewicz et al. (2001). Tails of
stained larvae were retained during mounting, imaging was performed
blind to larval genotype, and tails were used to genotype all individuals
following commissural axon scoring. Commissural axon projections
were manually followed and scored through each z-stack. Both MiD3cl
neurons were not always present and/or stained in all larvae, regardless of
wild-type/heterozygous/mutant genotype, so only those neurons with
unambiguously identified cell bodies were scored (6—8 total Mauthner

tm272b
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array neurons per larva). GFP signal of j1229a was used as an additional
guide in the dcc™?7?? background. Because aRMO44 signal alone was
also sufficient to locate all present Mauthner/MiD2cm/MiD3cm/MiD3cl
cell bodies in all of these cases, dRMO44 staining alone was used in
scoring neurons in the dec™??'? background. Larval hindbrains at 6 dpf
were fixed overnight in sweet fix (4% paraformaldehyde/4% sucrose/1 X
PBS), then rinsed with 0.1 M sodium phosphate buffer, pH 7.4, and
dissected away from skin and other tissue by hand using forceps. Dis-
sected larval brains were further permeablized with 1 mg/ml collagenase
for 30 min, blocked in IB (0.1 M phosphate buffer/0.2% BSA/0.5% Tri-
ton-X/2% normal goat serum) for 1 h, then stained with diluted primary
antibodies 1:50 anti-neurofilament (3A10, gift from T. Jessell) and 1:400
rabbit anti-GFP overnight at 4°C, washed three times with IB, and stained
with 1:400 each Alexa488-goat-anti-rabbit and Alexa594-goat-anti-mouse.
Stained samples were washed with phosphate buffer for 30 min, transferred
to Vectashield medium, then mounted, and imaged ventrally on a Zeiss
LSM710 confocal microscope. As with younger larvae, tails were used to
confirm the genotype of each larva following imaging.

Laser ablation of hindbrain interneurons. Targeted cell ablation was
performed on using a MicroPoint Computer-Controlled ablation system
(Andor Technology) consisting of a nitrogen-pumped dye laser (wave-
length 435 nm) controlled by Slidebook (version 5.0) on a spinning disc
confocal microscope (Olympus). Ablation laser settings ranged from
power 68—75 depending on the age of the cumerin dye. The 3 dpflarvae
were mounted in 1.2% low melt agarose for neural ablation, carrying 2
copies of the j1229a GFP enhancer trap transgene to visualize the Mau-
thner/MiD2/MiD3 array. As it was often not possible to clearly distin-
guish among labeled MiD2cm/MiD2i and among labeled MiD3cm/
MiD3cl/MiD3j, all 10 of these cell bodies were targeted for ablation in all
larvae analyzed (see Fig. 5A). To aid in imaging, embryos were raised in
0.2 mM phenylthiourea from 24 hpf through ablation, then transferred to
E3 embryo media after ablation was confirmed. Neural ablation was
verified 1-2 h after laser application, and only those individuals where all
MiD2/MiD3 neurons were unambiguously ablated without disturbing
the nearby Mauthner neurons were considered in the analysis (see Fig.
5B). Ablated and control larvae recovered from handling for 3 d in E3
embryo media before any behavioral analysis.

Results

The spaced out phenotype is caused by mutations in the dcc
guidance receptor

We previously identified two zebrafish mutant spaced out alleles
(sp0"“?*° and spo"™?7?") based on a larval behavioral phenotype at
5-6 dpf (Granato et al., 1996). At this stage, wild-type siblings
respond to startling stimuli with a high speed turn away from the
stimulus followed by left/right alternating tail bends beginning
on the opposing side (Kimmel et al., 1974). This behavioral re-
sponse, the startle response, is highly stereotyped and easily elic-
ited using tactile or acoustic stimuli (Liu and Fetcho, 1999;
Burgess and Granato, 2007a). Although spaced outlarvae respond
readily to tactile or acoustic stimuli, they often do so with re-
peated bends to the same side, consistent with defects in the
neural circuits governing the startle response (Granato et al.,
1996). To identify the affected gene in spaced out individuals, we
performed bulk segregant analysis on behaviorally identified mu-
tant larvae using the spo’523 9 allele (Michelmore et al., 1991; Bur-
gess et al., 2009). Consistent with prior mapping (Geisler et al.,
2007), we found several polymorphic markers mapped to chro-
mosome 5 with strong genetic linkage to spaced out, and placed
the lesion between the genes TEK tyrosine kinase, endothelial
(tek), and methyl-CpG binding domain protein 2 (mbd2) (Fig. 1A).
Subsequent recombinant mapping revealed two tightly linked
length polymorphism markers, and BLAT alignments of these
marker sequences placed them on genomic contigs downstream
of the first exon of dcc and upstream of the third exon of dcc,
respectively (Fig. 1A) (Kent, 2002). Using published dcc cDNA
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sequences as a guide (Fricke and Chien, 2005), we cloned and
sequenced full-length dcc cDNA from mutant larvae of both mu-
tant spaced out alleles. In spo"**° mutants, this did not reveal any
changes in the DCC coding sequence. In contrast, sequence anal-
ysis of 5po””27 2> mutants revealed a T — A change in dcc, substi-
tuting the nonpolar isoleucine 790 with a positively charged
asparagine (Fig. 1B, C,17°° —N). The I7*° residue falls within the
fourth fibronectin Type III domain of DCC, located in a highly
conserved B-strand region of the protein in vertebrates and in-
vertebrates alike (Fig. 1C) (Bennett et al., 1997; Kruger et al.,
2004). Importantly, the fourth fibronectin Type III domain of
DCC has been implicated in the binding of its ligand Netrin,
suggesting that the 17°° — N mutation might disrupt DCC-
Netrin interaction and be causative for the spaced out behavioral
phenotype.

We tested the impact of the I”°° — N mutation on DCC-
Netrin interaction in mammalian cell culture using a Netrin
overlay-binding assay. Full-length wild-type zebrafish dcc and
dcc"™?7?" were EGFP tagged and expressed in Cos-7 cells. Wild-
type and mutant DCC-GFP were expressed at similar levels and
both colocalized with a plasma membrane-targeted RFP marker
(Fig. 1 D, E; data not shown). FLAG epitope tagged Netrin-1 was
incubated on transfected cells, and bound Netrin was detected by
immunofluorescence (Fig. 1D, E). To measure background ad-
herence of Netrin to cells, we similarly treated cells expressing the
EGFP-tagged transmembrane Muscle-Specific Kinase (MuSK-GFP),
which does not interact with Netrin (Fig. 1F). FLAG-Netrin was
significantly enriched and colocalized with wild-type zebrafish
DCC on the plasma membrane, compared with the MuSK-GFP
control (Fig. 1D,D’,G; p = 4.5 X 10 ). In contrast, no signifi-
cant FLAG-Netrin enrichment over control was observed when
mutant DCC(I”*® — N) was expressed at similar levels (Fig.
1EE',G;p = 0.69 vs MuSK-GFP, p = 2.7 X 10 ~'* vs DCC(WT)-
GFP). Thus, the I7°° — N mutation of spo"?”?’ compromises the
ability of DCC to bind its ligand Netrin in vitro.

To determine whether the I”°° — N missense mutation causes
the spaced out behavioral defects, we first genotyped offspring
from crosses between heterozygous spo™?’?*/+ adults, and con-
firmed that the I7°° — N mutation was present in 100% of larvae
displaying the characteristic spaced out behavioral phenotype
(n = 192 larvae). Second, we obtained fish strain carrying a viral
insertion in the 5'UTR of the DCC gene (dcc®'*°'%, Fig. 1H)
(Jao et al., 2008). Quantitative RT-PCR using dcc™?°"*® ho-
mozygous embryos or spo”**” mutant larvae revealed a strong
reduction in decc mRNA in both of these mutants (Fig. 1I; p =
0.0001). Kinematic analysis of the acoustic startle response of
homozygous dcc™'?%'%® larvae revealed a striking increase in
turning angle magnitude, characteristic for larvae mutant for ei-
ther spaced out allele, spo"“?*° and spo™™?”?" (Fig. 2A, described in
detail below). Furthermore, spo™?"?/dcc'**'® trans-heterozygous
individuals also exhibited abnormal acoustic startle responses
with the same characteristic exaggerated turn angles observed in
spaced out mutants (Fig. 2A). Thus, the dec™'?%'*® insertion allele
fails to complement the spaced out mutation, confirming that
the spaced out behavioral phenotype is due to an I7°° — N
missense mutation in the dcc gene. We will refer to spaced out
as dcc hereafter.

Startle response performance and rhythmic swimming are
disrupted in dcc mutants

We next wanted to determine whether the behavioral deficits in
left/right body coordination observed in dcc mutants are caused
by the loss of commissural neuronal connectivity or by aberrant
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ipsilateral connections. For this, we turned to the startle response
circuit because dec mutants display overt startle response defects,
and because the hindbrain neural circuits underlying the startle
response consist of a small number of well-characterized neurons
(Granato et al., 1996; Bhatt et al., 2007; Koyama et al., 2011). We
first characterized startle defects of dcc mutants, then identified
which commissural connections of the startle response circuitry
depend on dcc function, and finally determined whether the be-
havioral startle phenotype observed in dcc mutants was caused by
the loss of commissural neuronal connectivity, or by aberrant
ipsilateral connections.

The larval zebrafish startle response, triggered by tactile or
acoustic stimuli, can be broken down into a stereotypic series of
discrete and quantifiable movement patterns (Burgess and

Granato, 2008; Fero et al., 2011; McClenahan et al., 2012). Milli-
seconds after the stimulus, larvae initiate a high-speed turn (C-
bend, “B1”) directed away from the perceived stimulus (Fig. 2B)
(Kimmel et al., 1974; Burgess and Granato, 2007a). This C-bend
turn is followed by a weaker turn in the opposite direction
(Counterbend, “B2”), and then a bout of rhythmic left/right
swimming undulations (“B3, B4” etc; Fig. 2C). The net result is
that larvae move rapidly away from potentially threatening stim-
uli. Throughout the entire movement sequence, the body axis
bends strictly alternate between the rightward and leftward direc-
tions, and the counterbend (“B2”) represents the initiation of this
alternation. Thus, left/right coordination is critical throughout
the entire startle response and can be quantified at millisecond
resolution, as shown in Figure 2C, where approximate total body
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significant increase in maximum head turning angle during short latency acoustic startle responses compared with their siblings. ****p << 0.0001 for each pair. Trans-heterozygous dec™*%/
dc™3%"% Jarvae show a similar increase in maximum head turning angle compared with wild-type siblings. ****p < 0.0001. dec™???/+ and dc™°"%%/+ heterozygous larvae show no
significant acoustic startle defects. Larvae received 20 acoustic stimuli each, and numbers of larvae analyzed per genotype are shown at the base of each column. B, (, Representative time series of
6 dpf wild-type (B, top) and dcc™*?> mutant (B, bottom) zebrafish larvae responding to acoustic stimuli. B, Panels represent the points of maximal body curvature for the C-bend (“B1”) and
counterbend (“B2”) of the acoustic startle response. The total body curvatures of the larval responses in Bare graphed in € >80 ms after initiation of the acoustic stimulus. €, Black bracket represents
the increase in maximal body curvature achieved during the C-bend of dcc mutants. D, The average frequency of counterbends performed following acoustically evoked C-bends by 6 dpf dec™7%
mutant larvae (dcc,n = 42inred) and their wild-type siblings (WT, n = 31in blue) across 20 identical acoustic stimuli. **p = 0.0054 (one-tailed t test with Welch’s correction for unequal variances).
Each point graphed represents a single larva. E, F, Tail curvature during a spontaneous swim maneuver performed by a 6 dpf wild-type sibling (E) and a dcc™’?° mutant larva (F). Three repeated
leftward tail bends by the mutant are highlighted with arrows in F. G, Frequency of spontaneous swim maneuvers with strictly left/right alternating tail bends for wild-type (n = 8 larvae) and

dec™?7? mutants (n = 12 larvae). ****p < 0.0001. Each point represents a single larva.

curvature is graphed as a function of time with rightward and
leftward curvature represented as positive and negative values,
respectively.

To examine the precise movement deficits in dcc mutants, we
examined their performance in response to acoustic startle stim-
uli at millisecond resolution (Fig. 2A-D). Following acoustic
stimuli, dec mutants displayed latencies and response frequencies
similar to those observed in wild-type siblings (Fig. 2C). In con-
trast, dcc mutants exhibited specific defects in both movement
magnitude and left/right alternation throughout the entire startle
response. Specifically, the initial C-bends were exaggerated com-
pared with their wild-type siblings, with mutants often contact-
ing the tip of their tail with their heads (Fig. 2A—C). Similarly, dcc
mutant C-bend duration, head turning angle, and maximal body
curvature were all significantly larger than those measured in
wild-type siblings (Fig. 2A—C; note increase in B1 body curvature

peak in C). No significant defects were observed in acoustic star-
tle performance of heterozygous dcc"™?”?%/+ or dec™**'%%/+ lar-
vae (Fig. 2A; data not shown).

To determine whether rhythmic left/right alternation was dis-
rupted in additional behavioral contexts, we examined spontane-
ous swim bouts of wild-type and dec™?7? larvae (Fig. 2E-G).
Spontaneous movements of dec”™?”?" larvae were more kinemat-
ically variable than those of their wild-type siblings, and all mu-
tants displayed a reduced frequency of spontaneous swim bouts
with strictly left/right tail bend alternation (Fig. 2F,G; p <
0.0001). Together, these data reveal specific defects throughout
the entire sequence of the left/right alternating spontaneous
swimming and acoustic startle response behaviors of dcc larvae,
indicating that dcc is required for the appropriate assembly and
function of the neuronal circuits controlling multiple movement
patterns of during rhythmic swimming and the startle response.
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Figure 3.

dccis required for counterbend directionality during touch-evoked startle responses. A, Schematic comparison of known neuronal and behavioral differences between head and tail

touch-evoked startle responses (Liu and Fetcho, 1999; Gahtan et al., 2002; Bhatt et al., 2007; Kohashi and Oda, 2008). B, Average frequency of touch-evoked counterbends correctly directed to the
opposite side from the initial C-bend. Fach larva was tested at 6 — 8 dpfwith 10 15 tactile stimuli to the head and tail (n = 5 wild-type larvae, 12 dec™*?* larvae, 7 dc™ %" larvae). *p = 0.0244
(two-tailed pairwise ttest). **p = 0.0025 (two-tailed pairwise ¢ test). C—F, Representative time series of 6 dpfwild-type (€, E, top) and dcc™’?° mutant (€, E, bottom) larvae responding to tactile
stimuli to the head (C, D) or tail (E, F). C, E, Panels include the points of maximal body curvature for the C-bend (“B1”) and counterbend (“B2”) of the startle responses. D, F, The total body curvatures
of the larval responses depicted in Cand E are graphed over 80 ms following initiation of the startle maneuver, with the wild-type response in blue and the dcc™’? mutant response in red.

dcc controls counterbend initiation and directionality

Given the well-established role of hindbrain neurons in the startle
response, we examined whether dcc regulates counterbend per-
formance through hindbrain interneurons during the startle re-
sponse. Following acoustic stimuli, wild-type larvae perform a
rapid C-bend immediately followed by a counterbend turn to the
alternate side (Fig. 2B; n = 31 larvae). In contrast, most dcc mutant
larvae displayed a significantly reduced acoustically evoked counter-
bend frequency, consistent with defects in counterbend initiation
(Fig. 2D; n = 23/41 dcc™??" larvae, p < 0.001). In those cases when
dcc mutants performed counterbends, some were directed to the
same side as the C-bend, further confirming defects in the initiation
of left/right alternation (n = 7/40 dcc"™*” b larvae).

In addition to acoustically evoked startle responses, we exam-
ined tactile-evoked startle responses, as the latter allows us to
differentiate between subsets of hindbrain neurons executing the
behavior, depending on whether tactile stimuli are delivered to
the head or the tail (Fig. 3A) (Liu and Fetcho, 1999). Both tactile

stimuli recruit the hindbrain Mauthner command neurons and
appear to activate the same sets of spinal interneurons (Bhatt et
al., 2007). However, head touch-evoked startle responses addi-
tionally recruit the reticulospinal Mauthner homologs (MiD2cm,
MiD3cm, and MiD3cl), whereas tail touch-induced responses do
notrequire MiD2cm and MiD3cm (O’Malley et al., 1996; Liu and
Fetcho, 1999; Gahtan et al., 2002; Kohashi and Oda, 2008). Com-
pared with acoustic stimuli, we observed even more striking de-
fects in counterbend direction when startle responses were
evoked by tactile stimuli. Whereas wild-type sibling larvae always
performed counterbends in the correct direction when touched,
opposite to the initial C-bend, most dec mutants performed some
touch-evoked counterbends to the same side as the initial C-bend
(Fig. 3B-D; n = 9/12 dec™?7?" larvae, n = 7/7 dec®2""** larvae).
Intriguingly, the defect in counterbend direction was signifi-
cantly more pronounced when dcc larvae were touched on the
head than when the same larvae were touched on side of their
tail (Fig. 3B-F; n = 12 dcc™?7?" larvae, n = 7 dec™ 7' larvae,
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Figure4. dccis required for commissural axonal projections of hindbrain interneurons, including the Mauthner/MiD2/MiD3 array. A—C, Confocal projections of hindbrain rhombomeres 4 — 6 of
6070 hpfembryos stained with the antineurofilament antibody c'RM044 (black), from a dcc™%’?*/+ heterozygous sibling (4), ahomozygous dcc™’?” mutant (B), and a homozygous dec™ "%
mutant (C). A, B, The GFP enhancer trap transgene j1229a was also present to colabel the Mauthner array cell bodies with anti-GFP (red). Green asterisks indicate MiD3cl axons aberrantly extending
laterally and/or rostrally. Yellow “ X " indicates the cell body of an unscored T-reticular neuron extending a commissural axon through rhombomere 6 in panel C. White scale bars, 36 wm. For clarity,
camera lucida tracings of the Mauthner arrays in these projections are presented in A’~C’. Mauthner axons are in blue (rhombomere 4) and Mauthner homolog axons are in red (MiD2cm pair from
rhombomere 5, MiD3cl and MiD3cm pairs from rhombomere 6). The MiD3cl axon in Cextends rostrally out of the presented image, then turns and extends ipsilaterally toward the posteriorin a more
lateral axon tract. D, Quantification of commissural versus ipsilateral axonal projections of hindbrain M-homolog neurons (MiD2cm, MiD3cm, MiD3cl) stained by «RM044 for wild-type (+/+,n =
33 embryos), heterozygous (dcc™7?*/+, n = 14 embryos), and dec mutants (dcc™? and dcc™ "%, n = 24 and 13 embryos, respectively). The number of scored neurons is listed at the base
of each bar. ****p < 0.0001. E, F, Confocal projections of hindbrain rhombomeres 47 of 6 dpf larval brains stained with an anti-neurofilament antibody («3A10, red) and «GFP (green), from

sibling (E) and dcc™7? mutants (F) carrying 2 copies of the j1229a GFP enhancer trap transgene. Blue arrowheads indicate discrete hindbrain commissure bundles labeled by c:3A10.

p = 0.0244 and p = 0.0025, respectively, two-tailed paired t test).
This behavioral difference strongly suggests that dcc regulates a
key population of neurons recruited in response to head touches
that is not used during escapes evoked by tail touch or acoustic
stimuli, consistent with the idea that dcc is required for MiD2cm/
MiD3cm/MiD3cl development and/or function. Overall, our
behavioral data reveal a key role for dcc in regulating the perfor-
mance and directionality of counterbends in the context of the
startle responses and strongly suggest a role for dcc-dependent
hindbrain circuits in regulating counterbends.

dcc mutants exhibit defects in the commissural trajectories of
identified hindbrain neurons

Given the pronounced counterbend direction defect of dcc larvae
when touched on the head, we hypothesized that dcc regulates the
axonal projections of the MiD2cm/MiD3cm/MiD3cl reticulospi-
nal Mauthner homologs. To test this, we examined the commis-
sural trajectories of the Mauthner hindbrain array consisting of a
bilateral pair of Mauthner neurons (Fig. 4A,A’, blue) and their
segmental homologs, MiD2cm, MiD3cm, and MiD3cl (Fig.
4A,A’, red). In wild-type siblings, the j1229a GFP enhancer trap
transgene labels the cell bodies of the Mauthner neurons and
their homologs, and the commissural axons of the Mauthner/
MiD2cm/MiD3cm/MiD3l pairs can be identified by neurofila-

ment antibody staining at 60 hpf (181 of 181 commissural
MiD2cm/MiD3cm/MiD3] axons, n = 33 wild-type embryos)
(Waskiewicz etal., 2001). Whereas commissural axons from both
Mauthner neurons were generally observed in dcc mutants, 1-5
MiD2cm/MiD3cm/MiD3cl axons failed to project contralaterally
in 100% of dcc™?”?" and dcc™'°'*® embryos examined (Fig.
4B-D; dcc"™?7?: 54 of 138 misprojecting axons, n = 24 larvae;
dcc™391%: 28 of 66 misprojecting axons, n = 13 larvae, p <
0.0001 vs wild-type siblings for each, 1-tailed Fisher Exact test).
Cell bodies of these neurons, particularly MiD3cl, sometimes ap-
peared to be more laterally positioned relative to axon tracts (Fig.
4C, left MiD3cl); and in some cases, labeled axons projected lat-
erally and/or rostrally in novel ectopic paths to join ipsilateral
axon tracts, a phenotype never observed in wild-type (Fig. 4B, C,
green asterisks).

In addition, we examined commissural axons of the more
rostral RoL2 reticulospinal neurons, which are also detectable at
this stage by aRMO44 staining (2.0 £ 0.0 commissural axons/
embryo, n = 30 wild-type embryos) (Metcalfe et al., 1986; Hatta,
1992). In most dcc mutants, one or both of these RoL2 commis-
sural axons were absent (15 of 24 dec”?7?" mutants with RoL2
defects, 6 of 13 dcc™1797%8 mutants with RoL2 defects; p <0.001
for each, one-tailed Fisher’s exact test; data not shown), suggest-
ing that dcc is required broadly to regulate axonal guidance of
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commissural hindbrain neurons. Therefore, we examined the
later-developing extensive scaffold of commissural hindbrain ax-
onal tracts in dcc mutant larvae, using a neurofilament antibody
and the j1229a enhancer trap line to provide spatial landmarks
(Burgess et al., 2009). Specifically, we focused on the regular
ladder-like array of commissural interneuron axons in rhom-
bomeres 47 of the caudal larval hindbrain. At 6 dpf, wild-type
larvae reliably had 8 commissural bundles, whereas dcc mutants
showed disorder in these commissures, with variable reductions
in the number of distinguishable commissural tracts (Fig. 4E, F;
n = 6 wild-type and 6 dec™?”?"). Thus, dcc regulates commissural
guidance of multiple hindbrain neurons, in particular the
MiD2cm, MiD2cm, and MiD3cl neurons implicated in the head
touch-evoked startle response.

Counterbend directionality defects in dcc mutants are caused
by ipsilateral MiD2cm/MiD3cm/MiD3cl projection

Finally, we wanted to determine whether the defects in counter-
bend directionality in dcc mutants are caused by the loss of
MiD2cm/MiD3cm/MiD3cl commissural connectivity, or by ab-
errant ipsilateral connections formed by these neurons. Based on
current models, there are two attractive explanations for the ob-
served behavioral defects. First, in wild-type larvae, MiD2cm/
MiD3cm/MiD3cl neurons make synaptic connections in the
contralateral spinal cord critical to specify the counterbend direc-
tionality. In the dcc mutants, these contralateral projections
might be reduced or absent, thereby impairing counterbend di-
rectionality. To test this first possibility, we laser ablated MiD2/
MiD3 homologs in wild-type larvae and then examined the
fidelity of their counterbend direction following head touch
stimuli (Fig. 5A, B). Ablation of the MiD2/MiD3 homologs in
wild-type larvae resulted in head-touch responses indistinguish-
able from unablated control individuals, with 100% of responses
performing strict left/right alternation of the C-bend and coun-
terbend (Fig. 5C; n = 5larvae). Thus, the MiD2/MiD3 homologs
are not required to specify counterbend direction.

A second possibility is that in dec mutants some of the MiD2/
MiD3 homologs fail to project contralaterally, and instead project
ipsilaterally down the spinal cord where they form ectopic synaptic
connections with ipsilateral interneurons and/or spinal motor neu-
rons in addition to some appropriate contralateral synaptic connec-
tions. To test this second possibility, we ablated the MiD2/MiD3
homologs in dec mutant individuals and measured counterbend di-
rectionality. Following head touch stimuli, nonablated decc mutants
performed counterbends that were frequently misdirected (Fig. 5C;
41 * 7.6% misdirected, n = 15 larvae). In contrast, dcc mutants in
which the MiD2/MiD3 homologs had been ablated displayed a sig-
nificant rescue of counterbend direction following head touch (Fig.
5C;9.75 £ 6% misdirected, p = 0.010 for two-tailed ¢ test vs unab-
lated dcc mutants, n = 4 larvae). Thus, dcc is critical to govern the
relative directionality of counterbends through its control of the
commissural guidance of the Mauthner homologs, preventing inap-
propriate ipsilateral synaptic contacts. This demonstrates a func-
tional role for DCC in regulating left/right alternation circuits in the
hindbrain.

Discussion

In congenital MMD patients carrying causative mutations in the
DCC guidance receptor, a proposed cause for the movement de-
ficiencies is inappropriate descending bilateral corticospinal tract
projections. However, the direct impact of inappropriate corti-
cospinal projections on motor behaviors in DCC mutant mice
has been inconclusive (Dottori et al., 1998; Coonan et al., 2001;
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Kullander et al., 2003; Fawcett et al., 2007). Here we address the
role of ectopic ipsilateral descending projections in dec mutant
zebrafish to determine the role of dcc in regulating reticulospinal
circuitry underlying descending motor control. Through targeted
ablation of a small number of descending hindbrain interneurons,
we demonstrate that inappropriate bilateral connections of dcc mu-
tant reticulospinal tracts are sufficient to evoke involuntary mirror
movement-like behaviors.

The spaced out behavioral phenotype is caused by a missense
mutation in the dcc guidance receptor

We identified three independent mutant alleles that give rise to
the zebrafish spaced out/dcc phenotype: dec™'*%'%, dec'™**%, and
dcc™?7", respectively. In dec™'??'% (caused by a viral insertion)
and dcc™??? homozygotes (caused by a presumptive promoter
mutation; Fig. 1I), dcc mRNA levels are >90% reduced, whereas
dcc"™?7?" mutants carry a single 17°° — N amino acid substitution
in the fourth fibronectin Type III domain. Cell culture and in
vitro pull-down experiments have previously implicated DCC’s
fourth and/or fifth fibronectin Type III domains as the Netrin
binding site (Bennett et al., 1997; Geisbrecht, 2003; Kruger et al.,
2004), and consistent with this we find that the [”°° — N muta-
tion significantly compromises DCC-Netrin interaction in cell
culture (Fig. 1D-G), although we cannot exclude additional
protein trafficking defects in zebrafish. Importantly, the
strength of the behavioral phenotype observed in dcc™?”?” mu-
tants is indistinguishable from that of dcc™?7?%/dcc™°"%® trans-
heterozygotes (Fig. 2A). Furthermore, the axonal defects in the
hindbrains of dec™#”?” and dec™™!*°'*® mutants are 100% pene-
trant and observed at similar neuronal frequencies (Fig. 4D),
providing compelling evidence that the spaced out phenotype is
caused by loss-of-function mutations in the dcc gene. Finally,
heterozygous DCC patients present mirror movement pheno-
types, whereas we only observe neural or behavioral phenotypes
in homozygous dcc™?”?" or dcc™'°!%® zebrafish mutants (Figs.
2A and 4D), indicating that these are hypomorphic alleles or that
the simpler zebrafish Mauthner array is less sensitive to DCC
levels than the human motor control circuits.

The spaced out/dcc mutation was initially identified as one of
three mutants in which following startling stimuli, rather than
performing alternating right and left bends, larvae perform mul-
tiple tail bends to the same side (Granato et al., 1996). The other
two mutants are caused by mutations in the Rb1 tumor suppres-
sor gene (space cadet) and in the robo3 guidance receptor (twitch
twice) (Burgess et al., 2009; Gyda et al., 2012). In humans, robo3
mutations cause Horizontal Gaze Palsy with Progressive Scolio-
sis, disrupting left/right coordination of eye movements (Jen et
al., 2004). Behavioral and neuroanatomical analyses of these
three mutants have shown partially overlapping functions for
these genes in regulating startle movements. For example, in dcc
and twitch twice/robo3 mutants, midline crossing of the Mauth-
ner/MiD2/MiD3 array is affected, whereas these axonal processes
are unaffected in space cadet/RbI mutants (Fig. 4). In contrast, in
all three mutants the caudal array of hindbrain commissures is
disorganized, suggesting that these functionally uncharacterized
commissures regulate aspects of left/right movement coordina-
tion (Fig. 4) (Lorent et al., 2001; Burgess et al., 2009). Thus, like
mutations in their human orthologs, mutations in the zebrafish
robo3 and dcc genes result in movement defects, consistent with
the idea that the behavioral deficits are caused by disrupting evo-
lutionarily well-conserved circuits.
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Figure5. Ipsilaterally misprojecting MiD2/MiD3 neurons in dcc mutants result in counterbend directionality defects. A, B, Confocal projections of hindbrain rhombomeres 47 in a live 3-d-old
larva carrying 2 copies of the j7229a GFP enhancer trap transgene in green, immediately before laser ablation of the MiD2/MiD3 homologs (4) and 1 h after ablation (B). The cell body positions of
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axonsand unablated cells. Projections were individually adjusted for brightness and contrast to permit consistent visibility of the Mauthner array and debris, and to confirm ablation of neurons rather
than photobleaching. €, Wild-type siblings with bilateral MiD2/MiD3 ablation (light blue) and unablated controls (dark blue), as well as similarly ablated and unablated dcc mutants (pink and red,
respectively) were tested at 6 dpf with 10 tactile stimuli to the head, and responses were specifically scored for counterbend directionality relative to the initial startle bend. Numbers of larvae
analyzed per genotype are shown at the base of each column. Allindividuals carried 2 copies of the j7229a GFP transgene to visualize the Mauthner/MiD2/MiD3 array for ablation. **p = 0.0100. D,
A model for the role of MiD2/MiD3 neurons in the dcc mutant counterbend phenotype. Head touch activates the Mauthner/MiD2/MiD3 hindbrain array through the trigeminal sensory neurons
(black). This reticulospinal array activates trunk motor neurons (“MN” in green) to initiate the contralateral C-bend (“Bend 1"), as well as proposed commissural interneurons of the caudal hindbrain
and/or spinal cord (“X” in orange), which directly or indirectly activate motor neurons on the opposite side for the subsequent counterbend (“Bend 2”). In wild-type larvae where the MiD2/MiD3
neurons have been ablated (top right panel, red dotted lines indicating ablated neurons), Mauthner activity alone is sufficient to activate trunk motor neurons for the contralateral C-bend and
commissural “X” interneurons to allow an appropriate counterbend. In dec mutants (bottom left), these commissural interneurons are bilaterally activated, which resolves in some responses to
produce a counterbend on the same side as the C-bend. In dcc mutants where the MiD2/MiD3 neurons have been ablated (bottom right), this bilateral conflict is removed and appropriate
counterbend direction is restored. Inactive neurons in each scenario are shaded gray.

Ectopic ipsilateral descending projections in dcc mutants bined, these results suggest a model in which dcc disruption
produce mirror-like movements results in a mix of normal commissural and inappropriate ipsi-
Bilaterally ablating wild-type larval MiD2/MiD3 neurons does  lateral MiD2/MiD3 axonal projections (Fig. 5D). In wild-type
not affect counterbend performance, whereas ablating these neu-  larvae, left-sided head stimuli activate the contralaterally project-

rons in dcc mutants restores counterbend performance. Com-  ing Mauthner, MiD2cm, MiD3cm, and MiD3] neurons (Fig. 5D,
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top left) (O’Malley et al., 1996; Kohashi and Oda, 2008). The
activated Mauthner neuron directly activates primary motor
neurons (“MN”) on the right body side producing an initial con-
tralateral bend (“Bend 1”), whereas the Mauthner plus MiD2cm,
MiD3cm, and MiD3cl neurons activate a population of yet-
unidentified contralateral commissural interneurons in the cau-
dal hindbrain and/or spinal cord (Fig. 5D, orange “X” neurons).
With a defined time delay, “X” neurons directly or indirectly
activate motor neurons on the opposite body side producing a
counterbend (“Bend 2,” Fig. 5D).

In dcc mutants, left-sided head stimuli still activate the con-
tralaterally projecting Mauthner neuron and hence primary mo-
tor neurons on the right body side, producing an initial
contralateral bend (“Bend 1”). However, the right side “X” neu-
rons are only partially activated because a subset of MiD2cm/
MiD3cm/MiD3cl neurons now extend ipsilaterally, ectopically
synapsing on and activating left side “X” neurons. This ectopic
ipsilateral “X” activation in turn activates right side motor neu-
rons, outcompeting the weakened activation of left side motor
neurons, producing a right-sided counterbend (“Bend 2,” Fig.
5D). Ablating the inappropriately projecting MiD2cm, MiD3cm,
and MiD3I neurons in dcc mutants removes the conflicting ipsi-
lateral interneuron activation, allowing appropriate counterbend
direction (Fig. 5D). Consistent with this model, Mauthner neu-
rons form direct synaptic contacts with trunk motor neurons and
spinal interneurons (Myers, 1985; Jontes et al., 2000; Liao and
Fetcho, 2008; Satou et al., 2009). Finally, although our data dem-
onstrate that aberrant bilateral connectivity of this small neural
array is sufficient to induce inappropriate mirror movement-like
behaviors, the direct synaptic targets of MiD2cm, MiD3cm, and
MiD3cl have not yet been identified, making their future identi-
fication a necessity to further understand how minor changes in
circuit connectivity cause dramatic changes in behavior.

Insight from zebrafish on descending control of left/right
coordination and MMD

In human patients, DCC disruption produces mirror movements
most noticeably in the hand and fingers, movements thought to
be controlled by the “cortico-motoneuronal” subset of cortico-
spinal neurons (Lemon and Griffiths, 2005; Cox et al., 2012; Peng
and Charron, 2013). In simpler vertebrates, such as zebrafish,
many motor control functions of the human corticospinal tract
are instead controlled by reticulospinal tract neurons, representing
an analogous yet simplified system in which to study descending
motor control (Vulliemoz et al., 2005). Interestingly, cortico-
motoneuronal neurons form direct synaptic connections with
spinal motor neurons (Bortoff and Strick, 1993), akin to the di-
rect motor neuron activation by the Mauthner (Fig. 5D) (Myers,
1985; Jontes et al., 2000; Chong and Drapeau, 2007). The Mau-
thner and MiD2cm/MiD3cm/MiD3] neurons comprise a com-
missural reticulospinal hindbrain array controlling left/right
coordination of body movements (Nissanov et al., 1990;
O’Malley et al., 1996; Liu and Fetcho, 1999). Therefore, we fo-
cused on the behavioral consequences of ectopic bilateral de-
scending MiD2cm/MiD3cm/MiD3cl axonal projections caused
by dcc mutation.

Unlike humans, where right and left limbs can move indepen-
dently or in concert, zebrafish spinal motor circuit organization
precludes simultaneous bilateral trunk contraction (Granato et
al., 1996; Drapeau et al., 2002; Hirata et al., 2005). Whereas inap-
propriate bilateral corticospinal input in humans with DCC dis-
ruption produces an involuntary mirror movement on the
incorrect side simultaneous with the intended movement, de-
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scending bilateral activation in zebrafish must resolve into uni-
lateral body bends. Therefore, we expect analogous mirror
movement-like defects in zebrafish dcc mutants to instead man-
ifest as delays and/or randomization of the left/right direction of
lateralized body bends. During touch-evoked startle responses of
dcc mutants, we frequently observe counterbends performed in
the same direction as the initial bends (Fig. 3B-D). Like human
mirror movements, these mirror movement-like bends inappro-
priately occur on the opposite side from the “intended” stereo-
typed counterbend and are largely the result of descending motor
control defects (Fig. 5C). Thus, the ability to focus on a simplified
hindbrain circuit and stereotyped movement patterns in ze-
brafish allows us to elucidate a basic function of dcc-dependent
motor circuits: modeling not the exact mirror movements of
limbs, but rather the conserved requirement of dcc in descending
left/right motor control.

Finally, some individuals with MMD exhibit both bilateral
activity downstream of unilateral corticospinal tract activation
and inappropriate bilateral motor cortex activity, suggesting that
multiple spatially distinct neuronal defects may together produce
the overall array of behavioral movement defects (Papadopoulou
et al, 2010). Similarly, ablating the misprojecting bilateral
MiD2cm/MiD3cm/MiD3cl reticulospinal neurons in zebrafish
dcc mutants is not sufficient to completely eliminate the mirror
movement-like bend defect (Fig. 5C). Furthermore, although
MiD2cm/MiD3cm activity is likely dispensable for spontaneous,
acoustically evoked, and tail touch-evoked startle behavior, dcc
mutants display counterbend initiation and/or direction defects
in these contexts (Figs. 2E-G and 3B) (Liu and Fetcho, 1999;
Burgess and Granato, 2007a). Thus, similar to humans, zebrafish
require DCC in both the descending M-cell array and additional
neurons to initiate and/or maintain left/right coordinated move-
ments. The spontaneous swim bend alternation defects suggest
that commissural spinal CPG interneurons may be disrupted in
dcc larvae, analogous to the local DCC-dependent neurons coor-
dinating left/right alternating spinal activity in mice (Rabe et al,,
2009; Rabe Bernhardt et al., 2012). Identifying these additional
DCC-dependent neural circuits regulating left/right alternation
will reveal additional mechanisms for how DCC disruption im-
pacts motor behavior.
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