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Cosmological Bardeen-Cooper-Schrieffer condensate as dark energy

Stephon Alexander
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We argue that the occurrence of late-time acceleration can conveniently be described by first-order

general relativity covariantly coupled to fermions. Dark energy arises as a Bardeen-Cooper-Schrieffer

condensate of fermions which forms in the early universe. At late times, the gap and chemical potential

evolve to have an equation of state with effective negative pressure, thus naturally leading to acceleration.

DOI: 10.1103/PhysRevD.81.043511 PACS numbers: 98.80.Cq

I. INTRODUCTION

Current cosmological observations point to a universe
dominated by a negative-pressure fluid component, dubbed
dark energy, whose origin is unknown. If the equation of
state of this fluid does not evolve and is w ¼ p=� ¼ �1,
then dark energy is a cosmological constant. In this case,
observations give a value of the cosmological constant that
is 120 orders of magnitude smaller than the theoretically
expected evaluation. We still lack a convincing way of
understanding this issue. As a result, an approach towards
making progress is to assume that the cosmological con-
stant/dark energy stem from some new physics.1

Ever since the observational evidence of late-time ac-
celeration, model builders have sought to find a candidate
for dark energy. However, this task is daunting as it is hard
to identify an existing degree of freedom in the standard
model or general relativity that (i) has negative pressure,
(ii) is homogeneous on horizon scales and (iii) matches the
observed energy scale. This initially led to quintessence
models where a new fundamental scalar degree of freedom
with a fine-tuned potential can be adjusted to yield a late-
time acceleration tracking dark matter. Alternatively, in-
vestigators have invoked infrared modifications of general
relativity, for instance fðRÞ or Gauss-Bonnet gravity.
While successful, many representatives in both classes of
models suffer from fine-tuning or other theoretical prob-
lems due to the introduction of new degrees of freedom.

In this work, we take a minimalistic approach to dark
energy assuming no extra degrees of freedom except fer-
mionic matter on a flat Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) background. A finite density of fermions
in the early universe can undergo a Bardeen-Cooper-
Schrieffer (BCS) condensation due to a covariant attractive
channel from general relativity. The system is described by
a set of transcendental equations that give relations be-

tween the scale factor, the fermion gap and the chemical
potential. It was already shown in [4–6] that such a BCS
condensate can play an important role in the early universe
by resolving the big bang singularity via a bounce.
Remarkably, we find that depending upon some of the
parameters of the theory, the same condensate can also
affect the history of the universe at late times. In this paper
we will show that the nonperturbative potential of the
fermion gap can lead to late-time acceleration.2

This is achieved by extending the analysis of [6], which
was applied near a cosmological bounce where the gap
equation could be obtained in a Minkowski spacetime.
Here we work on a FLRW background and consider the
evolution of the universe from the bounce on. As a con-
sistency check, we obtain gap equations similar3 to those in
[6] and reproduce the same bouncing cosmology. A
mechanism of fermion condensation was argued to be
relevant to dark energy also in [7,8] (see also [9,10]); for
another approach describing fermions and condensates on
FLRW spacetimes, see [11–13].
The paper is organized as follows. In Sec. II we intro-

duce the BCS mechanism on a FLRW background and
derive the effective equations of motion. This section is a
little technical and the reader mostly interested in the
cosmology can skip ahead to Sec. III, where we classify
the cosmological solutions and find numerical examples
which accelerate at late times. Section IV is devoted to
discussion.

1For alternative approaches which try to avoid dark energy by
invoking large scale inhomogeneities see, for instance, [1–3].

2On the other hand, the present proposal does not address
either the smallness or coincidence problem for the cosmological
constant, although it does relax the former. These issues will
require a better understanding of the regularization mechanism
(see below), which goes beyond the scope of this work.

3Some of the coefficients differ slightly. This is mainly be-
cause here for simplicity we only consider the scalar channel of
the four-fermion interaction, while in [6] we also included the
pseudoscalar interaction. Also, unlike in [6], we do not throw
away the contributions from the antifermions. These differences
do not affect the physics, since the coefficients have the same
sign.
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II. COSMOLOGICAL BCS THEORY

We use Greek indices �; �; . . . ¼ 0; . . . ; 3 for spacetime
directions in a nondegenerate manifoldM (with signature
�þþþ ) and capital Latin indices I; J; . . . ¼ 0; . . . ; 3 for
the internal Lorentzian tangent space TM. Spatial direc-
tions on M and TM will be denoted as a; b; c; . . . and
i; j; k; . . . , respectively. Dotted and undotted indices _�, �
label spinor components. We work in units @¼c¼G¼1.

We begin by studying the cosmology of first-order gen-
eral relativity covariantly coupled to Dirac fermions. In
such a system a four-fermion interaction emerges when we
solve for the torsion. In what follows, we show that this
interaction in a FLRW background realizes a BCS conden-
sate whose potential generically leads to late-time
acceleration.

A. Fermions in FLRW background

Let us start by considering pure general relativity de-
scribed by the Holst action [14]. Afterwards we sketch how
the attractive four-fermion interaction emerges after solv-
ing for the torsion. The action on a curved manifold M is

SH ¼ 1

16�

�Z
M

d4xee�I e
�
JR��

IJ � 1

�

�
Z
M

d4xee�I e
�
J
~R��

IJ

�
; (2.1)

where eI� is the gravitational field (vielbein, tetrad), e �
j dete�I j, R��

IJ is the curvature of the spin connection A�
IJ,

� is the Barbero-Immirzi parameter and ~R��
IJ ¼

�IJKLR��
KL=2 is the dual field strength.

The first term in Eq. (2.1) yields the Palatini formulation
of the Einstein-Hilbert action, the latter emerging when
inserting the solution to the associated equation of motion

A�
IJ ¼ !�

IJ½e� ¼ e�I ðe�J;� � �
�
��e

�
J Þ (2.2)

(where ��
�� are the Christoffel symbols) into Eq. (2.1) and

using g�� ¼ eI�e
J
��IJ. The second term is identically zero

on half-shell, due to the Bianchi identity for the Riemann
tensor. !�

KL is the metric-compatible, torsion-free spin

connection.
The story changes when we covariantly couple chiral

fermions to the gravitational action. The Dirac action for
fermions c is

SD ¼ � i

2

Z
M

d4xeð �c�Ie
�
I r�c þ c:c:Þ; (2.3)

where c.c. denotes the complex conjugate and the covariant
derivative is defined as r� ¼ @� ���, where

�� ¼ 1

4
AIJ��

IJ; (2.4)

and

�IJ � 1

2
½�I; �J� (2.5)

are the Lorentz generators for spinors. �I are the usual
Dirac matrices in Weyl (chiral) basis,

�I ¼ 0 	I

�	I 0

� �
; �5 ¼ I 0

0 �I

� �
; (2.6)

where 	I ¼ ðI;�	iÞ, �	I ¼ ðI; 	iÞ and 	i are the Pauli
matrices:

	1 ¼ 0 1
1 0

� �
; 	2 ¼ 0 �i

i 0

� �
; 	3 ¼ 1 0

0 �1

� �
:

(2.7)

Note that a tetrad-based formalism is essential for the
inclusion of fermions in the theory, since Dirac spinors
live naturally in SUð2Þ.
The equation of motion for the total action SH þ SD are

solved in terms of a connection A�
IJ having two contribu-

tions [15–17], the torsion-free spin connection and a tor-
sion term related to the axial fermion current:

A�
IJ ¼ !�

IJ½e� þ C�
IJ; (2.8)

where C�
IJ is the tetrad projection of the contortion tensor,

C�
IJ ¼ C�

�
eI½�e
J

�: (2.9)

Square brackets denote antisymmetrization, X½IJ� ¼
ðXIJ � XJIÞ=2.
On solving for C�

IJ in terms of the fermionic field and

inserting the resulting expression for A�
IJ in the total

action, one obtains the four-fermion interaction (see the
Appendix for a detailed derivation)

Sint ¼
Z
M

d4xe
J5IJ

I
5

M2
;

1

M2
¼ 3�

2

�2

�2 þ 1
; (2.10)

where JI5 ¼ �c�5�
Ic is the axial current. Therefore, the

fermionic action is now

Sfer ¼ SD þ Sint; (2.11)

where the covariant derivative in SD is in terms of !�
IJ.

For a flat FLRW line element

ds2 ¼ �dt2 þ a2ðtÞdxadxa; (2.12)

the vielbein is given by

e�
I ¼ 1 0

0 aðtÞ
i
a

� �
; (2.13)

where aðtÞ is the scale factor. The only nonzero structure
functions and spin connections !IJK are

!0ij ¼ �!i0j ¼ �H
ij; (2.14)

where H � _a=a is the Hubble parameter. Then,
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�0 ¼ 0; �a ¼ �aH

2

aj

	j 0
0 �	j

� �
: (2.15)

Above we have assumed the gravitational action to be the
usual Holst action. However, when torsion is present (for
instance, when it is generated by fermions or a spacetime-
dependent Barbero-Immirzi field [18–22]), it is natural to
include it explicitly in the fundamental action, so that the
Holst term is completed by a torsion-torsion piece to form
the Nieh-Yan invariant [17,23].

There are several other reasons why to prefer the latter
alternative. A second motivation is that the Holst term is
not topological and vanishes on half-shell, while one would
expect to define the theory with topological contributions.
Third, although mathematically correct the Holst deriva-
tion does not respect the usual decomposition of torsion
into its Lorentz irreducible components, and its trace part
(a polar internal vector) turns out to be proportional to the
axial current [17] [see Eq. (A8)].

In the Nieh-Yan case, the coupling M2 ¼ 2=ð3�Þ no
longer depends on the Barbero-Immirzi parameter. In ei-
ther case the ‘‘bare’’ coupling isM * 1. As we will regard
it as part of an effective coupling, our results will not be
sensitive to the form of the classically vanishing part of the
action.

B. Weyl decomposition

We are now ready to quantize the fermions on a FLRW
spacetime. Since

eI
��Ir�c ¼

�
�0@0 þ 1

a
�i
a

i ð@a ��aÞ
�
c

¼ �0

�
_c þ 3

2
Hc

�
þ 1

a
�i@ic ;

the Dirac Lagrangian is

L D ¼ �ic y�0

�
�0

�
_c þ 3

2
Hc

�
þ 1

a
�i@ic

�
: (2.16)

Just as in the case of Minkowski spacetime, it is convenient
to decompose the fermions into two-component Weyl
spinors,

c � �
�

� �
; (2.17)

so that

LD ¼ �i

�
�y _�þ �y _�þ 1

a
ð�y �	i@i�þ �y	i@i�Þ

þ 3

2
Hð�y�þ �y�Þ

�
: (2.18)

One can also write the action in terms of left-handed Weyl
spinors but there is now an extra term coming from the
integration by parts (integration domain omitted from now
on):

Z
d4xa3�y _� ¼

Z
d4x�@tða3�yÞ

¼
Z

d4xa3�ð _�y þ 3H�yÞ;

since the �’s are anticommuting Grassmann fields, �y� ¼
���y. For spatial derivatives,Z

d4xa2�y	i@i� ¼ �
Z

d4xa2@i� �	i�y

¼
Z

d4xa2� �	i@i�
y;

and Eq. (2.18) yields

SD ¼ �i
Z

d4xa3
�
�y _�þ y _ þ 1

a
ð�y �	i@i�þ y �	i@iÞ

þ 3

2
Hð�y�þ yÞ

�
; (2.19)

where  ¼ �y. The action is completely symmetric with
respect to the particle and antiparticle Weyl spinors, � $
 . In other words, the expansion of the universe does not
distinguish between particles and antiparticles.
Moreover, since FLRW is conformally flat and the ac-

tion is first-order in time derivatives, the latter reduces to
the Minkowski action. To see this, let us first perform the
conformal rescaling

~� ¼ a3=2�; ~ ¼ a3=2: (2.20)

Then,

SD ¼ �i
Z

d4x

�
~�y _~�þ ~y _~ þ 1

a
ð~�y �	i@i ~�þ ~y �	i@i ~Þ

�
:

(2.21)

Next we introduce the Fourier transforms

~�ðxÞ ¼
Z

d3pd!e�i½ap�x�!t� ~�p;!;

~ðxÞ ¼
Z

d3pd!e�i½ap�x�!t� ~p;!:
(2.22)

In terms of the Fourier components, the action becomes

SD ¼
Z

d4pd4p0d4x½!~�y
p0;!0 ~�p;! þ!~y

p0;!0 ~p;!

� ~�y
p0;!0 �	ipi

~�p;!

� ~y
p0;!0 �	ipi

~p;!�e�i½ax�ðp�p0Þþtð!�!0Þ�

¼
Z

d4pd!0dt
�
2�

a

�
3½!~�y

p;!0 ~�p;! þ!~y
p;!0 ~p;!

� ~�y
p;!0 �	ipi

~�p;! � ~y
p;!0 �	ipi

~p;!�e�itð!�!0Þ

¼ ð2�Þ3
Z

d4pd!0dt½!�y
p;!0�p;! þ!y

p;!0p;!

� �y
p;!0 �	ipi�p;! � y

p;!0 �	ipip;!�e�itð!�!0Þ:
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Thus, the Dirac action in momentum space reads

SD ¼ ð2�Þ4
Z

d4p½!ð�y
p;!�p;! þ yp;!p;!Þ

� ð�y
p;! �	ipi�p;! þ yp;! �	ipip;!Þ�: (2.23)

C. BCS condensation

A simple and physically transparent way to understand
the condensation mechanism is to introduce auxiliary sca-
lar (gap) fields, which are proportional to the fermionic
bilinears. The gap equation is then derived by integrating
out the fundamental fermionic degrees of freedom. Our
starting point is the four-fermion interaction term

Sint ¼
Z

d4xe

�
J5IJ

I
5

M2

�
: (2.24)

This term can be decomposed into a scalar, pseudoscalar
and vector interactions using the Fierz identity

ð �c�5�
Ic Þð �c�5�Ic Þ ¼ ð �c c Þ2 þ ð �c�5c Þ2

þ ð �c�Ic Þð �c�Ic Þ: (2.25)

The last term is the higher-energy p-wave channel and we,
as such, are going to ignore it. For simplicity, we will also
drop the pseudoscalar condensate and only focus on the
scalar one. Thus, our interaction reduces to

Sint ¼
Z

d4xe

�ð �c c Þ2
M2

�
¼
Z

d4xe

�
ð �c c Þ��M2

4
�2

�

� Smass þ Stree; (2.26)

where in the second equality we have introduced the
auxiliary scalar �, which acts like a mass term for the
fermions. For an FLRW background (spinorial indices
restored),

Smass ¼
Z

d4xeð �c c Þ�

¼
Z

d4xa3ð"����� þ " _� _��y
_�

y
_�
Þ�: (2.27)

It is clear that a nonzero value for the auxiliary field ��
�c c would signal a (cosmological) BCS-like condensa-
tion. In order to find such a nontrivial value for �, one can
take recourse to a mean-field approximation where the gap
� is treated as a constant. With the same procedure of the
last subsection, the mass term in momentum space is

Smass ¼ ð2�Þ4
Z

d4pð"���;�p;�!��;p;!

þ " _� _��y
_�;p;!

y
_�;�p;�!

Þ�: (2.28)

Combining it with the kinetic term (2.23),

Sfer � SD þ Smass

¼ ð2�Þ4
Z

d4p½!�y
p;!�p;! � �y

p;! �	ipi�p;!

þ!�p;�!
y�p;�! � �p;�!	

ipi
y�p;�!

þ ð�p;�!�p;! þ �y
p;!

y�p;�!Þ��; (2.29)

where � ¼ �� and  ¼ �. The above can be written in
four-component notation as

Sfer ¼ ð2�Þ4
Z

d4pð�y
p;!; �p;�!ÞAp

�p;!

y�p;�!

 !
; (2.30)

where Ap is a 4� 4 matrix given by

Ap ¼ !� �	ipi �
� !� 	ipi

� �
: (2.31)

At this point we introduce a chemical potential � in the
action, which corresponds to having a nonzero number
density of fermions. The matrix Ap is now modified to

Ap ¼ !� �	ipi þ� �
� !� 	ipi ��

� �
: (2.32)

The condition �< 0 corresponds to a Bose-Einstein con-
densation of composite bosons.

D. Effective action

The resulting quantum theory is encoded into the path
integral

Z ¼
Z
½D��½D��½D�eiðSferþStreeÞ

�
Z
½D��eiSeff � eiSeff jSP; (2.33)

where we have integrated the Grassmann fields, defined the
effective action Seff (often referred to as � in quantum field
theory literature) and approximated the functional integral
by the saddle point (mean-field approximation [24]). The
effective action Seff can be evaluated by performing the
Gaussian integrals in terms of the fermionic coordinates.
As usual, one ends up with a fermionic determinant.
Eventually we have (see, e.g., [24,25])

Seff ¼ Stree � i
Z d4p

ð2�Þ4 lnðdetApÞ: (2.34)

The determinant of Ap can be straightforwardly computed:

detAp ¼ ½!2 � ðjpj þ�Þ2 ��2�½!2 � ðjpj ��Þ2 ��2�;
(2.35)

where � is the auxiliary field at the saddle point. This
expression is not Lorentz covariant, as expected (see be-
low). Accordingly, we are left computing
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Veff � �Leff ¼ M2

4
�2 � I; (2.36)

where

I ¼
Z d3pd!

ð2�Þ4 fln½!2 � ðjpj þ�Þ2 � �2�
þ ln½!2 � ðjpj ��Þ2 � �2�g

¼
Z d3p

ð2�Þ3 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj þ�Þ2 þ �2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj ��Þ2 þ�2

q
�

¼ I1 þ I2: (2.37)

The integral I1 is

I1 ¼
Z 1

0

dp

2�2
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ�Þ2 þ�2

q

¼
Z 1

�

dp

2�2
ðp��Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

q

¼
Z 1

0

dp

2�2
ðp��Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

q
�
Z �

0

dp

2�2
ðp��Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

q
:

To get I2, one has to simply replace � $ �� in I1. The
second integral in I1 cancels the second in I2 and we are
left with

I ¼
Z 1

0

dp

�2
ðp2 þ�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ�2

q
: (2.38)

The above integral can be regulated using the following
formula:

Z 1

0
dp

pA

ðp2 þ�2ÞB ¼ �ð1þA
2 Þ�ðB� 1þA

2 Þ
2�2B�A�1�ðBÞ : (2.39)

Let us choose B ¼ �1=2þ ". Then we have (A ¼ 2 and
A ¼ 0)

I ¼ 1

2�2

�
�ð3=2Þ�ð"� 2Þ

�2ð"�2Þ�ð"� 1=2Þ þ
�2�ð1=2Þ�ð"� 1Þ
�2ð"�1Þ�ð"� 1=2Þ

�

¼
ffiffiffiffi
�

p
�2

2�2�ð"� 1=2Þ�2"

�
1

2
�2�ð"� 2Þ þ�2�ð"� 1Þ

�
:

We expand up toOð"Þ to obtain the effective action. Using
expansion formulas such as

�

�
"� 1

2

�
¼ �2

ffiffiffiffi
�

p þ 2ð�� 2þ 2 ln2Þ ffiffiffiffi
�

p
"þOð"2Þ;

(2.40)

where � � 0:5772 is the Euler-Mascheroni constant, we
have

I � � �2

4�2½1� "ð�� 2þ 2 ln2Þ�ð1þ " ln�2Þ
�
�
�2

4

�
1

"
� �þ 3

2

�
��2

�
1

"
� �þ 1

��

� � �2

4�2

�
1

4
�2

�
1

"
� 1

2
þ 2 ln2� ln�2

�

��2

�
1

"
� 1þ 2 ln2� ln�2

��
: (2.41)

Thus, the effective potential is given by

Veff ¼ M2

4
�2 þ �2

4�2

�
�2

4

�
1

"
� 1

2
þ 2 ln2� ln�2

�

��2

�
1

"
� 1þ 2 ln2� ln�2

��
: (2.42)

In a renormalizable theory, the 1=" divergence can be
absorbed using renormalization conditions [26,27]. The
four-fermion interaction term is nonrenormalizable in
Minkowski and therefore the divergence cannot be elimi-
nated. A standard approach is to interpret the regularization
parameter in terms of a physical cutoff scale �,

1

"
� ln�2; (2.43)

such that � remains finite. Here we just take a phenome-
nological approach and encode this arbitrariness, intrinsic

to the model, in a reparametrization of the form � ¼
e�N=2=2, where N is an Oð1Þ �Oð102Þ free parameter:

1

"
¼ �N � 2 ln2: (2.44)

The relation between " and � is really a matter of choice,
so any sign and value ofN is possible. If N > 0 then " < 0,
which may happen if spacetime has a fractal structure in
the ultraviolet. Later we will need N * Oð102Þ in order for
the condensate to fit observations. Interestingly enough,
such a range of values �1 	 " < 0 may be compatible
with a fractal interpretation of N, where the (early) uni-
verse shows an effective dimension slightly smaller than 4.
Until we achieve a better control of the quantum theory, the
issue of the physical interpretation of N will remain open,
although we have just argued that it admits at least one
possible accommodation.
To summarize, the effective potential is

Veff ¼ M2

4
�2 � �2

4�2

�
�2

4

�
N þ 1

2
þ ln�2

�

��2ðN þ 1þ ln�2Þ
�
:

(2.45)

As already mentioned, the bare mass M is Oð1Þ or larger.
However, Eq. (2.45) can be obtained also via a different
regularization procedure which renormalizes the couplings
of the theory [6,24]. This suggests that also M can be
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treated as a free parameter. It shall be our attitude in what
follows.

It is clear that the above potential has a minimum at
@Veff=@� ¼ 0 given by the gap equation

M2 ¼ 1

2�2
½�2ðN þ 1Þ � 2�2ðN þ 2Þ

þ ð�2 � 2�2Þ ln�2�: (2.46)

If M is constant, this equation univocally specifies � as a
spacetime function. It is useful to check that we recover the
usual behavior of the gap in the weak-coupling BCS limit
[24,25], where the fermion gas is diluted. For � 	 �, Eq.
(2.46) tells us that

� � exp

�
��2M2

2�2

�
; (2.47)

which is the familiar exponential suppression of the gap.
The potential at the minimum is

Vmin ¼ �2

16�2

�
�2

�
N þ 3

2
þ ln�2

�
� 4�2

�
: (2.48)

However, the potential energy that we have calculated
includes the contribution from the chemical potential as
well. The total number n0 of fermions is [24]

n0 ¼
Z

d4xe �c�0c ¼ 
Sfer

�

¼ �a3
@Veff

@�

¼ �a3
�2�

2�2
ðN þ 1þ ln�2Þ � a3n: (2.49)

Assuming the system lies at the minimum of the potential,
the total gap energy density of the fluid is given by

�gap ¼ Vmin þ�n

¼ �2

16�2

�
�2

�
N þ 3

2
þ ln�2

�

� 4�2ð2N þ 3þ 2 ln�2Þ
�

¼ �2

32�2
ð�2 � 8�2Þð2N þ 3þ 2 ln�2Þ: (2.50)

We conclude this section by making two remarks, the
first on the chemical potential. As soon as we fixed an
FLRW background, we have chosen a ‘‘privileged’’ frame
whereon one can define a homogeneous number density
and a chemical potential. Whenever we refer to these
concepts, it is always with respect to this special FLRW
homogeneous time slicing. Solutions of the field equations
are free to break Lorentz invariance. One can have a
chemical potential in a Lorentz-invariant Lagrangian, i.e.,
a term of the form ��j

�, while the background �0j
0 is

aligned in the cosmic rest frame. An example is the
Kaplan-Nelson model of spontaneous baryogenesis. This
is what happens also in big bang nucleosynthesis calcula-

tions, where one has to include the chemical potential of
the different particle species.4

This has nothing to do with breaking Lorentz invariance
at fundamental level. Here we are assuming, in a self-
consistent manner, that the theory and its false (perturba-
tive) vacuum are indeed Lorentz-invariant, while the true
vacuum is not when � � 0. We will see that the measur-
able effect is in the cosmic expansion, and the later one
looks into the evolution of the universe, the fewer the
Cooper pairs one can detect, thus restoring relativistic
physics at late times.
The second comment is the following. We have intro-

duced a physical cutoff by hand as in Minkowski non-
renormalizable theories, but in [12] it was argued that this
type of BCS models in curved space may be renormaliz-
able. In the same work, the running of the mass couplingM
and a cosmological constant term was considered for a
de Sitter background. Here we shall not endeavour to study
the renormalization group flow for the particular, self-
consistent cosmological background we will find later.
However, related to the renormalization issue there is
another. Although the tree-level interaction between fer-
mions is attractive, the gravitational interaction could af-
fect renormalization. This is in analogy with the phonon
interaction in the standard theory, where the sign of the
effective coupling gets flipped and one does not generically
end up with a condensate [28,29]. There, one can consider
the beta function for the running of the coupling M, and
realize that the second-order (four-fermion) phonon-
induced interaction is attractive (negative coupling) [28].
In our case, the graviton and the torsion are independent
degrees of freedom and they can be dealt with separately.
An attractive fermion coupling is generated by torsion after
integrating it out. We may ask about torsion fluctuations,
but they do not take place because torsion is not dynamical.
Therefore, so long as we have an attractive channel at tree
level and a Fermi surface, we will get a nontrivial gap
(provided that the gap equation has a solution, which it
does; see below). As far as torsion is concerned, the
attractive nature of the tree-level interaction is guaranteed,
unlike the phonon-induced screening (or gluon exchange)
in typical scenarios. In our case, we do not have to worry
about a secondary phonon interaction precisely because
torsion does not propagate. On the other hand, any screen-
ing effect mediated by the graviton will require a separate,
detailed assessment.

4In this context we note that having a nonzero chemical
potential implies that we have broken the particle-antiparticle
symmetry, which in turn breaks local Lorentz invariance regard-
less of the chosen global metric. Thus we are working on the
assumption that some other mechanism was responsible for
creating the ‘‘initial’’ particle-antiparticle asymmetry.
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III. COSMOLOGICAL SOLUTIONS

In order to obtain the cosmological evolution one has to
supplement the gap equation (2.46) and the equation de-
termining the chemical potential (2.49) with the Friedmann
equation

H2 ¼ 8�

3
ð�gap þ �mÞ; (3.1)

where �m is any additional matter component. These three
expressions (plus the continuity equation for �m) deter-
mine the evolution of the three unknown quantities �ðtÞ,
�ðtÞ, aðtÞ. In practice, these transcendental equations are
not analytically tractable in their full generality. However,
one can solve them in some limiting regimes which can
qualitatively capture the basic cosmological evolution. We
will now focus on these regimes. In the next subsection we
will present numerical details.

The equation of state for the gap can be defined only
implicitly via Eqs. (2.46) and (2.50). We will show that
there are different regimes where the gap scales effectively
as radiation (up to a sign) or a cosmological constant,
which confirm the expectation that the gap equation of
state must be nonlinear. One can define the gap pressure
by taking an effective Raychaudhury equation, i.e., by
defining the effective barotropic index via

1þ weff ¼ � lnj�gapj
3 lna

; (3.2)

as a function of the scale factor. This is what dark energy
experiments would measure.

A. Analytical treatment

1. Dark radiation (early times)

To begin with, it is important to see whether the evolu-
tion of the gap and the chemical potential at early times can
be consistent with the usual matter/radiation dominated
decelerating universe. To answer this question, let us
look into the limiting case M 	 j�j, � and N 
 1 (later
we motivate the last condition phenomenologically). The
gap equation simplifies to

�2 � 2�2: (3.3)

The energy density of the gap (2.50) becomes

�gap � � 3�4

32�2
ð2N þ 3þ 2 ln�2Þ< 0: (3.4)

One can also determine the approximate behavior of the
energy density with respect to the scale factor. From
Eq. (2.49), we find that � must be negative and

�3

2
ffiffiffi
2

p
�2

ðN þ 1þ ln�2Þ ¼ n0
a3

; (3.5)

or approximately (if � varies slowly)

�� 1

a
) �gap �� 1

a4
: (3.6)

In other words, the gap energy density behaves approxi-
mately as negative radiation.5 This fact was already
pointed out in [6]. It is also clear that the gap energy
density violates the null energy condition6 and this prop-
erty was exploited in [6] to resolve the big bang singularity
via a nonsingular bounce, as long as the equation of state of
ordinary matter is w< 1=3.

2. de Sitter phase (late times)

It is relatively easy to see how a late-time de Sitter phase
can emerge from the system of cosmological equations. If
j�j 	 �, the gap equation reduces to (�< 0 in order to
have n > 0)

2�2M2 � �2ðN þ 1þ ln�2Þ; (3.7)

while the total energy density is given by

�gap � �4

32�2
ð2N þ 3þ 2 ln�2Þ: (3.8)

First, we observe that the solution to the above equation
always has �gap > 0, and therefore corresponds to a

de Sitter regime as � approaches the constant value given
by Eq. (3.7). This can be seen by rewriting Eq. (3.8) as

�gap � �4

32�2

�
4�2M2

�2
þ 1

�
> 0:

We are specifically interested to see whether we can
explain the present dark energy driven acceleration. For
this we require (we temporarily restore energy units)
�gap � ðmeVÞ4 ) ��meV. When can we have such a

small vacuum expectation value for �? First of all ��
meV corresponds to ln�2 � �140. Since M2 > 0, (3.7)
tells us that N > 140. Further, from (3.7) it is easy to see
that there are two different regimes in the parameter space
ðM;NÞ when we can get a small vacuum expectation value
for �. If M�meV and 140<N < 103, the solution cor-
responds to ��M�meV. A second possibility is to
consider M 	 meV and N � 140. In this case we have

�� e�N=2 �meV. In any case, the relevant range of
parameters corresponds to large N and strong-coupling
regime,

N 
 1; M 	 1: (3.9)

At this point one may be concerned about the tiny value of
M that is required to account for dark energy. Indeed,
naturalness arguments would suggest M� 1 (Planck

5A similar contribution appears in braneworld [30] and
Hořava-Lifshitz [31] cosmologies.

6This is not very surprising, as it is well known that energy
densities associated with vacuum shifts, such as Casimir ener-
gies, can indeed violate the energy conditions [32].
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scale). We first point out that the M appearing in the
effective potential (2.45) can be interpreted as a renormal-
ized mass (see [6] for a more detailed discussion), and
therefore in general it can be different from the bare
coupling mass in Eq. (2.10). We shall not study the renor-
malization group flow of this model, and the fact that it is
an effective nonrenormalizable model makes it rather dif-
ficult to interpret the relation between physical scales and
parameters. A much deeper understanding of the quantum
field theory giving rise to the condensate will be necessary
to clarify this point, which will admittedly remain unre-
solved in this paper.

We also mention that there are two other possible ex-
planations for a small coupling M. One is tightly related
with the fractal interpretation given below Eq. (2.44).
Another is to switch on a strong four-fermion interaction
already in the Dirac action (2.3), so that the gravity-
induced interaction is negligible and M is actually inde-
pendent from the Planck mass.

Whatever the interpretation of the four-fermion interac-
tion, and since we have not enough input to predict the
scale at which condensation takes place, for the time being
we must content ourselves to notice that a tiny value of M
may be very compelling phenomenologically. In fact, the
same gap ��M may also be able to account for neutrino
oscillations which, as is well known, happen at the same
mass scale as dark energy [33].

The cosmological evolution of the gap energy is now
clear. ‘‘Initially,’’ ��� 
 M, and the gap energy be-
haves as negative dark radiation. Provided the very early
universe is dominated by an energy density component
which redshifts slower than radiation (weff < 1=3), such
as during inflation (weff � �1) or a stringy thermal phase
(weff � 0) [34–38], the negative gap energy ensures the
existence of a nonsingular bounce point where the gap
energy density precisely cancels that of ordinary matter.
After the bounce, the gap energy density redshifts away
faster than regular matter and remains subdominant as
compared to ordinary matter/radiation. Thus we can have
the usual decelerating phase of the standard cosmological
model. However, once ����M, we gradually fall into
the constant gap regime discussed above, where��M 

�. Once the matter energy density drops down to �m �
M4, we enter the present dark energy dominated de Sitter
phase.

B. Numerical explorations

We will now verify numerically that we indeed obtain
the late-time cosmology discussed above, and, in particu-
lar, undergo a transition from an early decelerating to a late
accelerating phase. To this purpose we define

� � � ln�2: (3.10)

The gap equation becomes

2�2M2 ¼ e��ðN þ 1��Þ � 2�2ðN þ 2��Þ: (3.11)

From Eq. (2.49) one obtains

n ¼ n0
a3

¼ � �

2�2
e��ðN þ 1��Þ: (3.12)

Without loss of generality we fix n0 ¼ 1=ð2�2Þ. Inverting
with respect to �,

� ¼ � 1

a3
e�

N þ 1��
; (3.13)

while the gap density is given by

�gap ¼ e��

32�2
ðe�� � 8�2Þð2N þ 3� 2�Þ: (3.14)

The chemical potential is negative as long as �>�1 and

N > 0. Assuming that _�> 0 (the gap � decreases in time)
j�j decreases as well, as we shall see later.
Plugging Eq. (3.13) in (3.11) and solving for the scale

factor, one gets

a ¼
�

2e3�ðN þ 2��Þ
ðN þ 1��Þ2ðN þ 1��� 2�2e�M2Þ

�
1=6

;

(3.15)

where we chose the real positive root. By numerically
inverting (3.15) we can identify two disconnected branches
for �ðaÞ as depicted in Fig. 1.
(A) A branch confined within the interval �1<�<

�A, where �A solves the equation N þ 1��A �
2�2e�AM2 ¼ 0;

(B) A branch confined within the interval �B � N þ
2<�<þ1.

From Eq. (2.49), we also observe that while in branch (A)
�< 0, in the (B) branch �> 0. This suggests that while
branch (A) is relevant for strong coupling and BCS con-
densation, branch (B) describes solutions in the weak-
coupling regime where the gap is exponentially suppressed
with respect to the chemical potential.
Differentiating Eq. (3.15) with respect to time, we find

H ¼
�

N þ 2��

N þ 1��� 2�2e�M2
þ 2

N þ 1��

� 1

N þ 2��

� _�

6
: (3.16)

The two branches are separated by a singularity since the
Hubble rate diverges as � ! �A or � ! �B. As �A <
N þ 1<�B, we cannot go from one to the other. Thus,
identifying the relevant branch is important for the choice
of initial conditions, as well as the ensuing cosmology.
Figure 1 shows how the branches change with respect toM
and N: M determines �A and the increase rate of the scale
factor, while N determines only �A and �B. This is
reassuring as the parameter N is arbitrary and its role is
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just a � translation, although its actual value does deter-
mine the physical scale of �gap.

Since we are interested in the (A) branch with negative
chemical potential representing the BCS condensation
phase, we shall evolve the equations of motion from initial
conditions typical of this branch. For the extra matter

component we consider nonrelativistic dust, for the pur-
pose of illustration. Thus we set �m ¼ a�3,M ¼ 0 (strong
coupling) and N ¼ 0. These values will not correspond to
the observed universe but they will capture the qualitative
features of the dark energy solution. The acceleration of
the universe is encoded in the first slow-roll parameter

4 2 0 2 4 6
0

1

2

3

4
a

4 2 0 2 4 6
0

2

4

6

8

a

FIG. 1. Cosmological branches. Left panel: N ¼ 0 and M ¼ 0, 0.5, 1 (increasing thickness). Right panel: M ¼ 0 and N ¼ �1, 0, 1
(increasing thickness).
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FIG. 2 (color online). Numerical late-time solution for M ¼ 0 ¼ N. From left to right and top to bottom: �ðtÞ, gap �ðtÞ, chemical
potential �ðtÞ and gap energy density �gapðtÞ. In the last panel the matter contribution (dashed line) is shown for comparison.
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� � � _H

H2
: (3.17)

� > 1 corresponds to a decelerating universe, while � < 1
signals acceleration, if the universe expands.

In Fig. 2 we show the evolution of the gap and its energy

density in synchronous time. As � ! 1, � ! e�1=2 �
0:6065. The gap � decreases in time, so that the difference
between the Fermi sea energy and the true vacuum of the
theory becomes negligible. Initially, in the decelerating
phase j�j � � as we expected from analytical arguments.
However, at later times, � ! 0�, meaning that the density
of Cooper pairs (which is positive, consistently) decreases;
this is because the formation of pairs becomes less and less
favorable. Initially �gap < 0 and the matter contribution

dominates. The gap density, however, increases in time and
eventually (after having changed sign) dominates over
dust. When this happens we enter the late-time asymptotic
de Sitter phase.

The evolution of the scale factor and its derivatives is
plotted in Fig. 3. At early times the universe is dominated

by the pressureless matter component �m and in fact a�
t1=�, where �� 3ð1þ wÞ=2� 3=2. As one can see from
the last plot, acceleration is triggered when �gap � �m but

slightly before �gap >�m. When radiation is also added,

we have checked that the early-time behavior changes
accordingly, �� 2, but the overall picture remains the
same.
The effective equation of state of the condensate,

Eq. (3.2), is shown in the last panel of Fig. 3. The plot
starts from t ¼ Oð10Þ because, in accordance with Fig. 2,
matter dominates before that time. A characteristic predic-
tion of this solution, which can be tested by future obser-
vations, is that weff <�1 and _weff > 0 at late times. The
actual value of the barotropic index at the onset of the dark
energy era will depend on the couplings of the model,
which we have not tuned with respect to observations.
Since we have a phantomlike regime at intermediate-to-
late times, one should be able to distinguish our model
from a pure cosmological constant or quintessence field at
high enough redshift. The fit with the supernovae data goes
beyond the goals of the present investigation.

IV. DISCUSSION

In this paper we have proposed a mechanism realizing
late-time cosmic acceleration due to the possibility that
fermions can condense in the very early universe. We have
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FIG. 3 (color online). Numerical late-time solution for M ¼ 0 ¼ N. From left to right and top to bottom: aðtÞ, Hubble parameter
HðtÞ, first slow-roll parameter �ðtÞ and effective barotropic index weffðtÞ of the condensate equation of state.
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shown that all of the necessary conditions for condensation
exist, including a covariant attractive four-fermion interac-
tion. By analyzing the transcendental equation relating the
gap and the scale factor we discovered that at late times the
contribution of the gap energy drives a phase of accelera-
tion. The details of the model depend on the regularization
scheme and the value of the couplings, but the emerging
qualitative picture is robust.

In this context, we note that one may be worried that,
given the low value of M required for phenomenology,
M�meV, our procedure for integrating out gravitational
degrees of freedom is not justified, and whether we might
be missing corrections of order �=M, which may be im-
portant as �=M is not small. Let us reemphasize why the
method we adopted to obtain the effective potential for� is
robust. In the first step, we integrated out the torsion field to
obtain a four-fermion interaction. This was done by im-
posing the classical equations of motion for the torsion
field. However, we note crucially that the torsion is a
nondynamical field: its field equation is algebraic and there
are no derivatives acting on the torsion. In other words, the
torsion field does not propagate. If one were to draw
Feynman diagrams involving torsion propagators, these
would just collapse into points leading to four-fermion
interaction vertices. Unlike gauge theories where the
four-fermion interaction is only an ‘‘effective’’ interaction
valid below the mass of the gauge bosons, the torsion-
mediated four-fermion interaction is an exact quantum
mechanical description, because the torsion field has no
kinetic term. Therefore the actions given by (2.1) and (2.3)
are exactly equivalent to (2.10) (plus the usual Einstein-
Hilbert and Dirac actions) both classically and quantum
mechanically. This equivalence does not depend on how
small or large the value of M is.

In the next step, we integrated out the fundamental
fermionic degrees of freedom to obtain an effective theory
of their bound state, the gap � (Cooper pairs). The proce-
dure we followed is precisely the same that is adopted in
condensed matter literature. In particular, this is known to
capture not only the weak-coupling BCS limit (M ! 1),
but also the strong-coupling BEC limit (Bose-Einstein
Condensate, M ! 0), which is what we are interested in
(for general reviews on BEC and the BEC-BCS crossover,
see [39–43]). We note that the effective potential for �
features a lnð�=MÞ term, which contains all the powers of
ð�=MÞ. In this sense, the effective action Seff in Eq. (2.33)
describes nonperturbative phenomena by summing all such
terms.

Having clarified the nonperturbative character of the
condensation, it remains to explain the small value of M,
which is a partially unrelated question. We have not an-
swered it here but we have commented on several possi-
bilities, including a renormalization mechanism and the
presence ab initio of a strong fermionic interaction. To
summarize, one is indeed assuming that a bare Oð1Þ cos-

mological constant ‘‘miraculously cancels’’ by virtue of
some mechanism. So, we do not solve the ‘‘old cosmologi-
cal constant problem’’ and in this sense fair no better than
the usual quintessence models, where one assumes that all
contributions to the effective cosmological constant con-
spire to reduce it to a dynamical field with a ‘‘small’’
potential. However, our model has some distinct advan-
tages. First, because the suppression of the cosmological
constant is exponential, the level of fine-tuning is reduced
to just one part over 100, via the choice of N. Therefore, if
one could give a physical interpretation to N, then the
‘‘smallness problem’’ associated with the observed value
of dark energy would be relaxed. This was attempted in
Sec. II D. Second, our situation is consistent because we
have calculated the nonperturbative potential, whereas in
usual quintessence models it is not clear why higher-order
corrections are suppressed.
There are several issues we have not considered. Since

we haveworked on the assumption that, like in Minkowski,
the fermion interaction is nonrenormalizable, the regulari-
zation parameter N of the effective theory has been as-
sumed to be physical and therefore should ultimately be
motivated by the fundamental microscopic theory. Also,
we have assumedN to be a constant. A possibility we leave
for future study is to allow for a time-varying NðtÞ or
coupling MðtÞ. For instance, previous literature
[11,12,44] have considered different choices for a physical
cutoff, � ¼ � or � ¼ H, which would correspond to hav-
ing a time-varying N.7 This may lead to interesting situ-
ations, including the possibility of not having to tune M to
the very tiny meV scale.
In order to verify the robustness and observational va-

lidity of the rich cosmological picture we presented here,
future studies will have to go into greater detail in the
analysis of the parameter space and initial conditions. It
is promising that the same condensation mechanism can
solve the big bang singularity and the dark energy problem.
We end by pointing out that the dark energy scenario
presented above has some distinctive observational fea-
tures. For instance, depending upon the detailed history
of the early universe the negative dark radiationlike gap
energy may be detectable in BBN and CMB observations
[51,52]. Also, there is a most encouraging possibility of
linking the scenario with neutrino physics [33], as men-
tioned earlier.

7The ambiguity in the choice of the cutoff is not dissimilar to
the one entailed in modern and inequivalent formulations of loop
quantum cosmology [45,46]. There, one can choose the kine-
matical area of the elementary holonomy to be fixed in time and
equal to the Planck area (improved quantization scheme [47]), or
else make it dynamical as in lattice refinement models [48–50],
which corresponds to probing geometry with a time-dependent
microscope.
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APPENDIX: DERIVATION OF THE
FOUR-FERMION INTERACTION

The Holst action can be written as (G ¼ 1)

SH ¼ 1

16�

Z
d4xee

�
I e

�
JP

IJ
KLR��

KL; (A1)

where

PIJ
KL ¼ 
I

½K

J
L� �

1

2�
�IJKL; (A2)

whose inverse is

P�1
IJ

KL ¼ �2

�2 þ 1

�

K
½I


L
J� þ

1

2�
�IJ

KL

�
: (A3)

Variation of the Holst action with respect to the connection
yields


SH

A�

KL ¼ � 1

8�
D�ðee½�I e��J ÞPIJ

KL: (A4)

Likewise, variation of the Dirac action gives


SD

A�

KL ¼ � i

8
e �c f�½K�L�; �Ige�I c

¼ e

4
�IKLMð �c�5�

Mc Þe�I : (A5)

In the second line we have used the identity f�½K�L�; �Ig ¼
2i�IKLM�5�

M. The total variation of the action SH þ SD
with respect to the connection is

D�ðee½�I e��J ÞPIJ
KL ¼ 2�e�IKLMJ

M
5 e�I ; (A6)

where JM5 ¼ �c�5�
Mc is the axial current.

Writing the connection as AIJ
� ¼ !IJ

� þ CIJ
� , where ! is

the connection compatible with the tetrad, and using
Eq. (A6), one gets

C�½P
�e�Q�þC½PQ�

�¼2�
�2

�2þ1
e�I J5M

�
�MI

PQþ
1

�

M
½P


I
Q�

�
:

(A7)

Contracting with eP� we obtain

C�Q
� ¼ 3�

8

�

�2 þ 1
J5Q: (A8)

From the above two equations we obtain

C�
IJ ¼ 2�

�2

�2 þ 1
JM5

�
�MK

IJeK� � 2

�

½J
Me

I�
�

�
: (A9)

Inserting the above expression into the first-order
gravityþmatter action yields the four-fermion interac-
tion. For the calculation in the Nieh-Yan case we refer
the reader to [17,22].
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