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GALACTIC EMISSION AT 19 GHz

Angélica de Oliveira-Costa,1,2 Max Tegmark,2,3 Lyman A. Page,1 and Stephen P. Boughn4

Received 1998 August 4; accepted 1998 October 8; published 1998 October 29

ABSTRACT

We cross-correlate a 19 GHz full sky cosmic microwave background survey with other maps to quantify the
foreground contribution. Correlations are detected with the DIRBE 240, 140, and 100 mm maps at high latitudes
( ), and marginal correlations are detected with the Haslam 408 MHz and the Reich & Reich 1420 MHzCFbF 1 30
synchrotron maps. The former agree well with extrapolations from higher frequencies probed by the COBE
Differential Microwave Radiometer and Saskatoon experiments and are consistent with both free-free and rotating
dust grain emission.

Subject headings: cosmic microwave background — methods: data analysis

1. INTRODUCTION

One of the major challenges in any cosmic microwave back-
ground (CMB) anisotropy analysis is to determine the fraction
of the observed signal due to diffuse Galactic emission. Three
components of Galactic emission have been firmly identified:
synchrotron and free-free radiation, which are important mainly
at frequencies below 60 GHz, and thermal emission from dust
particles, which is important mainly at frequencies above
60 GHz (see, e.g., Weiss 1980; Bennett et al. 1992; Brandt et
al. 1994; Tegmark & Efstathiou 1996). In principle, these three
components can be discriminated by their frequency depen-
dence and morphology. In practice, however, there is no emis-
sion component for which both the frequency dependence and
the spatial template are currently well known (see, e.g., Kogut
et al. 1996a, and references therein).

The cross-correlation technique allows one to estimate the
rms level of Galactic emission present in a CMB map. For
instance, an analysis of high-latitude Galactic emission in the
COBE Differential Microwave Radiometer (DMR) map gave
rms estimates of ( ) mK for synchrotron and (3.4 5 3.7 2.7 5

) mK for dust emission at 53 GHz on a 77 scale (Kogut et1.3
al. 1996b, hereafter K96b). A third component, correlated with
the DIRBE maps but decreasing with frequency, was detected
at the level of ( ) mK and was tentatively identified as7.1 5 1.7
free-free emission (K96b). Although this component was also
detected in the Saskatoon maps (de Oliveira-Costa et al. 1997)
on a 17 scale, at a level ( ) mK at 40 GHz, it is still17.5 5 9.5
not clear if it is due to free-free emission. An analysis of Owens
Valley Radio Observatory data at 14.5 GHz showed such a
component at the level of 203 mK in a small sky region on
scales of 79–229 (Leitch et al. 1997, hereafter L97), but this
level is substantially higher than free-free emission estimates
based on Ha images (Gaustad et al. 1996; Simonetti et al.
1996). Suggested explanations include the presence of high-
temperature gas (L97) and rotating dust grains (Draine & La-
zarian 1998), but more observational data is needed to settle
this issue. The purpose of this Letter is to evaluate the Galactic
contribution in the 19 GHz full sky map (see Fig. 1) by cross-
correlating it with the DIRBE dust maps and with the Haslam
and Reich & Reich synchrotron maps.
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2. METHOD

The 19 GHz map consists of pixels with skyN 5 24,576
temperatures yi and noise ni. We assume that this map is a
superposition of CMB fluctuations and a Galactic component
whose angular distribution is traced in part by an external data
set. Representing these contributions by N-dimensional vectors,

y 5 n 1 x 1 ax 1 y , (1)CMB Gal Gal

where is the contribution of the fluctuating component ofixCMB

the CMB, is the brightness fluctuations of the GalacticixGal

template map (not necessarily in temperature units), a is the
coefficient that converts units of the Galactic template into
antenna temperature, and represents any residual GalacticiyGal

contribution which is uncorrelated with . We consider nixGal

and to be random variables with zero mean, i.e.,xCMB

, and and to be constant vectors. Thus,Ax S 5 AnS 5 0 x yCMB Gal Gal

the data covariance matrix is given by

T T T TC { A yy S 2 A ySA y S 5 Ax x S 1 Ann S, (2)CMB CMB

where is the covariance matrix of the CMB andTAx x SCMB CMB

is the noise covariance matrix. The noise in the 19 GHzTAnn S
map is approximately uncorrelated and has a known rms am-
plitude of mK. Therefore, the covariance matrix of thisj ∼ 2i

map is

2C ≈ An n S ≈ j d . (3)ij i j i ij

Minimizing yields the2 T 21x { ( y 2 ax ) C ( y 2 ax )Gal Gal

minimum-variance estimate of a, i.e.,

T 21x C yGal
â 5 (4)T 21x C xGal Gal

with variance

12ˆDa 5 . (5)T 21(x C x )Gal Gal

Note that unlike the case in de Oliveira-Costa et al. (1997),
there is little contribution from chance alignments between the
CMB and the various template maps, since the CMB contri-
bution to C is negligible. If the noise is correlated or the an-
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Fig. 1.—The 19 GHz survey (top), 408 MHz Haslam synchrotron template
(middle), and DIRBE 100 mm dust template (bottom).

TABLE 1
Correlations with the 19 GHz Map

Template aâ ˆDa ˆDaM ˆDaT

dTb

(mK)
CFbF 1 20

100 mm . . . . . . . . . 38.5 3.3 5.8 8.3 138.6 5 29.9
140 mm . . . . . . . . . 29.8 2.5 4.0 6.3 146.0 5 30.9
240 mm . . . . . . . . . 46.2 3.9 6.0 10.0 143.2 5 31.0
408 MHz . . . . . . . 13.4 3.1 3.4 4.4 52.3 5 17.2
1420 MHz . . . . . . 0.9 0.1 0.2 0.3 86.5 5 28.8

CFbF 1 30

100 mm . . . . . . . . . 47.1 9.0 16.2 17.3 65.9 5 24.2
140 mm . . . . . . . . . 31.6 6.3 10.2 10.3 66.4 5 21.6
240 mm . . . . . . . . . 38.9 8.4 12.8 12.9 66.1 5 21.9
408 MHz . . . . . . . 7.6 3.7 4.7 6.2 25.1 5 20.5
1420 MHz . . . . . . 0.4 0.2 0.2 0.3 29.8 5 22.3

a has units mK (MJy sr21)21 for the DIRBE templates, mK/Kâ
for the 408 MHz template, and mK/mK for the 1420 MHz template.

b .ˆ ˆdT { (a 5 Da )jT Gal

isotropy signal is significant, then our C used above will differ
from the true covariance matrix, denoted C9. Although equation
(4) still provides a reasonable and unbiased estimate of a,5 its
variance will be larger than implied by equation (5), given by

T 21 ′ 21(x C C C x )Gal Gal2ˆDa 5 . (6)T 21 2(x C x )Gal Gal

In the next section, an estimate of C9 is made from the data
and the corresponding variance of is evaluated.â

3. DATA ANALYSIS AND RESULTS

The 19 GHz map has an angular resolution of 37 FWHM
and is stored in pixels (Cottingham 1987; Boughn17.3 # 17.3
et al. 1992). The template maps are convolved with a 37 Gaus-
sian beam, and regions within 207 and 307 of the Galactic plane
are excluded. To avoid contamination by zodiacal dust emis-
sion, data within 107 of the ecliptic plane are also excluded
from the analysis, although the results are found to be inde-
pendent of this cut. Off the Galactic plane, the 19 GHz map

5 Note that the diagonal approximation of eq. (3) reduces eq. (4) to a simple
noise-weighted least-squares fit.

is dominated by the CMB dipole ( ). On the other hand,ø 5 1
because of its planar structure, emission associated with the
Galaxy has a strong quadrupole ( ) component. Therefore,ø 5 2
the monopole, dipole, and quadrupole moments are removed
from both the 19 GHz and template maps. As a consequence,
the computed depends only on correlated structure in theâ
maps on angular scales &907.

3.1. Correlations and Their Error Bars

The 19 GHz map was cross-correlated with five different
templates: two for synchrotron emission—the 408 MHz (Has-
lam et al. 1981) and 1420 MHz (Reich & Reich 1988) sur-
veys—and three to study dust and free-free emission—the 100,
140, and 240 mm DIRBE sky maps (Boggess et al. 1992). Table
1 lists the coefficients derived from equation (4) with errorsâ
computed from equation (5). All three DIRBE templates show
significant correlations with the 19 GHz map, while the two
synchrotron templates are found to be only marginally
correlated.

Also listed in Table 1 are the implied fluctuations in antenna
temperature in the 19 GHz map, i.e., , where jGal isˆdT 5 ajGal

the rms of the template map. If a template map includes a
distinct component that is uncorrelated with the 19 GHz map,
then dT is underestimated by a factor , where is′ ′j /j jGal Gal Gal

the rms of the correlated component of the template map. For
this reason, the dT’s in Table 1 should be considered lower
limits.

As mentioned above, the errors listed in Table 1 were com-
puted from equation (5) and are therefore lower limits to the
error. We now describe a series of tests, performed to estimate
the uncertainty in due to correlated noise and otherâ
systematics.

3.1.1. The Noise Correlation Function

If the true noise correlation matrix is isotropic, ′C 5ij

, where vij is the angle between pixels i andAn n S 5 R(v )j ji j ij i j

j, then we can estimate the noise correlation function R(v) of
the 19 GHz data (after removing the monopole, dipole, and
quadrupole) by , where yi is the antenna21R(v) 5 N O y y /j jv ij i j i j

temperature of the ith pixel and the sum is over all Nv pairs of
pixels separated by v. Substituting these relations into equation
(6) gives estimates of that are from 6% to 17% larger thanˆDa
those in Table 1.
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Fig. 2.—Dependence of on Galactic latitude for the 100 mm map.â FbF
The error bars are given by .ˆDaT Fig. 3.—CCF(v) between 19 GHz and 140 mm map for a 307 Galactic cut,

together with the 140 mm autocorrelation.

3.1.2. Monte Carlo Simulations

As another test of the robustness of the estimates of , weâ
employed Monte Carlo simulations in which the template maps
are sliced into 18 regions of equal area, each corresponding to
a range of Galactic latitude . Inside each of these regionsFbF
the pixels are rearranged in random order, so that the latitude
dependence is preserved but the longitudinal correlations are
destroyed. Repeating this procedure 1000 times yields distri-
butions of ’s consistent with zero mean and with standardâ
deviations times larger than the formal errorsˆ ˆDa ∼ 1.6 DaM

(see Table 1).

3.1.3. Sky Rotations

Because of the approximate axial symmetry of the Galaxy,
it is natural to ask if the correlations are simply due to overall
large-scale Galactic structure common to all emission com-
ponents. To test this hypothesis, we repeated the analysis with

transformed maps, rotated around the Ga-2 # 2 # 36 5 144
lactic axis by multiples of 107 and/or flipped vertically and/or
horizontally.

For a 207 Galactic cut, the correct template map has the
highest of all 144 correlations, while the distribution of these
correlations has standard deviation times larger thanˆDa ∼ 2.5T

the formal errors . Likewise, the correct DIRBE maps haveˆDa
the highest of all 144 correlations, and the standard deviations
are , even for a 307 Galactic cut (see Table 1). Inˆ ˆDa ∼ DaT M

contrast, we find no significant correlation between the 100 mm
and Haslam maps, indicating that synchrotron and dust emis-
sion are not strongly correlated at high latitudes.

Since both and have correlated signals contributingˆ ˆDa DaM T

to the noise, they constitute overestimates of the true error bars.

3.2. Latitude Dependence

To investigate the dependence of the correlation on Galactic
latitude, we sliced the maps into six regions of equal area, each
corresponding to a range of latitude . Figure 2 shows theFbF
results for the 100 mm map. Note that from the 19 GHzâ
DIRBE correlation stays almost the same at each latitude band,
indicating that this correlation is not dominated by one or two
nearby clouds. The 19 GHz Haslam correlation is found to be
more concentrated in the Galactic plane.6

6 In order to test how important spatially localized features are for the
correlation, we cross-correlated 19 GHz with Haslam using only one hemi-
sphere. Most of the correlation was found to come from the northern hemi-
sphere, presumably because of emission features such as the North Polar Spur.

3.3. Scale Dependence

One way to determine angular scale of the correlation is to
compute the angular cross-correlation function (CCF) of the
19 GHz map with the template maps. We computed this ac-
cording to , where the2 22CCF(v) 5 [O x y /j ] [O j ]Zij Gal, j i i ij i

sums are again over all pairs of pixels separated by v.
As an example, Figure 3 shows the CCF(v) of the 19 GHz

and 140 mm maps as well as the autocorrelation function of
the 140 mm map. It is clear that the correlated structure in the
two maps is on small angular scales ( ) and that theCv & 10
CCF is well-behaved on all angular scales. The latter gives us
additional confirmation that there are no large, unknown sys-
tematics that compromise the analysis. Similar results are found
for the other two DIRBE maps. The lower signal-to-noise ratio
for the correlation of the two radio templates result in CCFs
which are less demonstrative. Note that .ˆCCF(0) ∝ a

As another way to investigate the dependence of the cor-
relation on the angular scale, we repeated the analysis after
high-pass filtering the 19 GHz map using a partial sky multipole
removal technique (see Tegmark & Bunn 1995). Only after
removing spherical harmonic components with does theø * 8
correlation significantly decrease, which again indicates that
large-scale Galactic structure is not the source of the correla-
tion. Both types of filtering therefore indicate that the bulk of
the correlations are caused by fluctuations on scales of several
degrees, which is consistent with the shape of the CCF in Figure
3.

4. CONCLUSIONS

The two synchrotron templates are found to be marginally
correlated with the 19 GHz map, while all three DIRBE far-
infrared templates show a significant correlation. When a syn-
chrotron and a DIRBE template are simultaneously fit to the
19 GHz map (via linear regression), the correlation coefficients
do not change significantly from those listed in Table 1 and,
in addition, the two fit parameters are essentially uncorrelated
( . We conclude that the correlations with DIRBEFrF & 0.05)
dust emission are independent of the correlations with syn-
chrotron emission. The amplitude of the signal is much larger
than expected for ordinary (vibrational) dust emission, as
shown in Figure 4. Moreover, there is now good agreement
between different experiments that this correlated component
is brighter at lower frequencies.

So what physical component is this? Two contenders have
been proposed. Kogut et al. (1996a; K96b) argue on physical
grounds that free-free emission might be spatially correlated
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Fig. 4.—Frequency dependence of the fluctuating component of the Galactic
emission for . The DMR correlations are represented by circlesCFbF 1 30
(K96b), Saskatoon data by pentagons (de Oliveira-Costa et al. 1997), and
19 GHz by a square with error bar given by (this work). Dust emissionˆDaT

(vibrational modes only) is normalized using the DMR correlation at 90 GHz
(Kogut et al. 1996a). The free-free model is normalized to the DMR correlation
at 31.5 GHz (the rms free-free emission derived from Ha is much smaller
than this DIRBE-correlated component). The synchrotron emission is nor-
malized to the correlation between the 19 GHz map and the 408 MHz Haslam
map (see Table 1) and is consistent with the 31.5 GHz upper limits from K96b.
The thickness of each curve corresponds to the normalization uncertainty. The
dashed line is an example of emission from rotating dust grains (Draine &
Lazarian 1998). All fluctuations have been converted to DMR angular scales
as , where is the rms of each template map and the correctioni iˆdT 5 «aj jGal Gal

factor is . Here is DMRb DMR b i 1/2 DMR« 5 ([O (2ø 1 1)ø W ] [O (2ø 1 1)ø W ]) WZø ø ø

window function, is the window function of the experiment to be converted,iWø

and we assume a power spectrum slope.b 5 23

with dust. However, the correlations between Ha (which is
normally a good tracer of free-free emission) and CMB maps,
and between Ha and the DIRBE maps, are weak (L97; Kogut
1997; McCullough 1997). One possibility is the presence of
an extremely hot (*106 K), ionized plasma (L97); however,
Draine & Lazarian (1998) have argued that this cannot be true
across the whole sky on energetic grounds. These results mo-
tivated Draine & Lazarian to suggest that perhaps it is dust
after all but emitting through rotational rather than vibrational
excitations. As shown in Figure 4, this can give a spectrum
quite similar to that of free-free emission in the relevant fre-
quency range.

Ha maps with better accuracy are currently being made by
the Dennison, Gaustad, and Reynolds groups and should help
to settle the issue. Another test is indicated by Figure 4: al-
though both the rotating dust and the free-free models appear
consistent with the available data,7 the former predicts a bump
and a downturn around 10–20 GHz, while the latter predicts
a continued rise toward lower frequencies. A cross-correlation
analysis with lower frequency data like the 10 GHz Tenerife
map may be able to discriminate between these two models.

We would like to thank Ed Cheng, Dave Cottingham, Bruce
Draine, Dale Fixsen, Ken Ganga, Ed Groth, Al Kogut, Alex
Lazarian, George Smoot, and David Wilkinson for helpful com-
ments. Support for this work was provided by NASA grants
NAG5-6034 and NAG5-3015, by NSF grant PHY-9600015,
by a David and Lucile Packard Foundation Fellowship (to
L. P.), and by NASA through Hubble Fellowship HF-01084.01-
96A from STScI, operated by AURA, Inc. under NASA con-
tract NAS5-26555.

7 We compute the spectral index between 19 and DMR 53 GHz to be ∼22.4
and that between 19 GHz and 1420 MHz to be ∼22.8.
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