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ABSTRACT

Absolute times of arrival of NP 0532 pulses have been measured over a 2-year period. The data are
shown to be consistent with a cubic polynomial which describes the secular slowdown, a sudden increase
and subsequent exponential decay of the frequency (the glitch of 1969 September 29), and an intrinsic
1/f noise component in the frequency.

I. INTRODUCTION
We have continued optical timing observations of the Crab pulsar, NP 0532. The

~ preliminary results of these observations were described in Boynton et al. (1969a),

where, on the basis of a data string only 40 days long, an anomalously large value for
the braking index was reported. It now appears that the pulse frequency is undergoing
a random walk (Groth 1971), which places a lower limit on the length of data required
to find or measure a given effect. It was only after we recognized the existence of this
noise component in the data that we were able to make progress in studying the other

‘two important features in the data; the secular slowing down and the abrupt frequency

jump of 1969 September 29.
In our interpretation of the data we have tried to employ the simplest and most

‘plausible physical models which explain the time variations. For example, by including

the noise component, we find it unnecessary to assume time-dependent braking, pulsar
wobble, or planets around the pulsar. Two plausible physical processes—matter accretion
and crustal cracking—are capable of producing the observed random walk in pulsar
frequency.

II. APPARATUS

The instrumentation in use from 1969 August through the present is similar to that
used in the spring of 1969. Several improvements were made, especially in the electronics,
in order to improve the precision of the measurements. The frequency of the temperature-
dependent CAT! sweep oscillator (refer to fig. 1 of Boynton e al. 1969a) is monitored
so that the time per CAT channel is known for each run. The pulsar period is now de-
rived from a 10-MHz oscillator, reducing the jitter in the starting time of CAT sweeps
to 0.1 us. Furthermore, the period of the trigger pulses generated by the 10-MHz oscil-
lator is stable to better than 1 nanosecond and the unknown phase slippage is only 1.8 us
for our integration time of 2 minutes. With the substitution of a storage scope in place of

* This research was supported in part by the Office of Naval Research and the National Science
Foundation.

1 Present address: University of Washington, Seattle, Washington 98105.
I Present address: Stanford Linear Accelerator, Palo Alto, California 94305.
§ Present address: Haverford College, Haverford, Pennsylvania 19041.

|| Alfred P. Sloan Feliow. On leave of absence at Institute for Astronomy, University of Hawaii,
Honolulu, Hawaii 96822.
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the CRT used to monitor Loran timing signals, the phase of our epoch pulse relative to
Loran can usually be determined to 1 us. However, there continue to be a few nights
when Loran cycle identification is ambiguous and the relative phase of the epoch pulse
and Loran may be in error by 10 us. Thus, we continue to add 10 us to the error esti-
mates for all average arrival times. In many cases, this phase error is the dominant
source of error and the assigned errors probably overestimate the true measurement
errors.

In addition to the summertime gaps in the data when the pulsar is too near the Sun
for optical observations, our data have gaps extending from 1970 February 7 to 1970
February 23, and from 1970 December 8 to 1971 January 17. The Loran-C 1-s pulse
was off the air during the former interval, while in the latter the CAT was inadvertently
adjusted to introduce an unknown delay into the measurements.

III. PULSE SHAPE

The location of the pulse in the CAT memory is found by least-squares fitting a master
pulse shape to each run. This master pulse is derived by averaging over many runs, and
is in agreement with other determinations of the pulse shape, notably that of Papaliolios,
Carleton, and Horowitz (1970).

An important assumption, made throughout the analysis, is that the pulse shape is
constant in time, at least when averaged over 3600 or more periods (the length of each
integration). Were the pulse shape to vary, incorrect estimates for the arrival times
would be obtained, although it is not clear how the phase of the pulse would be defined
in such a case.

There are several ways to check the constancy of the pulse shape. One scheme is to°
study the distribution of minimum chi squares determined when the master shape is
fitted to the individual runs. The x? distribution for the 1969-1970 data is shown as the
upper distribution in figure 1. Also shown is the distribution expected from counting
statistics. The agreement between the two distributions indicates that any run-to-run
variations in the pulse shape are smaller than the statistical uncertainties in measuring
the shape.

A comparison of the observed signal with the expected signal in each channel pro-
vides a second check on the constancy of the pulse shape. The expected number of counts,
m, is determined from the master pulse shape. In the absence of shape variations, the
observed number of counts, %, should be Poisson distributed with mean . For large m,
the quantity (# — m)/+/m is approximately normally distributed with mean 0 and unit
variance. The distribution of (r — m)/+/m for the 1969-1970 data is shown in the lower
portion of figure 1. Also shown is the expected distribution for m = 100 (typical of the
number of counts per channel). Again, the agreement between the observed and ex-
pected distributions indicates that systematic variations in the pulse shape are smaller
than our measurement statistics. :

Stricter limits can be established for long-term variations in the pulse shape. One
might suppose, for example, that a change in the pulse shape would be associated with
the frequency jump observed in 1969 September. To investigate this possibility, a pulse
shape was constructed from all the data obtained in 1969 August and September, and a
second pulse shape was constructed from an approximately equal amount of data ob-
tained in 1969 October. The two shapes, along with their difference are shown in figure 2.
It can be seen that there are no statistically significant (> 3 percent) differences between
the two shapes.

IV. REDUCTION TO BARYCENTRIC ARRIVAL TIMES

The location of the NP 0532 pulse in the CAT memory, the known time delays, and
the starting time of the run are combined to yield a local time of arrival as in Boynton
et al. (1969a).
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The local times of arrival are converted to barycentric times of arrival with the aid

* of the Jet Propulsion Laboratory Development Ephemeris 69. The planetary mass values

used in these calculations are those recommended by JPL (O’Handley, Holdridge, and
Mulholland 1969). The 1950.0 coordinates of NP 0532 have been taken to be those given
by Minkowski (1966) and have not been corrected for proper motion (Trimble 1968).

The periodic gravitational redshifts and second-order Doppler shifts produced by the
Earth’s eccentric orbital motion (Hoffman 1968) are removed from the data by adding
to each arrival time the term (¢ — s), where ¢ is coordinate time as measured by distant
clocks and s is proper time as measured by Earth clocks. A numerical integration was
performed with the aid of the JPL ephemeris to obtain (¢ — s) as a function of s. The
integration includes the effects of all the planets and the Moon as well as the Sun.

The gravitational path delay effect (Shapiro 1964) has been removed by adding to
each time of arrival the term (4ry/c) log (cos 36), where 7, is the gravitational radius of
the Sun, ¢ is the velocity of light, and 6 is the angle subtended at the Sun by the Earth
and NP 0532.

The 10 to 20 times of arrival obtained with a single night’s observation are coherently
combined into an average time of arrival. The errors which are independent from one

_run to the next are included in the averaging process and are therefore reduced by ~+/N,

where N is the number of measurements in the average. Afterwards, the systematic
errors are added quadratically and thus are not reduced by +/N. Also, each average
arrival time is unambiguously assigned a cycle number, beginning with 1 for the first
pulse of 1970.

Over the 2-year observation period, 175 nightly barycentric times of arrival, together
with cycle numbers and error estimates, have been obtained. The reduction of the error
estimates over the observation period reflects improvements in instrumentation. Start-
ing with 1969 August, the errors are dominated either by the 10-us uncertainty in the
Loran pulse phase or by counting statistics, depending on the quality and number of
runs obtained on that night. Typically these errors range from 12 to 20 pus.

The error estimates do not include possible errors arising from the ephemeris correc-
tions. Uncertainties in the pulsar position, the astronomical unit, and the orientation of
the planetary and stellar coordinate systems appear to be the most likely possibilities
for errors in the ephemeris corrections. However, each of these effects will lead to a
spurious sinusoidal variation in the arrival times with an amplitude of several hundred
microseconds and a period of 1 year. As will be seen in § V, NP 0532 appears to possess
an intrinsic broad-band noise source with a 1-year component of several milliseconds
amplitude. Thus, for the present, errors in the ephemeris corrections may be safely
ignored.

It is important also to recognize that for the interpretation of long-term effects (time-
scales greater than 1 month) the noise component introduces uncertainties greater than
our measurement errors. More accurate data are helpful only in analyzing effects of
shorter time scale.

The Arecibo group has generously supplied 32 local arrival times to help fill in the
1969 summer gap in our data (Richards et al. 1970). The radio arrival times have been
processed with our ephemeris, and a correction has been included to account for the
observed variable dispersion measure (Rankin and Roberts 1970). Because of a differ-
ence in the definition of phase, 215 us have been subtracted from all the Arecibo arrival
times. The errors assigned to these data are those given by Arecibo.

V. ANALYSIS AND INTERPRETATION
a) Introduction

In attempting to interpret the barycentric arrival times in terms of models for the
time dependence of the pulse frequency of NP 0532, we simply compare the phase of
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the pulse, as predicted by the models, to the observed pulse phase. The phase is pre-
dicted by some function, f(Z, a1, as, . . . , @n) of the time, ¢, and m adjustable parameters
@1, Gz, . . . , Gn. If there are N barycentric arrival times, then the x? of a given model is

N
x2 = Z:l[m — fltiy a1y 0sy . . ., am)]}/0®. (1)

In equation (1), ¢; is the ith arrival time, %, is its associated cycle number, and ¢;2 = »%s5,2
where 5,2 is the estimated variance in /; and » is the pulse frequency. In other words. ¢,
is the independent variable and #; is the dependent variable with variance ¢,% To esti-
mate the parameters a;, the x? is simultaneously minimized with respect to all the
parameters.

After performing a fit we may compare the goodness-of-fit parameter, the x2%, with
its expected value, to see how well the model was able to predict the observed pulse phase.
The residuals of the observations from the fitted function are also examined for system-
atic behavior not modeled in the fit.

Using the above procedure, we have been unable to find any simple function that
produces a good fit. Furthermore, the residuals do not appear to be random, but show
night-to-night correlations. That is, if a given night has a large residual, adjacent nights
are likely to have a comparably large residual. Almost any 1-month-long string of data
can be fitted reasonably well by a cubic polynomial. However, as soon as the data length
exceeds the “‘fit threshold,” i.e., 1 month, more and more parameters must be included
in the fit in order to produce reasonable residuals. In fact, the number of parameters
required appears to grow as N/a where N is the number of data points included in the
fit and a is a number on the order of 2-4. Also, as noted by Papaliolios et al. (1970), it
is only the number of parameters which seems to be important; the type of parameter
does not seem to matter. One may produce comparable fits with high-order polynomials,
discontinuously changing low-order polynomials, sinusoidal terms, etc. With a data
length of the order of 1 year, an inordinately large number of parameters (20-30) is
required. Furthermore, fits with large numbers of parameters have no predictive power.
These fits cannot predict the phase either forward or backward in time any better than
fits with only a few parameters.

There does, however, seem to be a persistent feature which stands out in these data.
If one tries only fits to a cubic polynomial, then the residuals show a systematic be-
havior, the character of which does not depend either on the length of the data or which
particular piece of data is included in the fit. The residuals show a quasi-sinusoidal
behavior. The amplitude appears to grow with the length of the data, while the wave-
length is one-third to two-thirds the length of the data. Note that a sinusoidal term
with wavelength equal to the length of the data would, depending on the phase, be quite
effectively removed by the cubic polynomial or else distorted into a quasi-sinusoidal
term with a wavelength about two-thirds the length of the data. It is tempting to sup-
pose that this behavior is present at all levels; including times less than 1 month. The
existence of the fit threshold can be understood as the length of data below which the
amplitude of the quasi-sinusoidal terms becomes unimportant compared with the mea-
surement errors. The consistent appearance of this quasi-sinusoidal term will be impor-
tant in § Vd, where a noise model is developed in an attempt to understand this char-
acteristic structure of the data. ‘

In the model presented below it will be assumed that the pulsar has an intrinsic
source of noise which is superposed upon the overall cubic braking polynomial. The
idea that a definite functional form could be found was not abandoned lightly. Much
effort was spent in trying to obtain good fits to a variety of functions. For example, at
one point a 19-parameter fit was obtained which seemed to fit most of the 1969-1970
data reasonably well. In this particular fit, it was assumed that the pulsar had three
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orbiting companions. The 19 parameters included five parameters for each orbiting com-
panion, as well as four parameters for the cubic polynomial. It should be noted that the
effects of orbiting companions similar to the inner planets of the solar system would be
quite easy to see in these data. A time-of-arrival measurement with an accuracy of 10
us is also a measure of the relative distance between the Earth and the pulsar to an ac-
curacy of about 2 miles. In any event, the three-planet fit was unable to predict the
phase during the 1970-1971 observing season. Rather than add more and more planets
as more and more data were obtained, the planetary hypothesis was abandoned. The
many other functions that were tried met the same fate.

In addition to the cubic polynomial and the noise source, the model must also include
some kind of function to account for the speedup, or glitch, which occurred in 1969 in
late September. As far as the glitch is concerned, the greatest success has been obtained
with the four-parameter “glitch function’ derived from the two-component model sug-
gested by Ruderman (1969) and developed by Baym ef al. (1969). The glitch is discussed
in greater detail in § Ve.

b) Cubic Polynomial

By far the largest effect present in the data is the cubic polynomial, which accounts
for the secular slowing down of the pulse frequency. Why should we expect a cubic
polynomial? Theoretical papers have predicted that » and » should satisfy the relation

v =Ky, )

where #, the braking index, and K are constants for simple models. The exact value of #
depends on the mechanism responsible for loss of angular momentum in the pulsar. A
braking mechanism of the “solar wind” type would give » = 1 (Michel and Tucker
1969), while braking by pure (magnetic) dipole radiation would yield » = 3 (Pacini
1967; Gunn and Ostriker 1969; Ostriker and Gunn 1969), and braking by pure (gravi-
tational) quadrupole radiation would yield » = 5 (Ferrari and Ruffini 1969), etc.

Differentiation of equation (2) produces simple relations between # and the higher
derivatives of the pulse frequency,

i=nv, 3)
d¥v/dP = (2n® — m)vd/v?2. 4)

Using the known values of » and », 30 Hz and —4 X 10~ Hz s~!, and assuming that »
is in the range 1-5, one finds that the cubic term in the pulse phase becomes 20-100
cycles after 1 year. Such an effect is easily observable. On the other hand, the quartic
term would be only —0.002 to —0.1 cycles after 1 year. Were NP 0532 to follow only a
simple slowing-down law, such an effect might be observable. As it is, the presence of
other effects makes the term completely unobservable.

Figure 3 shows the residuals from cubic polynomial fits to all the data, and the two
halves of the data. It should be kept in mind that these plots merely show the difference
between time as kept by the pulsar clock and the time shown by a fictitious clock
that keeps time according to the fitted function. A positive residual indicates that the
pulsar was ahead of the fitted clock, i.e., the pulse arrived earlier than expected.

The characteristic quasi-sinusoidal behavior can be seen in these plots. Also, the
frequency jump of 1969 late September stands out. Figure 4 shows the residuals from
cubic fits to the four quarters of the data. Again, the quasi-sinusoidal behavior can be
seen, although the period and amplitude are considerably reduced. It should be noted
that neither the amplitude nor the phase repeats from one segment of the data to the
next. The sinusoidal term reported by Arecibo can be seen in figure 4 (Richards et al.
1970), although the addition of data for 1969 March and April alters the period and
amplltude from 77 to 100 days and from 380 to 500 us.
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] TABLE 1
a‘ii CuBic POLYNOMIAL PARAMETERS
Time Span x*/N vo(Hz) $o(10710 Hz s71) n

1969 Mar. 9-
19%871\14 aIl\r;-)rg.—23 ..... 2375000,/207 30.205865616586(4) —3.856004015(5) 2.514826(8)
19%87&3[1)\5!1 _?7 ..... 781300/122 30.205865613232(9) —3.85603013 (3) 2.45039 (8)
19%8713421.[.)1:9._23 ..... 8356/85 —0.898 (9) 30.2058658326 (9) —3.8561750 (6) 2.6439 (4)
19%361?1 Sept. 16. ... 10170/56 30.2058655065 (7) —3.8561826 (9) 2.237 (1)
19;g7§e35ri _27. e 878/54 0.7803 (1) 30.20586559665 (3) —3.8559879 (2) 2.589 (1)
19;?7};33%5 ...... 471/30 0.5 (1) 30.20586569 (1) —3.85607 (1) 2.576 (8)

1971 Apr. 23..... 295/46 15.5 (4) 30.20586453 (3) —3.85548 2 2.2712 9

Note.—Numbers in parentheses are the error in the last digit.

It is reasonable to ask whether the large residuals occurring in figures 3 and 4 are due
to measurement errors rather than the iitrinsic behavior of the pulsar. Every statistical
test performed on these data or on the data used in the construction of the ephemeris
indicates that the error assignments are consistent with the actual measurement errors.
In addition, the four groups performing optical time-of-arrival measurements during
the period 1969 December-1970 April have compared the four independent sets of data
obtained during this period (Horowitz et al. 1971). The comparison indicated that the
data agree to within the assigned errors.

The parameters associated with the fits of figures 3 and 4 are collected in table 1. The
unit of time used in table 1 is the Universal Time second, while #, has been chosen as O*
UTC 1970 January 1. The errors given are purely formal errors derived from the errors
associated with the individual measurements. The quoted errors do not reflect the fact
that the quality of the fits is so poor.

The braking index seems to hover around 2.5, although there is considerable variance
in the values given in table 1. Of course, one interpretation of this large variance is that
the braking index is a time-dependent parameter and the values in the table reflect this
time dependence. In view of the results to be presented in § Vd, we feel that a more
reasonable interpretation is that the true value of the braking index is distorted by the
noise component in the data. Perturbations of » introduced by phase and frequency
noise have zero mean. Slowing-down noise would alter the mean braking index, but
only by a negligible amount. Thus, as one includes more data in the fit, the fitted value
of the braking index should ‘““zero in” on the correct value.

It is clear from the values listed in table 1 that 2 years of data is not sufficiently long
for the convergence to have occurred. To obtain a best measure for the braking index,
we have calculated the average value of # from the fits presented in figure 4. All these
fits include about the same amount of data, so the variance due to the noise component
in each individual value is approximately the same. We find

n=242 + 0.22. (5)

The error given in equation (5) is the 90 percent confidence interval, if the four samples
are assumed to be statistically independent.
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The value of the braking index obtained here is not consistent with either 1, 3, or 5,
as predicted by simple models of the pulsar radiation mechanism. We emphasize, how-
ever, that an underlying braking mechanism with a time-independent # is consistent
with these data if a noise component is indeed present.

c¢) Frequency Jump

The NP 0532 frequency jump of 1969 late September (Boynton ef al. 19695, Richards
et al. 1969) was much smaller than that observed in the Vela pulsar (Radhakrishnan and
Manchester 1969; Reichley and Downs 1969) and apparently has a much shorter re-
covery time. Several models have been proposed to explain the occurrence of these
glitches. The periapsis passage of an orbiting companion of the pulsar has been suggested
by Michel (1970) and by Hills (1970). One would expect that frequency jumps of both
signs should occur if this model were the correct explanation; the events so far ob-
served have been increases in frequency. A stronger argument can be made with the data
themselves. Figure 5 shows the results of fitting a cubic polynomial to the data immedi-
ately preceding the glitch. The data after September 29 have not been jncluded in the
fit. The residuals shown in figure 5 are the result of extrapolating the fitted function to
the data beyond the glitch. Of course, one cannot extrapolate very far before the errors
in the cubic polynomial become important. However, an extrapolation of a few weeks
should be reasonably safe. In the week between 1969 September 29 and October 6, the
pulsar gained about a tenth of a cycle in phase. Thereafter, the phase gain slowed down.
A model based on the close passage of an orbiting companion cannot fit the curvature
between October 6 and October 16, and at the same time fit the sharp break between
September 29 and October 6. In fact, we were unable to find any smooth function which
would fit the data near the glitch. For example, we have tried arc-tangent functions and
error functions without success.

So far, the model which has been most successful in fitting the data near the glitch is
the two-component starquake model proposed by Ruderman (1969), and applied to
glitches by Baym et al. (1969). In this model the pulsar is envisioned as a neutron star with
a superfluid core and a solid crust. The pulses are assumed to originate from a region that
rotates with the crust, and the braking torque is applied to the crust. Because the core
is superfluid, the crust-core coupling is extremely weak—the characteristic relaxation
time is of the order of days to years, depending on the mass of the star. At the time of
the glitch, something causes the crust to speed up. In the model developed by Baym
et al. (1969), the speedup is due to a cracking and shrinking of the crust. Other workers
have suggested that the speedup may be due to an instability in the crust-core coupling
(Greenstein and Cameron 1969). In any event, after the speedup occurs, the crust
slowly communicates its excess speed to the core, causing the core to speed up and the
crust to slow down.

If ¢, is the glitch time, then the glitch function predicted by the model above is zero
for ¢ < t,, and for ¢ > ¢, one has

A¢p = MOr{l —exp[—(t — 2)/7]} + (1 — Q)¢ — )]} . (6)

DATE

F1c. 5.—Residuals from a cubic fit. Only the data before 1969 September 29 were included in the fit.
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In this expression, A¢ is the excess phase produced by the glitch, Av is the instantaneous
frequency jump at the time of the glitch, = is the relaxation time of the crust-core
coupling, and Q is the fraction of the moment of inertia carried by the core in the two-
component model (0 < Q < 1). Large Q means that most of the initial speedup of the
crust decays away by transferring angular momentum to the massive core, thus slowing
down the crust which presumably controls the pulse rate. On the other hand, small Q
means that very little of the initial speedup decays. Also, small Q indicates a light neu-
tron star, while large Q indicates a more massive neutron star.

Figures 6-8 show the residuals from fitting a cubic polynomial and a glitch function
to the data near the glitch. The different fits include successively larger pieces of data.

The glitch parameters generated by these fits are collected in table 2. Again, the er-
rors given are formal errors and so do not reflect the quality of the fit; this is indicated

by x2/N. The values of several of the parameters show interesting correlations with the

length of the data string used in the fit. For example, the relaxation time starts at about
4 days and increases to about 20 days as the length of the data string increases from 52
to 414 days. Similarly, Q starts at about 0.9 and increases to 2. The instantaneous change
in frequency decreases from 2.8 X 10-7 Hz to 0.8 X 1077 Hz; the x*/N increases
drastically.

What are the implications of these correlations? We believe that as the data length
becomes longer, the noise components become more important (as expected from the
power spectrum), and a compromise is made between fitting the glitch and fitting the
noise component. Except for the residual change in frequency (last term in eq. [6]), the
glitch function affects only those points within a few relaxation times of £,.

For the short lengths of data, with = about 4 days, the exponential part of the glitch
has decayed to the level of the measurement errors after 2-3 weeks. For the longest
lengths of data, when 7 is about 2 weeks, the exponential term does not decay to the

~ level of the errors for 3-4 months. In effect, the glitch function is trying to remove the

large structure seen in figure 3 instead of the structure near the glitch. This can also be

+ seen by comparison of figures 3 and 8. Even in figure 7 we see the noise components

becoming important.

Clearly, it is not meaningful to force the glitch function to fit noise components. In
§ Vd the noise component is modeled by fitting a Fourier series to the data. It will be
shown that fitting a cubic polynomial, a Fourier series, and a glitch function to the data
of figure 8 produces estimates of the glitch parameters quite similar to those produced
by the fits of figure 6. Thus, we believe that the most reliable estimates of the glitch
parameters are those estimated from short lengths of data (fig. 6 and the first two lines
of table 2).

There is no well-defined procedure for assessing the uncertainties in these estimates.

TABLE 2

GLITCH PARAMETERS

lg—
1969 Sept. 29

Av T
Time Span /N (1077 Hz) (days) Q (hours)
1969 Aug. 23-Oct. 24.......... 24/23 2.86+0.52 4.1+1.1 0.9343:0.026 20.8+7.7
1969 Aug. 23-Nov. 21.......... 72/30 2.49+0.07 4.7+0.2 0.897+0.008 7.4+4.4
1969 July 21-Dec. 20.......... 1250/50 2.18+0.02 7.7+0.1 0.943+0.003 — 4.5+2.8
1969 Feb. 1-1970 Feb. 1........ 3470/69 1.58+0.01 15.24+0.1 1.151+0.004 —12.2+3.5
1969 Mar. 9-1970 Apr. 27...... 75500/122 0.77+0.02 19.6+0.2 1.937+0.021 52.2+5.4
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F16. 6.—Residuals from a cubic polynomial and a glitch function, Top, 1969 August 23-October 24.
Boitom, 1969 August 23-November 21.

We adopt a conservative procedure using the parameter estimates obtained from the
shortest fits (fig. 6) as upper and lower limits on the values of the parameters. In addi-
tion, one must allow for the errors in these estimates. The x? for the shortest fit shown
in figure 6 is only 24 for 15 degrees of freedom. Thus, the error estimates obtained from
this fit are probably too small by at most a factor of 1.3. To be on the conservative side,
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the upper and lower limits have been widened by twice these error estimates. The
limits defined by this procedure are

1.5 X 107 < Av < 3.8 X 1077 (Hz), (7)
28< <69 (days), (8)
0.85 < Q < 0.996, (9)
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and —8<1¢4,,<36 (hours) . (10)

The glitch time 4, is measured in hours from 0* UTC 1969 September 29.

The value of Q given in equation (9) does not agree with the value 0.34 obtained by
Papaliolios ef al. (1970). However, they had no data between 1969 September 16 and
1969 October 9. In addition, they obtained Q from a formula involving the changes in
the cubic polynomial parameters, but that formula is applicable only if the relaxation
time is long compared to observation time; we believe this not to be the case.

The results obtained in equations (7)-(10) may be used to draw conclusions about
the structure of the pulsar. If the two-component model is the correct interpretation
of the glitch, then the lower limit of 2.8 days for the relaxation time is direct experi-
mental evidence that the neutrons and protons in the neutron-star core are in a super-
fluid state. Otherwise, the crust-core coupling would be too strong, and the relaxation
too fast to observe (Baym et al. 1969). Also, an estimate of Q may provide a measure of
the neutron-star mass. According to current models, a relatively thin crust (large Q) im-
plies high mass—probably greater than 0.6 M (Baym and Pines 1971).

d) Noise Components

As noted in § Va, a persistent feature of the data is the quasi-sinusoidal structure that
appears in residuals whenever more than a month of data are fitted with a cubic poly-
nomial. The characteristics of these residuals, and our failure to find definite functions
with predictive power, lead us to propose a noise component connected with the clock
mechanism of NP 0532.

Following Groth (1971), three simple noise models are considered: ‘‘phase noise,”
“frequency noise,” and “slowing-down noise.” In each of these models, the pulsar is
assumed to follow exactly a power-law slowdown as in equation (2), except that at ran-
dom times the pulse phase, frequency, or slowing-down rate jumps, or changes dis-
continuously. That is, one of the three parameters ¢, », or 5 is undergoing a random
walk. It is assumed that the size of the j jumps is randomly distributed, that the distri-
bution of jump sizes possesses both a first and second moment, and that all jumps are
independent. The statement that events occur at random tlmes means that in time in-
tervals of length 7', the number of events follows a Poisson distribution with mean RT',
where R is the average number of jumps per unit time. Actually, it will not be necessary
that both the times and the amplitudes of the events be random; either one will do. For
generality, however, the models are developed as if both are randomly distributed. The
final assumption is that the noise process is statlonary, that is, neither the amplitude
distribution nor the average rate depends on time. The glitch of 1969 September 29 will
not be considered in the following discussion. It may in fact be a part of the noise process;
but if so, it is far out on the tail of the amplitude distribution.

The first question to ask is: How do random events of this type affect the cubic param-
eters discuss in § Vb2 Split the phase into the overall slowing-down term and a random
part,

¢ = ds+ or. (11)

In this expression, ¢g is the secular part of the phase and is assumed to be given by
equation (2). The random part of the phase is given by ¢z, which for the three kinds of
noise is

1%
¢r = Z_:,AtbiH (t—t) (phase) , (12)
dr = iAw(t — L,)H(t — t) (frequency), (13)
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and N
= > 1Av;(t — t:)2H(t — t;)  (slowing down) . (14)
t=1
In these expressions, H(?) is the unit step function at ¢ = 0; A¢;, Av,, and Ap; are random
variables giving the amplitude of the jumps; and ¢; are random variables giving the times
of the jumps. If one has data in blocks of length T, then N is also a random variable
whose mean is RT. All the A¢;, Av;, or As;; £;; and N are assumed to be independent.
If a cubic polynomial is fit to ¢g + ¢z, the parameters will be perturbed from those
of ¢g by the noise component. The average values of the parameter perturbations may
be obtained from the average of ¢g, since each parameter is a linear function of ¢g. This
average is calculated by averaging over the A¢;, Aw,, or Ap, distribution, the ¢; distribu-
tion, and the N distribution, which yields

(¢r) = (Ap)RT (phase) , (15)
(¢r) = (A¥)RT?/2 (frequency) , (16)
(¢r) = (A»)RT3/6 (slowing down) . (17)

In these expressions (A¢), (A»), and (A») are the first moments of the A¢;, Av;, and A,
distributions. On the average, each kind of noise will produce an offset in one of the
polynomial parameters of ¢g.

We may also calculate the dispersion in the cubic parameters. In particular, the
standard: deviation of # is given by,

(AU = 2946[R(A¢H)]1 2/ TH? (phase) , (18)
(atyuz = 5. A[R(A)E/ T2 (frequency) , (19)
(A2 = 1 8[R(AS)M/2/ T2 (slowing down) .  (20)

In these expressions, (A¢?), (Av%), and (A#?) are the second moments of the jump ampli-
tude distributions. The expressions are valid only if a cubic polynomial is fitted.

The different dependence on T in equations (18), (19), and (20) can be used to dis-
criminate between kinds of noise. Dividing their data into four 1-month-long segments,
the Lick group found values of # ranging from 0 to 4 (Nelson et al. 1970). This implies a
dispersion in # of about 10~ Hz s~2. With a data length of about 5 months, the disper-
sion in # is about 0.1 X 10-% Hz s~ 2 (see eq. [5]).

‘If one writes
Ail'l/Aﬁz = (Tl/Tz)a y : (21)

then o« is. —1.4. This is a strong indication that the noise éomponent is predominantly
frequency noise, since the dispersion is dying out as predicted by equation (19). Further-
more, R&’&vz) can be estimated as

R{(Av?) ~ 9 X 10-28 Hz? 51 , (22)

giving a rough value suitable for the testing of physical models.

Another method of studying a noise process is to study its power spectrum. With
methods similar to those described by Rice (1954) the power spectra expected from the
three kinds of noise are calculated to be

P(w) = 2R(A¢?*)/w? (phase) , (23)
P(w) = 2R(Av?)/ws* (frequency), (24)
P(w) = 2R{Av?)/w® (slowing down) , (25)

where P(w) is the ‘power per hertz at frequency w.
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The power spectra of our time-of-arrival data have been obtained by simultaneously
fitting a cubic polynomial and a Fourier series to the data. The Fourier series is

10
¢rs = 2 ( an cos Zmn t + b, sin Zmn t) . (26)
n=1 T T

The period of the fundamental component, 7', is taken to be about 90-95 percent of the
length of the data in order to reduce interference with the cubic polynomial. The series
is truncated at 10 terms because higher-frequency terms have periods which approach
the size of the gaps in the data. In addition to the cubic polynomial and a Fourier series,
the fit includes the glitch function (eq. [6]) when appropriate.

Letting ¢, = a,? + 0,2, one has

¢n?/2 = P(w)/T, . 27

where T-1! is the bandwidth factor. In figure 9 is plotted log ¢,? versus log # for various
segments of the data. The upper curve is from a fit to all the 1969-1970 data, and a
glitch function was included in this fit. The lower curves are from fits to the 1969-1970
data before and after the glitch. Unfortunately, the 1970-1971 data with the large gap
in the middle cannot be analyzed this way. The error bars in figure 9 have been drawn
under the assumption that @, and b, are independent and normally distributed. They are
not the errors obtained in the fit, which are much smaller. The best-fitting lines in which
both the intercept and the slope are fitted are shown by the dashed lines. The solid lines
show the best-fitting lines when only the intercept is allowed to vary and the slope is
fixed at —4. By computing the variance of log c,?, one can show that 72 percent of the
points should lie within their errors of the fitted lines. (In fact, 23/30, or 77 percent, lie
within their error bars of the fitted lines.) Thus, it appears that the power spectra of
these data are consistent with frequency noise, and another estimate (to within an order
of magnitude) can be obtained for R{(A»?),

R(Av) ~ 3 X 10-2 Hz?s 1, (28)

Of course, in the plots of figure 9 problems due to end effects and the irregular distribu-
tion of the data have been ignored. These problems will be discussed in greater detail
in the next section. :

The fit used in obtaining the upper power spectrum in figure 9 included a glitch
function. In this particular fit, the glitch function was not forced to fit the long-term
structure that we attribute to noise—the Fourier series takes care of that. The glitch
parameters obtained in this fit are

Av = (2.2 + 0.4) X 100" Hz , (29)
7 =44+ 0.7 days, (30)
Q = 1.07 £+ 0.20, (31)

which are consistent with the ranges in equations (7)—(10). The large error associated
with Q arises because of large interference between the low-frequency components and
the long-term behavior of the glitch function. For this reason, the estimate for Q given
by equation (9) is probably more reliable than that given in equation (31).

e) Monte Cario A pproach

Although the straightforward power-spectrum analysis of the previous section pro-
vides quantitative support for the frequency-jump noise model, it gives us little intuitive
insight into the general characteristics of the noise process. Also, there are some obscure
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F16. 9.—Top, power spectrum of the noise component in the 1969-1970 data. Middle, power spectrum
of the pre-glitch data. Bottom, power spectrum of the post-glitch 1969-1970 data. Dashed lines, the best-
fit lines when both height and slope are fitted. Solid lines, the best-fit lines with slope fixed at —4.

questions about the effects on our fitting procedure of (1) finite data strings, (2) irregular
discrete sampling, and (3) interference between the cubic polynomial and the Fourier
series functions. It was decided (Groth 1971) to construct data sets from our model
functions, but with the noise component generated by random numbers with a computer.
These pseudo-data were then subjected to our fitting and power-spectrum programs to
see how accurately the model parameters could be recovered in the presence of random
noise. :
The pseudo-data are constructed as follows. First, a subset of the real data is chosen
(in this case, all the data obtained after 1969 November 11), and the times of arrival are
adjusted to produce a set of arrival times which conform exactly to a cubic polynomial.
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Measurement error is simulated by adding to each arrival time a normally distributed
random number having zero mean and standard deviation equal to the assigned error.
Next, 2000 random numbers, ¢;, are generated. These numbers are randomly distributed
over the time interval containing the data. Finally, the perfect cubic data with mea-
surement error and the ¢, generated from equation (12), (13), or (14), are combined to
produce three sets of pseudo-data. In the first set, a phase jump of 1.6 X 103 cycles is
constructed at each ¢;; in the second, a frequency jump of 2.3 X 10-% Hz is constructed
at each #;; and in the third, a jump of 2.0 X 1015 Hz s~! in the slowing-down rate is
constructed at each ¢;.. Many sets of pseudo-data were constructed so that a qualitative
feeling of the characteristics of each kind of noise can be obtained. Note that these data
sets (1) have the same sampling and weighting structure as the real data, (2) have the
same measurement noise as the real data, (3) follow a cubic braking function as the real
data are believed to do, and (4) contain a noise component of known strength (i.e., Ag,
Av, or Av; and R are chosen).

Quantitative results from fitting the pseudo-data indicate that our programs accu-
rately recover function parameters (aside from the offsets given in eq. [15]-[17]) from
our real data, even in the presence of noise. However, power spectra of the noise in the
pseudo-data indicate a weakness in our ability to distinguish phase-jump noise from
frequency-jump noise with our current data set. Power spectra proportional to w35

‘w4, and w% were obtained for computer-generated phase noise, frequency noise, and

slowing-down noise, respectively. The data of figure 9 cannot distinguish between slopes
of —3.5 and —4.

Qualitative results of the Monte Carlo procedure are shown in figures 10-15. Each
figure shows the residuals from cubic polynomial fits to the real data and three sets of
pseudo-data. The pseudo-data sets are not selected; they are the first three produced
by the computer. Figures 10, 11, and 12 show phase noise, frequency noise, and slowing-
down noise, respectively; figures 13, 14, and 15 show cubic fits to the first thirds of the

. data shown in figures 10-12.

Inspection of figure 10 shows that the phase-noise pseudo-data do not contain large
enough low-frequency components, while figure 12 shows that the slowing-down-noise

* models are too smooth when compared with the real data. Figure 11 indicates that the

frequency-noise models have somewhat larger high-frequency components than the
actual data. Even with the excess of high-frequency components, frequency-noise model
1 is remarkably similar to the actual data.

The second set of fits, figures 13-15, covers a shorter time interval. Again, the phase-
noise models seem to have a deficit of low-frequency components, while the slowing-
down-noise models seem to lack the high frequencies needed to produce the abrupt
changes in slope which are present in the real data. The frequency-noise models, although
slightly deficient in high-frequency components, most closely resemble the real data.

The abrupt changes of slope led the Lick group to suggest the occurrence of mini-
glitches (Nelson et al. 1970). In the frequency-noise models, the changes in slope are
caused not by a single event, but by a statistical fluctuation in the number of events in
the neighborhood of a slope change. The individual frequency jump of 2.3 X 10-° Hz
is too small to be seen in any of the figures; in our pseudo-data they occur at a rate of
about four per day. If one assumes that there were only four frequency jumps in the
period 1969 December through 1970 May, as in Nelson et al. (1970), then one must
assume that the observed changes in # are indications of changes in the radiation mech-
anism. It is hard to see how this could come about, given the observed constancy of the
pulse shape. On the other hand, the interpretation presented here allows an intrinsically
constant braking index: the observed changes caused by the perturbations arising from
the noise (cf. eq. [19]).

Another interesting feature of the pseudo-data residuals, appearing in figures 14 and
15, is their resemblance to the quasi-sinusoidal structure reported by Arecibo (see fig. 4).
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F16. 10.—Residuals from cubic fits to phase noise pseudo-data. Top, real data, 1969 November 11-
1971 April 23. Next in order: phase-noise pseudo-data Nos. 1, 2, and 3.

Again, it should be emphasized that this structure results solely from the random super-
position of small, discrete events. There is no need to introduce a wobble (Ruderman
1970b), an orbiting companion (Richards et al. 1970; Hills 1970), or vortex line oscilla-
tions (Ruderman 1970q).

From the discussion given above, we conclude that the frequency-noise models re-
semble most closely the actual data, and a comparison of the amplitudes gives 2 X 10~2?
Hz? 57! as a third estimate of R(A»?). The phase-noise and slowing-down-noise models
seem to be rougher and smoother, respectively, than the real data. It may be that all
three processes are occurring simultaneously. In this case, the low-frequency region of
the power spectrum would be dominated by slowing-down noise, the intermediate--
frequency region by frequency noise, and the high-frequency region by phase noise.

VI. PHYSICAL MODELS FOR THE NOISE COMPONENT

Two simple mechanisms for producing frequency-jump noise in NP 0532 are pre-
sented here. There are other possible mechanisms, but the point is that plausible pro-
cesses can easily produce the proposed noise component in the timing data. In fact, one
would be surprised if one or both of those processes were not operating on the pulsar.

The first model to be considered is an accretion model (Groth 1971). One imagines that
lumps of matter fall on the pulsar, causing it to speed up or slow down, mainly through
the mechanism of angular-momentum transfer. The mass 6f the lump can be related to
the size of the frequency increment; and the measured quantity, R(A»?) (eq. [28]), pro-
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Fr6. 11.—Residuals from cubic fits to frequency-noise pseudo-data. Top, real data, 1969 November
11-1971 April 23. Next in order: frequency-noise pseudo-data Nos. 1, 2, and 3.

vides a means of relating the rate of mass accretion to the average frequency jump.
Suppose a lump of mass m starts from rest very far away and falls onto the pulsar. The
maximun change in angular momentum will be

AL = m(2GMry)V? . (32)
In this expression, L is the angular momentum of the pulsar, M = 1 M is the pulsar

mass, 7, =~ 10 km is its radius, and G is the gravitational constant. The change in fre-
quency can be related to the change in angular momentum and hence to the mass of

the lump by ( )( ) 1/2

The factor of three has been included because only the component of AL parallel to L
leads to a change in frequency. Also, the gravitational radius of the pulsar has been
denoted by 7,. Numerically, equation (33) becomes

(33)

m/Mq =~ 1.5 X 10-2(Av/v) . (34)
If we assume Avpms = (Ar?)V2 and adopt R{A»?) =~ 10~22 Hz? s~ then we find
dM /dt =~ 10-¥(Av/v)~! Mg year~!. (35)
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Relations (34) and (35) are shown in figure 16. It can be seen that there is a large range
of Av/v which require quite reasonable lump masses and mass-accretion rates. For
example, at Av/y = 1071, the lump size is 10~'2 M, about the mass of a medium-sized
asteroid, and the accretion rate is 10-% M o year—!, which is quite negligible even if mass

" has been accreting at this rate since the pulsar was born. At this value of Av/v, a lump

falls on the pulsar about once a day on the average.

Another model is the cracking model, similar to the continuous crumbling model
proposed by Papaliolios et al. (1970). In the present context, however, the model is used
to introduce randomness, rather than to explain the fact that the brakmg index is not 3.
The pulsar is assumed ‘to be a solid, slightly oblate spheroid. The moment of inertia is

given by
I =11+ 2, (36)

where Io is $M7,? and e is the ellipticity. The star is assumed to crack slightly, causing
a change in the ellipticity which can be related to the change in the pulse frequency,

Ae = — %Q (37)
V4

A reasonable distribution for the amplitudes of the cracks would be
1
p(8e) = -— exp (—Ae/Aa) , (38)
€0 .

where p(Ae) is the probability density at Ae. In this case, (Ae) = Aeoand (Ae?) = 2(Ae)?
The rate of change in ellipticity due to cracking can be related to the average change in
pulse frequency,

de

-1
i — —5X% 10~ (%) . (39)

CRACKING

- Relations (37) and (39) are shown in figure 16.

Because NP 0532 is slowing down, the equilibrium ellipticity is decreasing at the rate
de
dt

=2 = —3x 1055, (40)
EQUIL;BRIUM 14

Assuming that cracking keeps the ellipticity in equilibrium, equations (39) and (40)
can be combined to yield an estimate for Av/»:

Ap/yv = 1.6 X 10711, (41)

Using R =2 X 10722 Hz? s~1/2(A»)? (the factor of 2 enters because (Av)? = §(Av?)),
we find that the average rate is about 40 cracks per day. Again, these parameters are
quite reasonable, and it appears that the cracking model is also a plausible means of
explaining the structure in the data.

In connection with figure 16 it should be noted that an event rate as small as once per
month is only marginally consistent with the observed structure in the data. There
sometimes appears to be significant structure on a timescale as short as a week. Adopting
a lower limit of one per week for R implies an upper limit of about 2 X 10~ for Ap/».
This upper limit is about two orders of magnitude smaller than the size of the glitch and
indicates that the glitch is probably not part of the noise component.

VII. CONCLUSIONS

It has been shown that the pulse frequency of NP 0532 in the 2-year period 1969
March-1971 April can be understood in terms of three components. The major compo-
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nent is the cubic braking function. Unfortunately, the braking index of 2.4 given in equa-
tion (5) does not point to any simple braking mechanism. However, the data are con-
sistent with a time-independent braking mechanism.

The second component is the frequency jump which occurred on 1969 September 29.
This glitch can best be understood in terms of a two-component model of neutron-star
structure. The glitch parameters given in equations (7)-(10) are consistent with this
model.

Finally, there is a noise component which can be understood in terms of small random
jumps in the pulsar frequency. The dispersion in » as a function of the length of data
used to estimate » is probably the strongest indication that frequency noise is the pre-
dominant noise component. More progress will be made with the power spectrum and
Monte Carlo techniques as the data string increases in length allowing the power spec-
trum to be extended to lower frequencies.
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