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Chern-Simons modified gravity as a torsion theory and its interaction with fermions

Stephon Alexander and Nicolás Yunes

Institute for Gravity and the Cosmos, Department of Physics, The Pennsylvania State University,
University Park, Pennsylvania 16802, USA

(Received 11 April 2008; published 24 June 2008)

We study the tetrad formulation of Chern-Simons (CS) modified gravity, which adds a Pontryagin term

to the Einstein-Hilbert action with a spacetime-dependent coupling field. We first verify that CS modified

gravity leads to a theory with torsion, where this tensor is given by an antisymmetric product of the

Riemann tensor and derivatives of the CS coupling. We then calculate the torsion in the far field of a

weakly gravitating source within the parameterized post-Newtonian formalism, and specialize the result to

Earth. We find that CS torsion vanishes only if the coupling vanishes, thus generically leading to a

modification of gyroscopic precession, irrespective of the coupling choice. Perhaps most interestingly, we

couple fermions to CS modified gravity via the standard Dirac action and find that these further correct the

torsion tensor. Such a correction leads to two new results: (i) a generic enhancement of CS modified

gravity by the Dirac equation and axial fermion currents; (ii) a new two-fermion interaction, mediated by

an axial current and the CS correction. We conclude with a discussion of the consequences of these results

in particle detectors and realistic astrophysical systems.

DOI: 10.1103/PhysRevD.77.124040 PACS numbers: 04.50.Kd, 04.20.Fy, 04.40.Nr

I. INTRODUCTION

A quantum gravitational theory that is mathematically
consistent, predictive, and in agreement with all experi-
mental data is a holy grail of physics. Many extensions of
general relativity (GR) have been proposed since its in-
ception, most of which have not passed the test of time and
increasingly more accurate experiments (see e.g. [1] for a
current review). Recently, however, two competing para-
digms have arisen that hold the promise to unify GR with
quantum theory: string theory [2–4] and loop quantum
gravity [5–7].

Although both of these extensions are technically theo-
retically incomplete, there has been a recent effort to study
its predictability [8,9]. Because of the intrinsic complexity
of these theories, such efforts have been traditionally lim-
ited or model dependent [10]. Recently, however, these
theories have advanced enough that predictions can be
made and one generic and unavoidable low-energy limit
of both theories has been discovered: Chern-Simons (CS)
modified gravity.

In string theory, the absence of a CS term in the action
leads to the Green-Schwarz anomaly, which requires can-
cellation to preserve unitarity and quantum consistency. In
most perturbative string theories (e.g. type IIB, I, heterotic)
with four-dimensional compactifications, the Green-
Schwarz mechanism requires the inclusion of a CS term
[11]. In fact, this term is induced in all string theories due
to duality symmetries in the presence of Ramond-Ramond
scalars or D-instanton charges [3,11]. Even in heterotic
M theory the CS term is required through the use of an
anomaly inflow.

In loop quantum gravity, the CS term arises as a natural
extension to the Hamiltonian constraint. In particular, the

CS term renders a candidate holomorphic ground state
wavefunction invariant under large gauge transformations
of the Ashtekar connection variables [12]. The CS correc-
tion, is also related to the Immirzi parameter of loop
quantum gravity, which determines the spectrum of quan-
tum geometrical operators [13,14].
CS modified gravity proposes an extension to GR by

adding a parity-violating, Chern-Pontryagin term to the
Einstein-Hilbert action, multiplied by a spacetime-
dependent coupling scalar [15]. This theory modifies the
GR field equations by adding a new cottonlike C-tensor,
which is composed of derivatives of the Ricci tensor and
the dual to the Riemann. Additionally, the equations of
motion for the scalar field provide a new Pontryagin con-
straint that preserves diffeomorphism invariance. The
structure of the C-tensor allows the modified theory to
preserve some of the classical solutions of GR, such as
the Schwarzschild, the Friedmann-Robertson-Walker, and
the gravitational wave line elements [15,16].
Although some classic GR solutions are preserved in CS

modified gravity, parity violation is inherent in the modi-
fied theory, leading to possibly observable effects. One
such effect is amplitude birefringence [15,17], which leads
to a distinct imprint that could be detectable through
gravitational wave observations [18]. Birefringent gravita-
tional waves have actually been successfully employed to
propose an explanation to the leptogenesis problem [19,20]
and could also leave an imprint in the cosmic-microwave
background [21–23]. Another consequence of CS modified
gravity is modified precession, which has been studied in
the far-field limit [24,25], leading to a weak bound on the
CS scalar with LAGEOS [26]. Recent investigations have
also concentrated on spinning black hole solutions [27,28],
as well as black hole perturbations [29], both of which have
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been seen to be corrected in CS modified gravity. For
further studies of these and related issues see e.g. [30–
39] and references therein.

In this paper, we study CS modified gravity within the
first-order or tetrad formalism (see e.g. [40] for a review).
In this formalism, one rewrites the action in terms of a
tetrad and a generalized connection that needs not be
torsion free. One then varies the action with respect to
these fields to obtain the equations of motion and the so-
called second Cartan structure equation, which in GR
reduces to the torsion-free condition. CS modified gravity,
however, leads to a torsion-full condition, where the tor-
sion tensor is proportional to an antisymmetric product of
the Riemann tensor and partial derivatives of the CS scalar.

We first compute the torsion tensor in the far field of a
weakly gravitating body within the parameterized post-
Newtonian (PPN) formalism for a generic CS scalar [41–
46]. We find that the torsion tensor is proportional to
contractions of the Levi-Civita symbol, derivatives of the
CS scalar, and derivatives of the Newtonian and PPN
vector potentials. This tensor is evaluated around Earth
and found to generically persist, unless the CS scalar field
vanishes identically, thus reducing CS modified gravity to
GR. The nonvanishing of the CS torsion tensor generically
leads to a modified frame-dragging effect and gyroscopic
precession. The results found here thus provide great theo-
retical motivation for studies of generic torsion theories
and their effect in Solar System experiments similar to
[47].

After investigating the torsion tensor, we concentrate on
the inclusion of fermions in CS modified gravity, since
these are known to also lead to torsion (see e.g. [13,48]).
We find that indeed the torsion tensor is now given by the
sum of the CS torsion and a new fermion-induced term,
which depends on the axial fermion current. The fermion-
extended torsion tensor can then be used to obtain two new
results: a new two-fermion interaction and a fermionic
enhancement of CS modified gravity.

Interaction terms are common in torsion-full theories.
For example, Riemann-Cartan theory leads to a four-
fermion interaction term, mediated by the axial current.
These interactions are computed by inserting into the
action the full connection: a torsion-free, symmetric part
(the Christoffel connection) plus a certain linear combina-
tion of components of the torsion tensor (the contorsion
tensor). In the fermion-extended version of CS modified
gravity, we find that the interaction term consists of three
contributions: a new two-fermion term, a modified four-
fermion term, and a new six-fermion term. The four-
fermion interaction is in fact similar to that found in
Riemann-Cartan theory, also suppressed by a factor of G,
the gravitational constant. The six-fermion interaction is
further suppressed by a factor of G2. The two-fermion
process, however, is G-independent and mediated by de-
rivatives of the CS scalar, the axial fermion current, the
Ricci scalar, and the Ricci tensor.

The fermion enhancement effect arises as a consequence
of the Dirac equation in fermion-extended CS modified
gravity. Because of the inclusion of fermions, a new field
equation arises (the Dirac equation), which couples deriva-
tives of the Dirac spinor to the connection, which now
contains both a symmetric, torsion-free part and a torsion-
full piece. In this way, the torsion tensor, and thus, the CS
correction, are sourced by derivatives of the Dirac spinor
through the Dirac equation. Such a result implies that all
CS corrections are magnified in physical scenarios where
fermionic currents are large.
We conclude with a discussion of the consequences of

these two new results. On the one hand, the new two-
fermion interaction could potentially lead to observables,
related to fermion processes. Particle accelerators, how-
ever, are unlikely to see this correction, since the Ricci
scalar vanishes in the neighborhood of the Solar System,
thus annihilating the modification. On the other hand, the
fermionic enhancement effect renders the modified theory
even more appealing, since CS corrections would then be
naturally enhanced in several realistic astrophysical sce-
narios, such as pulsars, merging neutron stars, and super-
novae, perhaps even leading to stronger bounds of CS
modified gravity.
The remainder of this paper presents further details and

calculations of the results mentioned above and it is di-
vided as follows. Section II reviews the tetrad formalism in
GR and establishes notation; Sec. III reformulates CS
modified gravity in the tetrad formalism and finds the
torsion tensor of the modified theory; Sec. IV computes
the torsion tensor in the far field of a weakly gravitating
body, later specializing the result to fields around Earth;
Sec. V adds fermions to the modified theory, derives the
fermionic enhancement effect, and calculates the new fer-
mion interactions; Sec. VI discusses the implications of
these results in astrophysical scenarios and particle detec-
tors; Sec. VII concludes and points to future research.
We use the following conventions: commas stand for

partial derivatives @a ¼  ;a; parenthesis and square-

brackets in index lists stand for symmetrization AðabÞ ¼
1=2ðAab þ AbaÞ and antisymmetrization A½ab� ¼
1=2ðAab � AbaÞ, respectively; uppercase Latin letters
fA; B; . . .g stand for internal indices, lowercase Latin letters
at the beginning of the alphabet fa; b; . . . ; hg stand for
spacetime indices, while those in the middle of the alpha-
bet fi; j; . . .g stand for spatial indices only. The order sym-
bolOðAÞ stands for terms of order A, and we use geometric
units, such that G ¼ 1 ¼ c.

II. FIRST-ORDER FORMALISM IN GR

In this section, we review the first-order formalism of
GR and establish notation, following mainly [40]. Let us
then consider a 4-dimensional manifold M with an asso-
ciated 4-dimensional metric gab. Let us further introduce at
each point on the manifold a tetrad eIa, such that the metric
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can be written as gab ¼ eIae
J
b�IJ, with �IJ the Minkowski

metric. Internal and spacetime indices are raised and low-
ered with �IJ and gab, respectively.

Let us now introduce the spacetime and spin connection,
Aab

c and AaI
J, which given a mix tensor gbI satisfy

DakbI ¼ @akbI þ Aab
ckcI þ AaI

JkbJ; (2.1)

whereDa is a generalized covariant derivative. The torsion
tensor is defined via 2D½aDb�f ¼ Tab

eDef, for some scalar

function f, thus satisfying

Tab
e :¼ 2A½ab�

e: (2.2)

The requirement that the spin connection be torsion free is
simply A½ab�

c ¼ 0 and that it be compatible with the inter-

nal metric �IJ is equivalent to AaðIJÞ ¼ 0.
The generalized covariant derivative can be shown to be

compatible with the tetrad, thus satisfying

Dae
I
b ¼ 0: (2.3)

This relation then implies that the spacetime and spin
connections are related via

Aab
e ¼ ðeIeÞ�1AaK

IeKb � ðeIeÞ�1@ae
I
b; (2.4)

which is simply a change of basis. Sometimes these rela-
tions are referred to as the ‘‘tetrad postulate,’’ which we
discuss further in the appendix. When the spacetime and
spin connections satisfy Eq. (2.4), then the spacetime
connection is given by the sum of the Christoffel symbols
and the contorsion tensor (provided the spin connection is
torsion-full). The contorsion tensor shall be discussed later,
but it is essentially constructed from the torsion tensor.

With this generalized covariant derivative and connec-
tions we can now define the generalized curvature tensors
through the failure of commutativity of the generalized
covariant derivatives. One can show that

FabI
J ¼ 2@½aAb�I

J þ ½Aa; Ab�IJ; (2.5a)

Fabc
d ¼ 2@½aAb�c

d þ ½Aa; Ab�cd; (2.5b)

where the anticommutator is shorthand for

½Aa; Ab�IJ :¼ AaI
KAbK

J � AbI
KAaK

J;

½Aa; Ab�cd :¼ Aac
eAbe

d � Abc
eAae

d:
(2.6)

Note that if the connection is metric compatible and torsion
free (i.e. if it is the Christoffel connection), then the curva-
ture tensor is simply the Riemann tensor.

Let us now rewrite the Einstein-Hilbert action in terms
of these new variables. Note, however, that we wish to
work with the trace of the generalized curvature tensor, and
not the Ricci scalar, since these two quantities are not
necessarily equivalent in the presence of torsion. The
Einstein-Hilbert (EH) action is given by the well-known
expression

SEH ¼ �

4

Z
d4x~�abcd�IJKLe

I
ae

J
bFcd

KL; (2.7)

where ~�abcd is the Levi-Civita symbol and �abcd ¼
eIae

J
be

K
c e

L
d�IJKL is the Levi-Civita volume form. We here

depart slightly from the conventions of [40] by not adding
an extra factor of 2 in the action, which is a matter of
convention. Equation (2.7) can be derived by using the
identity

F ¼ �b½d�
c
e�Fbc

de; (2.8)

and [49]

�abcd�abef ¼ �4�½c
e �

d�
f ; (2.9a)

~�abcd�abef ¼ þ4
ffiffiffiffiffiffiffi�gp

�½c
e �

d�
f ; (2.9b)

~�abcd ~�abef ¼ þ4�½c
e �

d�
f ; (2.9c)

which will be extremely useful in a later section.
Let us now obtain the field equations of the theory by

varying the Lagrangian density with respect to the tetrad
and the connection: the field equations and the second
Cartan structure equation. Variation with respect to the
tetrad yields

~� abcd�IJKLe
J
bFcd

KL ¼ 0; (2.10)

since the curvature tensor depends only on the connection.
Equation (2.10) constitutes the field equations, which is a
generalization of the Einstein field equations for a generic,
not necessarily torsion-free connection.
Variation with respect to the connection is a bit more

complicated. Let us begin by rewriting the variation of the
curvature tensor as

�Fcd
KL ¼ 2D½c�Ad�

KL � Tcd
e�Ae

KL: (2.11)

Before we vary this Lagrangian density with respect to the
connection, it is convenient to integrate by parts the first
term to find

�SEH ¼ ��

4

Z
d4x½2D½cð~�abcd�IJKLeIaeJbÞ�Ad�KL

þ Tcd
e ~�abcd�IJKLe

I
ae

J
b�Ae

KL�: (2.12)

We can now vary this action with respect to Ae
KL and

demand that the variation vanishes to find

� 2Dcð~�abce�IJKLeIaeJbÞ ¼ Tcd
e ~�abcd�IJKLe

I
ae

J
b: (2.13)

The left-hand side of this equation vanishes because the
generalized covariant derivative is tetrad compatible and
thus Eq. (2.13) is simply the torsion-free condition of GR,

Tcd
e ¼ 0: (2.14)

In this case, then, the generalized connection reduces to the
Christoffel one and the field equations to the Einstein
equations.
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III. FIRST-ORDER FORMALISMOFCSMODIFIED
GRAVITY

In this section we shall present a pedagogical introduc-
tion to CS modified gravity in the second-order formalism
and derive its first-order former. This section will thus both
serve as an introduction to the modified theory, which was
originally proposed in second-order form, and as a basis to
establish the CS notation of this paper.

CS modified gravity [15] postulates the following action
[50]:

S ¼ SEH þ SCS (3.1a)

SCS ¼ �
Z
d4x

ffiffiffiffiffiffiffi�gp �
þ 1

4
�?RR

�
; (3.1b)

where SEH is given in Eq. (2.7) and we follow the con-
ventions of [28]. The quantity � is here the so-called CS
scalar, which serves as a spacetime coordinate-dependent
coupling function. In principle, one should include a ki-
netic and a potential term for the scalar field in the CS
action, but we shall ignore these here since they do not
contribute to torsion. The Chern-Pontryagin term is defined
via

?RR :¼ 1
2�
cdefRabefR

b
acd; (3.2)

with Rabcd the Riemann tensor. The parity-violating nature
of CS modified gravity is encoded in the Levi-Civita
tensor. Note here that CS modified gravity is intrinsically
4-dimensional, which is different from the 2þ
1-dimensional theory that goes by a similar name.

Before decomposing CS modified gravity in first-order
form, it is convenient to slightly rewrite the action. Let us
then integrate by parts to obtain

SCS ¼ ��

2

Z
d4x

ffiffiffiffiffiffiffi�gp
vaK

a: (3.3)

We here neglect any boundary terms since [51] has shown,
within the second-order formulation, that CS modified
gravity indeed leads to a well-posed boundary value prob-
lem, through the addition of boundary counterterms. The
CS velocity and CS acceleration are defined via

va :¼ ra� ¼ @a�; (3.4a)

vab :¼ ravb ¼ rarb�; (3.4b)

where ra is the covariant derivative operator associated
with the Christoffel connection �cab. The quantity K

a is the

so-called Pontryagin current, which in four dimensions is
given by

Ka :¼ �abcd�bf
eð@c�def þ 2

3�ce
l�dl

fÞ; (3.5)

and satisfies raK
a¼? RR=2 [52].

We can now write the CS action in first-order form. The
Pontryagin current can be written in terms of the Riemann
tensor as

Ka ¼ �abcd�bf
eð12Rcdef � 1

3�ce
l�dl

fÞ; (3.6)

where we again follow the conventions of [40] and define
the Riemann tensor via Rcde

f ¼ 2@½c�d�e
f þ 2�½cje

l�d�l
f.

We then find that the CS action in first-order form is simply

SCS ¼ �

2

Z
d4x~�abcdvaAbI

J

�
1

2
FcdJ

I � 1

3
AcJ

KAdK
I

�
;

(3.7)

where we used that �abcd ¼ ð�1=
ffiffiffiffiffiffiffi�gp Þ~�abcd and we have

replaced spacetime by internal indices, since these are fully
contracted.
Let us now vary the first-order CS action with respect to

the tetrad and the connection. The field equations remain
the same as in GR, namely, Eq. (2.10), because the CS
action does not depend on the tetrad. We then find that the
field equations of CS modified gravity are similar to those
of GR, provided the connection and the curvature tensor
are the generalized ones.
The second structure equation is a bit more difficult to

derive. Let us then first perform a general variation of the
CS modified action in first-order form to find

�S ¼ �

4

Z
d4xva ~�

abcdð�AbIJFcdJI � �EÞ; (3.8)

where

�E ¼ AbI
J�FcdJ

I � 2
3�AcJ

KAdK
IAbI

J � 2
3AcJ

K�AdK
IAbI

J

� 2
3�AbI

J�AcJ
KAdK

I: (3.9)

Upon variation with respect to Aa
KL and contraction with

the Levi-Civita symbol, the above term identically van-
ishes and we are left with

�SCS
�Aa

KL ¼ �

4

Z
d4x~�abcdvbFcdKL: (3.10)

Combining Eq. (3.10) with the variation of the Einstein-
Hilbert action with respect to the spin connection we find
the second structure equation, namely,

�IJKL ~�
abcdTcd

eeIae
J
b ¼ ~�ebcdvbFcdKL; (3.11)

which agrees with [53] up to conventional prefactors.
Let us now attempt to isolate the torsion tensor in CS

modified gravity. Equation (3.11) is in principle a differ-
ential equation for the torsion tensor, since the generalized
curvature tensor contains derivatives of the contorsion.
Following [13], we can parameterize the full connection
via

Aa
IJ ¼ !a

IJ þ Ca
IJ; (3.12)

where !a
IJ is a torsion-free, symmetric connection that

depends only on the tetrad and Ca
IJ is the contorsion

tensor. The contorsion is related to the torsion via

Tab
cecI ¼ 2C½a

IKeb�K; (3.13)
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where the factor of 2 comes from our definition of the
torsion tensor (see Appendix B). We can thus schemati-
cally rewrite Eq. (5.4) as

�IJKL ~�
abcdTcd

eeIae
J
b ¼ ~�ebcdvbRcdKL½!�

þ ~�ebcdvbHcdKL½@T;!T; T2�;
(3.14)

where RabIJ½!� is the standard Riemann curvature tensor
that depends on !a

IJ only, while HabIJ½@T;!T; T2� repre-
sents all other terms in the generalized curvature tensor that
are at least linear in the torsion tensor. The solution to this
equation to linear order in the CS velocity is simply

Tcd
n ¼ �1

4�
nbefvbRcdef þOðvÞ2;

Tcd
n ¼ �1

4
?Rcd

nbvb þOðvÞ2: (3.15)

One can easily check that inserting Tcd
n ¼ ð2ÞTcd

n into

Eq. (3.14), where ð2ÞTcd
n ¼ ð1ÞTcd

n þ � , ð1ÞTcd
n is the

first-order solution given in Eq. (3.15) and � is undeter-
mined, forces � to be at least quadratic in va.

IV. CS TORSION IN THE FAR FIELD

The torsion tensor found in the previous section has an
intriguing form, resembling the wedge-product of the
Riemann tensor and the CS velocity. In this section we
study the structure of the torsion tensor in the far field. We
begin by considering its functional form in the PPN for-
malism and finish with a discussion of this tensor around
Earth.

A. CS torsion in the PPN formalism

Let us then begin by rewriting the metric tensor as a
linear combination of flat space and a metric perturbation
gab ¼ �ab þ hab. Let us further work in the PPN formal-
ism, where different components of the metric perturbation
are assumed to be of the following orders: h00 ¼ Oð2Þ,
h0i ¼ Oð3Þ, hij ¼ Oð2Þ. In this section, the notation OðAÞ
stands for terms of order �A, where � is the perturbation
parameter of PN theory: the strength of the gravitational
field (i.e. an expansion in G) or the speed of particles (i.e.
an expansion in 1=c). Note then that time derivatives are
smaller by an order of � relative to spatial derivatives. We
shall not review the PPN formalism in detail here, but
instead we refer the reader to [41–46].

We can now construct the Riemann tensor to leading
order in the metric perturbation. Let us restrict attention to
a quasi-Cartesian coordinate system, such that
�abdx

adxb ¼ �dt2 þ dx2 þ dy2 þ dz2. We then find that

Rabc
d ¼ 2@½a�b�c

d þOð4Þ; (4.1)

and, following the conventions of [40], �ab
c ¼

�ð1=2Þgcd½2gdða;bÞ � gab;d� and then

Rabcd ¼ hd½a;b�c � hc½a;b�d þOð4Þ: (4.2)

With this linearized Riemann tensor we find that the CS
torsion tensor becomes

Tcd
n ¼ 1

2�
nbefvbhe½c;d�f þOð4Þ: (4.3)

Henceforth, we shall work to leading order in the torsion
tensor and consistently drop remainders of Oð4Þ and
higher. We can decompose the torsion tensor into temporal
and spatial components to find

Tcd
0 ¼ 1

2�
0ijkvihj½c;d�k; (4.4a)

Tcd
i ¼ �1

2�
0ijkv0hj½c;d�k þ 1

2�
0ijkvjðh0½c;d�k � hk½c;d�0Þ;

(4.4b)

where we remind the reader that Latin indices in the middle
of the alphabet fi; j; . . .g stand for spatial indices only. We
recognize these terms as flat-space curls and cross products
of the metric perturbation and the CS velocity. Note that
the CS acceleration does not contribute to the torsion
tensor.
Let us now specialize the torsion tensor to a specific

source. In GR and in the PPN formalism, the metric
perturbation can be written to first nonvanishing order as

h00 ¼ 2U; h0i ¼ �4Vi; hij ¼ 2U�ij; (4.5)

where U is the Newtonian potential and Vi is a PPN vector
potential. In general, the gravitomagnetic sector of the
metric contains two independent vector potentials, but in
most cases of interest, these vector potentials are identical.
For example, for a single stationary source at rest, these
potentials are

U ¼ m

r
; Vi ¼ m

2r2
~�ijka

jnk; (4.6)

where m is the mass of the body, ai ¼ Ji=m is the specific
angular momentum, ni ¼ xi=r is a unit vector, and r is the
distance from the center of the body to a field point. Note
that since _r ¼ 0, all time derivatives of the metric vanish.
The metric perturbation presented above, however, is not

a solution to the CS modified field equations. For the case
where va ¼ ðv0; 0; 0; 0Þ, such a solution can be constructed
by adding a term in the shift to the standard PPN metric
[24,25]:

�h0i ¼ 2v0 ~�ijkVj;k: (4.7)

Note, however, that these CS corrections to gab generically
add corrections to the torsion tensor that are at least qua-
dratic in the CS velocity, and thus, we shall neglect them.
We can now find all nonzero components of the torsion

tensor in CS modified gravity in terms of PPN potentials,
namely:
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T0l
0 ¼ ��0ijkviVj;kl; (4.8a)

Tln
0 ¼ �0ik½nU;l�kvi; (4.8b)

T0l
i ¼ �0ijkv0Vj;kl þ 1

2�
0ijkvjU;lk; (4.8c)

Tln
i ¼ �0ij½lU;n�jv0 � 2vj�

0ijkV½l;n�k; (4.8d)

where we have assumed the source is at rest and the CS
velocity is generic. The expressions presented above are
generically valid for any weakly gravitating system in the
far field.

B. CS torsion around Earth

Let us now specialize the above analysis to bodies
orbiting Earth and use the following line element:

ds2 ¼
�
�1þ 2M

r

�
dt2 þ

�
1þ 2M

r

�
dr2

� 4Ma

r
sin2�dtd�þ r2d�2 þ r2sin2�d�2; (4.9)

where fr; �;�g are spherical polar coordinates. This line
element agrees both with the PPN formalism described
above, as well as with the far-field linearization of the
Kerr line element. We shall here treat both M=r� 1 and
a=r� 1 as independent perturbation parameters. For
bodies orbiting Earth, these quantities satisfy M=r�
Oð10�10Þ and a=r�Oð10�7Þ.

We can now compute the components of the torsion
tensor by inserting the line element of Eq. (4.9) into
Eq. (3.15). Alternatively, we could have used Eqs. (4.8a)–
(4.8d) and the PPN potentials of the previous section, but
the calculation is simplified if instead of quasi-Cartesian
coordinates we use spherical polar coordinates. We used
Maple [54] to find that the largest nonvanishing compo-
nents of the torsion tensor are

Tr�
t ¼ � M

2r3
v�
sin�

; (4.10a)

Tt�
r ¼ � M

2r3 sin�
ðv� þ 3vtasin

2�Þ; (4.10b)

Tt�
� ¼ � M

2r3
vr sin�; (4.10c)

Tt�
r ¼ M

2r3
v� sin�; (4.10d)

Ttr
� ¼ � M

2r5 sin�
ð2v� þ 3vtasin

2�Þ; (4.10e)

T��
r ¼ �M sin�

2r3
ð2vtr2 þ 3v�aÞ; (4.10f)

Tr�
� ¼ �M sin�

2r5
ðvtr2 þ 3v�aÞ; (4.10g)

Tr�
� ¼ M

2r3
vt
sin�

; (4.10h)

followed in magnitude by

Ttr
t ¼ 3Ma

2r5
ð2vrr cos�þ v� sin�Þ; (4.11a)

Tt�
t ¼ 3Ma

2r4
ðvrr sin�� v� cos�Þ; (4.11b)

Tt�
t ¼ � 3Ma

2r4
v� cos�; (4.11c)

Tt�
� ¼ 3Ma

2r4
vt cos�; (4.11d)

Tr�
r ¼ � 3Ma

2r4
v� cos�; (4.11e)

Tr�
� ¼ 3Ma

2r4
vr cos�; (4.11f)

Tr�
� ¼ 3Ma

2r5
ðvrr cos�þ v� sin�Þ; (4.11g)

T��
� ¼ 3Ma

2r4
ðvrr sin�� 2v� cos�Þ; (4.11h)

and all remaining components can be either obtained by
symmetry or vanish to this order.
Torsion will affect geodesic motion through the

Papapetrou equations, which then leads to modified pre-
cession relative to the GR prediction. We have checked that
the only possible way for all components of the torsion
tensor to vanish is for the CS acceleration to identically
vanish va ¼ 0. Even when vr ¼ v� ¼ v� ¼ 0, the so-

called canonical choice for va, there are still six nonvan-
ishing torsion tensor components. Clearly then, even for
noncanonical velocities where only vt ¼ 0, there are still
ten nonvanishing components of this tensor. We can con-
clude that torsion and modified precession are inherent to
CS modified gravity irrespective of the choice of coupling
parameter.
The torsion tensor presented here could be used to

calculate the change in the precessional angular frequency
of gyroscopes orbiting Earth. Such a calculation is natu-
rally interesting because it could be compared to Solar
System experiments, such as Gravity Probe B, and thus
lead to a bound on the CS velocity. Such a test was first
proposed by Alexander and Yunes [24,25], who computed
this angular frequency in canonical CS modified gravity.
Smith, et al. [26] extended this analysis and placed the first
actual bounds on the canonical choice of CS velocity.
Unfortunately, such Solar System bounds tend to be rather
weak due to the feebleness of the gravitational force in the
Solar System.
The modified angular velocity of precession has not yet

been calculated for a generic choice of CS velocity. Mao
et al. [47] have considered Solar System tests of a re-
stricted class of torsion theories. This class is parameter-
ized by torsion tensors that are stationary, spherically or
axially symmetric, and parity preserving. The torsion ten-
sor associated with CS modified gravity generically breaks
parity unless one concocts a CS velocity that is parity
violating, such as the flat-space curl of some other field.
Even then, the explicit appearance of the CS velocity in the
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torsion tensor tends to break spherical or axial symmetry.
Thus, the torsion tensor considered here is more general
than that considered in [47]. Nonetheless, the analysis
presented in this paper provides a solid motivation for
the study of the effect of generic torsion theories on
Solar System experiments, similar in spirit to that of
[47]. A careful examination of generic torsion theories
and Solar System experiments is, however, beyond the
scope of this paper.

V. CS MODIFIED GRAVITYAND FERMIONS

In this section, we study the inclusion of a minimally
coupled fermion term to CS modified Lagrangian. Let us
then consider the fermion-extended CS action

S ¼ SEH þ SCS þ SD (5.1a)

SD ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�gp ði � �IeaIDa þ c:c:Þ; (5.1b)

where the Einstein-Hilbert action SEH was given in
Eq. (2.7), while the CS action SCS was presented in
Eq. (3.1b). Equation (5.1b) is nothing but the massless
Dirac action [55], where c.c. stands for complex conjuga-
tion,  is a Dirac spinor, and �I are gamma matrices. Note
that the first-order formalism is essential for the inclusion
of fermions in the theory, since Dirac spinors live naturally
in SUð2Þ. Therefore, covariant derivatives associated with
the Dirac action are not the usual SOð3; 1Þ ones, but instead
are given by Da : ¼ @a � ð1=4ÞAaIJ�I�J , where we
here follow the sign conventions of [13].

Let us now find the field equations and the second
structure equation of the fermion-extended CS modified
gravity. The variation of the action with respect to the
tetrad leads to

~� abcd�IJKLe
J
bFcd

KL ¼ 8	GTaI; (5.2)

which is nothing but the Einstein equations with a generic
connection in the presence of a source, given by Dirac
fermions.

The second structure equation can be obtained by vary-
ing the action with respect to the connection. Following
[13] and using the identity

�I�½J�K� ¼ �i�IJKL�5�L þ 2�I½J�K�; (5.3)

we find that the requirement that the variation of the action
vanishes implies

~� abcd�IJKLTcd
eeIae

J
b ¼ ~�ebcdvbFcdKL � e

�
eeI�

I
KLQJ

Q
5 ;

(5.4)

where JQ5 :¼ � �5�
Q is the axial fermion current and

where the divergence of the tetrad vanishes. Once more,
we can invert Eq. (5.4) to leading order in the CS velocity
to find an expression for the torsion:

Tcd
n ¼ � 1

4
�nbefvbRcdef � 1

4�
�ncdeJ

e
5 þOðvÞ2: (5.5)

The torsion tensor can be manipulated slightly and
written like a fermion term with a modified current. For
this purpose, let us express the Riemann tensor in terms of
its 4-dimensional irreducible decomposition

Rabcd ¼ Cabcd þ ga½cRd�b � gb½cRd�a � 1
3Rga½cgd�b;

(5.6)

where Cabcd is the Weyl tensor. The torsion tensor can then
be written as

Tcd
n ¼ 1

12
ð�nbcdvbRþ 6�nbf½cRd�fÞ �

1

4
�nbefvbCcdef

� 1

4�
�ncdeJ

e
5: (5.7)

For conformally flat spaces with constant curvature, we can
use Rab ¼ gabR=4 and Cabcd ¼ 0 to simplify the torsion
into

Tcd
n ¼ � 1

4�
�ncdeS

e
5; (5.8)

where we have defined the CS extended axial current

Se5 ¼ Je5 þ
�

6
veR: (5.9)

The torsion tensor is related to the contorsion via
Eq. (3.13), which can be inverted to find

Ccd
n ¼ 1

2½Tcdn þ 2TnðcdÞ�: (5.10)

One can check that the antisymmetrization of Eq. (3.12) in
its first two indices with Eq. (5.10) for the contorsion
returns the definition of torsion in Eq. (2.2) [56]. Using
the torsion tensor found in Eq. (5.5), the contorsion be-
comes

Ccd
n ¼ � 1

8

�
?Rcd

nbvb þ 2?RnðcdÞ
bvb þ 1

�
�ncdeJ

e
5

�
:

(5.11)

The fermionic part of the contorsion found here agrees
with that found by [13,57] in the limit as the Immirzi
parameter tends to infinity and the Holst action vanishes.
Once the torsion has been computed, one can reinsert it

into the full action to obtain the equations of motion. We
rewrite the full connection as the sum of a symmetric,
torsion-free part !a

bc and the contorsion, as in
Eq. (3.12). Each contribution to the action then takes the
form S ¼ S½!� þ S½C�, where the first term is completely
independent of the contorsion and the second term leads to
contorsion-induced interaction terms. We find that
contorsion-dependent contributions to the action are given
by the following:

SEH½C� ¼
Z
d4xe

�
� 1

16
Jb5 ð2vaRab � vbRÞ

þ 3

32�
Ja5J5a

�
; (5.12)
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for the Einstein-Hilbert part;

SD½C� ¼
Z
d4xe

�
� 1

16
Jb5 ½�2vaRab þ vbRÞ

� 3

16�
Ja5J5a

�
; (5.13)

for the Dirac part; and

SCS½C� ¼
Z
d4xe

�
va
8
La½! � @J;! � @J �!�

þ 1

16
ðJa5vaR� 2Ja5v

bRabÞ

þ 1

64�
va�

abcdJ5d@cJ5b � 1

256�2
ðvaJa5 ÞðJb5J5bÞ

�
;

(5.14)

for the CS part, where La½. . .� stands for a contraction of
derivatives of the axial current with the torsion-free con-
nection. Interestingly, the CS contribution to the Einstein-
Hilbert and Dirac parts of the action identically vanish,
yielding the standard J25 interaction of Riemann-Cartan

theory in the presence of minimally coupled fermions:

SEH½C� þ SD½C� ¼ � 3

2
	G

Z
d4xeJa5J5a: (5.15)

The CS contribution to the action, however, adds new
parity-violating interactions and the full action in
Riemann normal coordinates (!ac

d ¼ 0) reduces to

S½C� ¼
Z
d4xe

�
1

16
ðJa5vaR� 2Ja5v

bRabÞ

� 3

2
	G

�
Ja5J5a �

1

6
�abcdvaJ5d@cJ5b

�

þ 	2G2ðvaJa5 ÞðJb5J5bÞ
�
: (5.16)

CS modified gravity has introduced a new parity-
violating interaction that is not suppressed by Newton’s
gravitation constant and can be in fact enhanced by the CS
velocity. This new interaction [first line in Eq. (5.16)] is a
two-fermion process that couples both to the CS velocity as
well as to the spacetime curvature through the Ricci tensor
and scalar. CS modified gravity also modifies the standard
four-fermion interaction that is common to Riemann-
Cartan theory with minimally coupled Dirac fermions.
The modification consists of the addition of an antisym-
metric product of the current and its derivative [second line
in Eq. (5.16)]. This interaction, however, is suppressed by
one factor of G. Moreover, a new 6-fermion interaction is
produced, but this one is further suppressed by a factor of
G2.

Before concluding, let us discuss one further equation of
motion contained in fermion-extended CS modified grav-
ity. Such an equation arises because the Dirac action has an
additional degree of freedom: the Dirac spinor. Variation of
the action with respect to the Dirac spinor yields the Dirac

equation (in this case, for a massless fermion), namely
�aDa ¼ 0. Splitting the connection into torsion-free
and torsion-full pieces, one can easily show that the
Dirac equation becomes

�aDð!Þ
a  ¼ 1

4e
a
MCa

KL�M�K�L ; (5.17)

where Dð!Þ
a stands for the covariant derivative associated

with the torsion-free connection only.
The Dirac equation can then be thought of as sourcing

the contorsion tensor, and thus, the CS correction. One
could insert the contorsion tensor found in Eq. (5.11) to
find an explicit equation for the relation between the
torsion-free Dirac equation and the fermion and CS torsion
tensor. In essence, this equation implies that the CS effects
will be enhanced in spacetime regions where the momen-
tum of Dirac fermions is large. Several realistic astrophys-
ical scenarios exist where such an enhancement should be
present, but we shall discuss these in the next section.

VI. PHYSICAL IMPLICATIONS

In this section, we comment and theorize on some of the
results found in the previous sections and their consequen-
ces. As we have seen, CS modified gravity can be mapped
to a torsion theory, where the torsion tensor is proportional
to the CS velocity. Torsion then leads to a new and unsup-
pressed interaction term in the Dirac action, which repre-
sents a two-fermion process, mediated by the spacetime
curvature and the CS velocity.
Can such modified fermion interaction be detected in

particle detectors? The four-fermion process is suppressed
by a factor of the gravitational constant, so its detectability
is questionable. The two-fermion interaction, however, is
not suppressed by such a factor and it is precisely where the
main CS correction resides. This interaction does depend
on the Ricci tensor and scalar, which are close to zero in the
neighborhood of the Solar System and might again sup-
press the effect. Nonetheless, such suppression might be
overcome if the CS effect is enhanced by fermion currents.
Are there any realistic physical scenarios where this

enhancement would actually occur? Such scenarios would
require a large fermion current, which in essence implies
large changes in fermion density. Dynamical compact
stars, such as neutron stars and white dwarves, in fact
possess a large fermion density, since they are supported
against gravitational collapse via electron or neutron
degeneracy pressure. Moreover, these systems can be dy-
namical, spinning rapidly, vibrating quasinormally, quak-
ing or accreting mass from a binary companion. Slightly
more hypothetical sources, such as quark or strange stars
[58,59], would lead to even stronger enhancements since
their fermion density is even larger.
Any fermionic compact object that undergoes a violent

change in its multipolar structure will also possess large
number density gradients. A few examples of such events
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are double neutron star or neutron star-black hole binary
mergers and supernovae. In all such systems, one of the
binary components tidally disrupts and then either collides
or is swallowed by the black hole horizon, leading to a
large change in fermion number density. In the cosmologi-
cal context, the big bang event, as well as inflation, also
unavoidingly lead to large fermion currents, where fermi-
ons accelerate violently.

Many of the sources described here are also target
sources for gravitational wave detection [60]. Periodic
sources, such as pulsars, as well as inspiraling compact
binaries of various types, are preferred systems for gravi-
tational wave detection, because these are precisely pro-
duced by a changing multipolar structure. Moreover, the
CS effect is not only enhanced by large fermion currents,
but also for systems whose Riemann tensor becomes large.
We then see that even for binary black hole mergers, where
there are no fermion currents in play, the CS modification
might play an important role. In this sense, the interplay
between gravitational wave detection and CS modified
gravity might be important in the future [18].

The CS modification to GR is naturally enhanced in a
plethora of realistic astrophysical scenarios. All that is
required for such an enhancement is the existence of large
fermion currents, which are inherent in the natural evolu-
tion of fermionic compact objects. We shall not quantify
the enhancement effect further in this paper, since this task
is extremely system dependent, and instead, we relegate it
to future work [61].

VII. CONCLUSION

We have studied CS modified gravity in the tetrad
formalism. We rewrote the CS modified action in terms
of a tetrad and a generalized connection and varied it with
respect to these fields to obtain the modified field equations
and the second structure equation. In doing so, we found
that the torsion-free condition of GR does not hold in CS
modified gravity, where now the torsion tensor is propor-
tional to an antisymmetric product of the Riemann tensor
and derivatives of the scalar field.

We investigated this torsion tensor in the far field of a
weakly gravitating object within the PPN framework. We
found that the torsion tensor is proportional to the contrac-
tion of derivatives of the Newtonian and PPN vector po-
tentials with the Levi-Civita symbol and derivatives of the
CS scalar. This torsion was shown not to vanish for any
nontrivial choice of the CS scalar, thus suggesting that
torsion is unavoidable in CS modified gravity. Such torsion
will generically lead to a modification of the frame-
dragging effect of GR, as well as a change in the precession
of gyroscopes. In this way, this paper provides great mo-
tivation for the study of the effect of generic torsion
theories on Solar System experiments.

We then focused on the addition of fermions to the
modified theory, since these are known to also produce

torsion when minimally coupled to Riemann-Cartan the-
ory. We indeed found that the torsion tensor was now
composed of the CS torsion piece, together with a new
term that depends on the fermion axial current. The torsion
tensor was then used to reconstruct the full connection via
the contorsion, which when inserted into the full action led
to a new and unsuppressed two-fermion interaction.
Although this interaction is not suppressed by the gravita-
tion constant, it does depend on the Ricci tensor and scalar.
This dependence might make its detection with particle
detectors on Earth difficult but might also enhance its
effect in the neighborhood of compact sources.
We then concentrated on the Dirac equation, which was

shown to source the CS torsion tensor. This enhancement
effect depends both on the fermion axial current and de-
rivatives of the Dirac spinors, amplifying all CS effects
when large changes in fermion density are present. We
discussed the astrophysical implications of this enhancing
mechanism and found several interesting sources where
such an effect could be observed. Examples of such
sources include binary neutron star mergers, accreting
neutron stars with their associated supernovae, inflationary
cosmology, and the big bang. Not surprisingly, we found
that the enhancing mechanism seems to be maximized for
the same type of sources preferred by gravitational wave
detection: compact sources with large changes in their
multipolar structure.
Open questions still remain in the context of CS modi-

fied gravity. One such question is that of well posedness as
a boundary value problem. Although this issue has already
been satisfactorily settled in [51] within the second-order
formalism, a similar study in the first-order formalism is
still absent. An analogous story must, of course, exist in
first-order form, and thus, one could construct the first-
order version of any required boundary terms and counter-
terms required by the variational principle to make the
modified theory well posed.
Other future work could concentrate on studying the

enhancing effect further, in connection with some specific
astrophysical scenario. For example, one could study jet
production in rapidly rotating neutron stars or pulsars with
the CS correction. Alternatively, one could numerically
investigate some simplified supernovae models in the pres-
ence of a CS correction.
Another possible avenue of future research could be the

numerical study of nonlinear CS modified gravity. For
example, one could model the merger of binary black holes
in the modified theory to determine how waveforms
change as a function of the CS scalar. Perhaps most inter-
esting is the numerical evolution of the merger of black
hole–neutron star systems, since here both the fermionic
enhancement and the curvature enhancements should be
present. Many of these open questions shall be answered in
the near future, hopefully shedding new light on some of
the mysteries of the low-energy limit of quantum gravity.
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APPENDIX A: BASICS OF THE FIRST-ORDER
FORMALISM

We here review the so-called tetrad postulate following
Carroll [49]. This postulate forces the covariant derivative
of the tetrad to vanish. Let us then begin by considering the
generalized covariant derivative of some vector X:

DX ¼ ðDaX
bÞdxa � @b ¼ ð@aXb þ AbabX

cÞdxa � @b:

(A1)

Let us now rewrite this quantity with internal indices,
namely,

DX ¼ ðDaX
IÞdxa � êI;

¼ ½ebI Xd@aeId þ ebI e
I
d@aX

d þ Aa
I
Je
J
de

b
I X

d�dxa � @b:

(A2)

Comparing both expressions and requiring that they be
equal we find the constraint

Aab
c ¼ ecI@ae

I
b þ eJbe

c
IAa

I
J; (A3)

or equivalently

Aa
I
J ¼ eIcAab

cðeJbÞ�1 � ðeJbÞ�1@ae
I
b: (A4)

Equation (A4) shows clearly the character of the trans-
formation. From these equations, one can trivially derive
that

D ae
I
b ¼ 0: (A5)

Note that this relation was achieved without ever requiring
metric compatibility or torsion freeness. Thus, the tetrad
postulate is an independent requirement that must always
hold and unequivocally leads to the vanishing of the co-
variant derivative of the tetrad.

The tetrad postulate, however, does not necessarily re-
quire metric compatibility. One can easily show that

D agbc ¼ eIbe
J
cDa�IJ; (A6)

which vanishes if and only if the connection is purely
antisymmetric on its internal indices, i.e. AaðIJÞ ¼ 0. We

see then that spacetime metric compatibility is equivalent
to internal metric compatibility. We also clearly see that the
tetrad postulate does not automatically force metric
compatibility.
The generalized connection can be written in terms of

the Christoffel connection and the contorsion tensor. One
can simply show that the metric compatibility requirement
AaðIJÞ ¼ 0 together with the torsion-free condition AðabÞc ¼
0 lead uniquely to Aabc ¼ �abc. When the torsion-free
condition is dropped, this is not the case anymore. In this
case, the generalized connection is a linear superposition of
the Christoffel connection and the so-called contorsion
tensor, which can be constructed as linear superpositions
of the torsion tensor.

APPENDIX B: TORSION AND CONTORSION

In this appendix we review the definition of torsion and
its relation to the contorsion tensor, thus establishing fur-
ther notation. Let us then consider first the torsion-free
case, where the connection is simply given by Aa

IJ ¼
!a

IJ. The tetrad postulate then establishes that the trans-
formation between the spin and the spacetime connection

!a
IKeKb ¼ @ae

I
b þ!ab

�eI�: (B1)

Furthermore, the antisymmetrization of the tetrad postulate
on the spacetime indices yields

@½aeIb� ¼ !a
IKeKb ; (B2)

where !½ab�
� ¼ 0 by the torsion-free condition.

Equation (B2) establishes that the torsion-free spin con-
nection is nothing but the transformed Christoffel
connection.
Let us now consider the torsion-full case, where we split

the full connection Aa
IJ into a torsion-free piece!a

IJ and a
torsion-full part Ca

IJ. We further assume that the torsion-
free piece satisfies the tetrad postulate with respect to the
torsion-free covariant derivative, thus once more rendering
!a

IJ the transformed Christoffel connection. The tetrad
postulate with respect to the full covariant derivative yields
the transformation law for the contorsion

Cab
ceIc ¼ Ca

IKebK: (B3)

Antisymmetrizing the lower two spacetime indices in
Eq. (B3) and using the definition of torsion Tab

c :¼
2A½ab�

c leads to the relation between contorsion and tor-

sion:

Tab
ceIc ¼ 2C½a

IKeb�K: (B4)

The inversion of the torsion-contorsion relation then yields
explicitly Eq. (5.10).
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