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ABSTRACT

This paper provides an overview of the Low Frequency Instrument (LFI) programme within the ESA Planck mission. The LFI instrument has been
developed to produce high precision maps of the microwave sky at frequencies in the range 27−77 GHz, below the peak of the cosmic microwave
background (CMB) radiation spectrum. The scientific goals are described, ranging from fundamental cosmology to Galactic and extragalactic
astrophysics. The instrument design and development are outlined, together with the model philosophy and testing strategy. The instrument is
presented in the context of the Planck mission. The LFI approach to ground and inflight calibration is described. We also describe the LFI ground
segment. We present the results of a number of tests demonstrating the capability of the LFI data processing centre (DPC) to properly reduce
and analyse LFI flight data, from telemetry information to calibrated and cleaned time ordered data, sky maps at each frequency (in temperature
and polarization), component emission maps (CMB and diffuse foregrounds), catalogs for various classes of sources (the Early Release Compact
Source Catalogue and the Final Compact Source Catalogue). The organization of the LFI consortium is briefly presented as well as the role of the
core team in data analysis and scientific exploitation. All tests carried out on the LFI flight model demonstrate the excellent performance of the
instrument and its various subunits. The data analysis pipeline has been tested and its main steps verified. In the first three months after launch,
the commissioning, calibration, performance, and verification phases will be completed, after which Planck will begin its operational life, in which
LFI will have an integral part.

Key words. cosmic microwave background – space vehicles: instruments – instrumentation: detectors – instrumentation: polarimeters –
submillimeter: general – telescopes

1. Introduction

In 1992, the COsmic Background Explorer (COBE) team an-
nounced the discovery of intrinsic temperature fluctuations
in the cosmic microwave background radiation (CMB; see
Appendix A for a list of the acronyms appearing in this pa-
per) on angular scales greater than 7◦ and at a level of a
few tens of μK (Smoot et al. 1992). One year later two
spaceborne CMB experiments were proposed to the European
Space Agency (ESA) in the framework of the Horizon

2000 scientific programme: the COsmic Background Radiation
Anisotropy Satellite (COBRAS; Mandolesi et al. 1994), an ar-
ray of receivers based on high electron mobility transistor
(HEMT) amplifiers; and the SAtellite for Measurement of
Background Anisotropies (SAMBA), an array of detectors based
on bolometers (Tauber et al. 1994). The two proposals were
accepted for an assessment study with the recommendation
to merge. In 1996, ESA selected a combined mission called
COBRAS/SAMBA, subsequently renamed Planck, as the third
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Horizon 2000 medium-sized mission. Today Planck forms part
of the “Horizon 2000” ESA programme.

The Planck CMB anisotropy probe1, the first European
and third generation mission after COBE and WMAP
(Wilkinson Microwave Anisotropy Probe), represents the state-
of-the-art in precision cosmology today (Tauber et al. 2010;
Bersanelli et al. 2010; Lamarre et al. 2010). The Planck payload
(telescope instrument and cooling chain) is a single, highly in-
tegrated spaceborne CMB experiment. Planck is equipped with
a 1.5-m effective aperture telescope with two actively-cooled in-
struments that will scan the sky in nine frequency channels from
30 GHz to 857 GHz: the Low Frequency Instrument (LFI) oper-
ating at 20 K with pseudo-correlation radiometers, and the High
Frequency Instrument (HFI; Lamarre et al. 2010) with bolome-
ters operating at 100 mK. Each instrument has a specific role in
the programme. The present paper describes the principal goals
of LFI, its instrument characteristics and programme. The co-
ordinated use of the two different instrument technologies and
analyses of their output data will allow optimal control and sup-
pression of systematic effects, including discrimination of astro-
physical sources. All the LFI channels and four of the HFI chan-
nels will be sensitive to the linear polarisation of the CMB.
While HFI is more sensitive and should achieve higher angular
resolution, the combination of the two instruments is required to
accurately subtract Galactic emission, thereby allowing a recon-
struction of the primordial CMB anisotropies to high precision.

LFI (see Bersanelli et al. 2010, for more details) consists of
an array of 11 corrugated horns feeding 22 polarisation-sensitive
(see Leahy et al. 2010, for more details) pseudo-correlation ra-
diometers based on HEMT transistors and MMIC technology,
which are actively cooled to 20 K by a new concept sorption
cooler specifically designed to deliver high efficiency, long du-
ration cooling power (Wade et al. 2000; Bhandari et al. 2004;
Morgante et al. 2009). A differential scheme for the radiometers
is adopted in which the signal from the sky is compared with
a stable reference load at ∼4 K (Valenziano et al. 2009). The
radiometers cover three frequency bands centred on 30 GHz,
44 GHz, and 70 GHz. The design of the radiometers was driven
by the need to minimize the introduction of systematic er-
rors and suppress noise fluctuations generated in the amplifiers.
Originally, LFI was to include seventeen 100 GHz horns with
34 high sensitivity radiometers. This system, which could have
granted redundancy and cross-calibration with HFI as well as
a cross-check of systematics, was not implemented.

The design of the horns is optimized to produce beams of the
highest resolution in the sky and the lowest side lobes. Typical
LFI main beams have full width half maximum (FWHM) res-
olutions of about 33′, 27′, and 13′, respectively at 30 GHz,
44 GHz, and 70 GHz, slightly superior to the requirements listed
in Table 1 for the cosmologically oriented 70 GHz channel.
The beams are approximately elliptical with and ellipticity ratio
(i.e., major/minor axis) of�1.15−1.40. The beam profiles will be
measured in-flight by observing planets and strong radio sources
(Burigana et al. 2001).

A summary of the LFI performance requirements adopted to
help develop the instrument design is reported in Table 1.

1 Planck (http://www.esa.int/Planck) is a project of the
European Space Agency – ESA – with instruments provided by two sci-
entific Consortia funded by ESA member states (in particular the lead
countries: France and Italy) with contributions from NASA (USA), and
telescope reflectors provided in a collaboration between ESA and a sci-
entific Consortium led and funded by Denmark.

Table 1. LFI performance requirements.

Frequency channel 30 GHz 44 GHz 70 GHz
InP detector technology MIC MIC MMIC
Angular resolution [arcmin] 33 24 14
δT per 30′ pixel [μK] 8 8 8
δT/T per pixel [μK/K] 2.67 3.67 6.29
Number of radiometers (or feeds) 4 (2) 6 (3) 12 (6)
Effective bandwidth [GHz] 6 8.8 14
System noise temperature [K] 10.7 16.6 29.2
White noise per channel [μK · √s] 116 113 105
Systematic effects [μK] <3 <3 <3

Notes. The average sensitivity per 30′ pixel or per FWHM2 resolution
element (δT and δT/T , respectively) is given in CMB temperature units
(i.e. equivalent thermodynamic temperature) for 14 months of integra-
tion. The white noise (per frequency channel and 1 s of integration) is
given in antenna temperature units. See Tables 2 and 6 for LFI measured
performance.

The constraints on the thermal behaviour, required to min-
imize systematic effects, dictated a Planck cryogenic architec-
ture that is one of the most complicated ever conceived for
space. Moreover, the spacecraft has been designed to exploit the
favourable thermal conditions of the L2 orbit. The thermal sys-
tem is a combination of passive and active cooling: passive ra-
diators are used as thermal shields and pre-cooling stages, while
active cryocoolers are used both for instrument cooling and pre-
cooling. The cryochain consists of the following main subsys-
tems (Collaudin & Passvogel 1999):

– pre-cooling from 300 K to about 50 K by means of passive
radiators in three stages (∼150 K, ∼100 K, ∼50 K), which
are called V-Grooves due to their conical shape;

– cooling to 18 K for LFI and pre-cooling the HFI 4 K cooler
by means of a H2 Joule-Thomson cooler with sorption com-
pressors (the sorption cooler);

– cooling to 4 K to pre-cool the HFI dilution refrigerator
and the LFI reference loads by means of a helium Joule-
Thomson cooler with mechanical compressors;

– cooling of the HFI to 1.6 K and finally 0.1 K with an open
loop 4He–3He dilution refrigerator.

The LFI front end unit is maintained at its operating tem-
perature by the Planck H2 sorption cooler subsystem (SCS),
which is a closed-cycle vibration-free continuous cryocooler de-
signed to provide 1.2 W of cooling power at a temperature of
18 K. Cooling is achieved by hydrogen compression, expansion
through a Joule-Thomson valve and liquid evaporation at the
cold stage. The Planck SCS is the first long-duration system of
its kind to be flown on a space platform. Operations and perfor-
mance are described in more detail in Sect. 3.3 and in Morgante
et al. (2009).

Planck is a spinning satellite. Thus, its receivers will observe
the sky through a sequence of (almost great) circles following a
scanning strategy (SS) aimed at minimizing systematic effects
and achieving all-sky coverage for all receivers. Several parame-
ters are relevant to the SS. The main one is the angle, α, between
the spacecraft spin axis and the telescope optical axis. Given the
extension of the focal plane unit, each beam centre points to its
specific angle, αr. The angle α is set to be 85◦ to achieve a nearly
all-sky coverage even in the so-called nominal SS in which the
spacecraft spin axis is kept always exactly along the antiso-
lar direction. This choice avoids the “degenerate” case αr =
90◦, characterized by a concentration of the crossings of scan
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circles only at the ecliptic poles and the consequent degradation
of the quality of destriping and map-making codes (Burigana
et al. 1997; Maino et al. 1999; Wright et al. 1996; Janssen &
Gulkis 1992). Since the Planck mission is designed to mini-
mize straylight contamination from the Sun, Earth, and Moon
(Burigana et al. 2001; Sandri et al. 2010), it is possible to in-
troduce modulations of the spin axis from the ecliptic plane
to maximize the sky coverage, keeping the solar aspect angle
of the spacecraft constant for thermal stability. This drives us
towards the adopted baseline SS2 (Maris et al. 2006a). Thus,
the baseline SS adopts a cycloidal modulation of the spin axis,
i.e. a precession around a nominal antisolar direction with a
semiamplitude cone of 7.5◦. In this way, all Planck receivers will
cover the whole sky. A cycloidal modulation with a 6-month pe-
riod satisfies the mission operational constraints, while avoiding
sharp gradients in the pixel hit count (Dupac & Tauber 2005).
Furthermore, this solution allows one to spread the crossings
of scan circles across a wide region that is beneficial to map-
making, particularly for polarisation (Ashdown et al. 2007). The
last three SS parameters are: the sense of precession (clockwise
or anticlockwise); the initial spin axis phase along the precession
cone; and, finally, the spacing between two consecutive spin axis
repointings, chosen to be 2′ to achieve four all-sky surveys with
the available guaranteed number of spin axis manoeuvres.

Fifteen months of integration have been guaranteed since the
approval of the mission. This will allow us to complete at least
two all-sky surveys using all the receivers. The mission lifetime
is going to be formally approved for an extension of 12 months,
which will allow us to perform more than 4 complete sky sur-
veys.

LFI is the result of an active collaboration between about a
hundred universities and research centres, in Europe, Canada,
and USA, organized by the LFI consortium (supported by more
than 300 scientists) funded by national research and space
agencies. The principal investigator leads a team of 26 co-
Investigators responsible for the development of the instrument
hardware and software. The hardware was developed under the
supervision of an instrument team. The data analysis and its sci-
entific exploitation are mostly carried out by a core team, work-
ing in close connection with the data processing centre (DPC).
The LFI core team is a diverse group of relevant scientists (cur-
rently ∼140) with the required expertise in instrument, data anal-
ysis, and theory to deliver to the wider Planck community the
main mission data products. The core cosmology programme of
Planck will be performed by the LFI and HFI core teams. The
core team is closely linked to the wider Planck scientific com-
munity, consisting, besides the LFI consortium, of the HFI and
Telescope consortia, which are organized into various working
groups. Planck is managed by the ESA Planck science team.

The paper is organized as follows. In Sect. 2, we describe the
LFI cosmological and astrophysical objectives and LFI’s role in
the overall mission. We compare the LFI and WMAP sensitivi-
ties with the CMB angular power spectrum (APS) in similar fre-
quency bands, and discuss the cosmological improvement from
WMAP represented by LFI alone and in combination with HFI.
Section 3 describes the LFI optics, radiometers, and sorption
cooler set-up and performance. The LFI programme is set forth
in Sect. 4. The LFI DPC organisation is presented in Sect. 6,
following a report on the LFI tests and verifications in Sect. 5.
Our conclusions are presented in Sect. 7.

2 The above nominal SS is kept as a backup solution in case of a possi-
ble verification in-flight of unexpected problems with the Planck optics.

2. Cosmology and astrophysics with LFI
and Planck

Planck is the third generation space mission for CMB
anisotropies that will open a new era in our understanding of the
Universe (The Planck Collaboration 2006). It will measure cos-
mological parameters with a much greater level of accuracy and
precision than all previous efforts. Furthermore, Planck’s high
resolution all-sky survey, the first ever over this frequency range,
will provide a legacy to the astrophysical community for years
to come.

2.1. Cosmology

The LFI instrument will play a crucial role for cosmology.
Its LFI 70 GHz channel is in a frequency window remarkably
clear from foreground emission, making it particularly advan-
tageous for observing both CMB temperature and polarisation.
The two lower frequency channels at 30 GHz and 44 GHz will
accurately monitor Galactic and extra-Galactic foreground emis-
sions (see Sect. 2.2), whose removal (see Sect. 2.3) is critical
for a successful mission. This aspect is of key importance for
CMB polarisation measurements since Galactic emission domi-
nates the polarised sky.

The full exploitation of the cosmological information con-
tained in the CMB maps will be largely based on the joint anal-
ysis of LFI and HFI data. While a complete discussion of this
aspect is beyond the scope of this paper, in the next few subsec-
tions we discuss some topics of particular relevance to LFI or a
combined analysis of LFI and HFI data. In Sect. 2.1.1, we re-
view the LFI sensitivity to the APS on the basis of the realistic
LFI sensitivity (see Table 6) and resolution (see Table 2) derived
from extensive tests. This instrument description is adopted in
Sect. 2.1.2 to estimate the LFI accuracy of the extraction of a
representative set of cosmological parameters, alone and in com-
bination with HFI. Section 2.1.3 addresses the problem of the
detection of primordial non-Gaussianity, a topic of particular in-
terest to the LFI consortium, which will require the combina-
tion of LFI and HFI, because of the necessity to clean the fore-
ground. On large angular scales, WMAP exhibits a minimum in
the foreground signal in the V band (61 GHz, frequency range
53−69 GHz), thus we expect that the LFI 70 GHz channel will
be particularly helpful for investigating the CMB pattern on large
scales, a topic discussed in Sect. 2.1.4.

It is important to realise that these are just a few examples
of what Planck is capable of. The increased sensitivity, fidelity
and frequency range of the maps, plus the dramatic improvement
in polarisation capability will allow a wide discovery space. As
well as measuring parameters, there will be tests of inflationary
models, consistency tests for dark energy models, and signifi-
cant new secondary science probes from correlations with other
data-sets.

2.1.1. Sensitivity to CMB angular power spectra

The statistical information encoded in CMB anisotropies, in both
temperature and polarisation, can be analyzed in terms of a
“compressed” estimator, the APS, C� (see e.g., Scott & Smoot
2008). Provided that the CMB anisotropies obey Gaussian statis-
tics, as predicted in a wide class of models, the set of C�s
contains most of the relevant statistical information. The qual-
ity of the recovered power spectrum is a good predictor of
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Fig. 1. CMB temperature anisotropy power spectrum (black solid line)
compatible with WMAP data is compared to WMAP (Ka band) and LFI
(30 GHz) sensitivity, assuming subtraction of the noise expectation, for
different integration times as reported in the figure. Two Planck surveys
correspond to about one year of observations. The plot shows separately
the cosmic variance (black three dot-dashes) and the instrumental noise
(red and green lines for WMAP and LFI, respectively) assuming a mul-
tipole binning of 5%. This binning allows us to improve the sensitivity
of the power spectrum estimation. For example, around � = 1000 (100)
this implies averaging the APS over 50 (5) multipoles. Regarding sam-
pling variance, an all-sky survey is assumed here for simplicity. The use
of the camb code is acknowledged (see footnote 3).

the efficiency of extracting cosmological parameters by com-
paring the theoretical predictions of Boltzmann codes3. Strictly
speaking, this task must be carried out using likelihood analy-
ses (see Sect. 2.3). Neglecting systematic effects (and correlated
noise), the sensitivity of a CMB anisotropy experiment to C�,
at each multipole �, is summarized by the equation (Knox 1995)

δC�
C�
�
√

2
fsky(2� + 1)

[
1 +

Aσ2

NC�W�

]
, (1)

where A is the size of the surveyed area, fsky = A/4π, σ is the
rms noise per pixel, N is the total number of observed pixels,
and W� is the beam window function. For a symmetric Gaussian
beam, W� = exp(−�(� + 1)σ2

B), where σB = FWHM/
√

8ln2
defines the beam resolution.

Even in the limit of an experiment of infinite sensitivity
(σ = 0), the accuracy in the power spectrum is limited by so-
called cosmic and sampling variance, reducing to pure cosmic
variance in the case of all-sky coverage. This dominates at low �
because of the relatively small number of available modes m per
multipole in the spherical harmonic expansion of a sky map. The
multifrequency maps that will be obtained with Planck will al-
low one to improve the foreground subtraction and maximize
the effective sky area used in the analysis, thus improving our
understanding of the CMB power spectrum obtained from pre-
vious experiments. However, the main benefits of the improved
foreground subtraction will be in terms of polarisation and non-
Gaussianity tests.

3 http://camb.info/

Fig. 2. As in Fig. 1 but for the sensitivity of WMAP in V band and LFI
at 70 GHz.

Figures 1 and 2 compare WMAP4 and LFI5 sensitivity
to the CMB temperature C� at two similar frequency bands,
displaying separately the uncertainty originating in cosmic vari-
ance and instrumental performance and considering different
project lifetimes. For ease of comparison, we consider the same
multipole binning (in both cosmic variance and instrumental
sensitivity). The figures show how the multipole region where
cosmic variance dominates over instrumental sensitivity moves
to higher multipoles in the case of LFI and that the LFI 70 GHz
channel allows us to extract information about an additional
acoustic peak and two additional throats with respect to those
achievable with the corresponding WMAP V band.

As well as the temperature APS, LFI can measure polarisa-
tion anisotropies (Leahy et al. 2010). A somewhat similar com-
parison is shown in Figs. 3 and 4 but for the “E” and “B” po-
larisation modes, considering in this case only the longest mis-
sion lifetimes (9 yrs for WMAP, 4 surveys for Planck) reported
in previous figures and a larger multipole binning (which im-
plies an increase in the signal-to-noise ratio compared to pre-
vious figures). Clearly, foreground is more important for mea-
surements of polarisation than for measurements of temperature.
In the WMAP V band and the LFI 70 GHz channels, the po-
larised foreground is minimal (at least considering a very large
fraction of the sky and for the range of multipoles already ex-
plored by WMAP). Thus, we consider these optimal frequen-
cies to represent the potential uncertainty expected from po-
larised foregrounds. The Galactic foreground dominates over the
CMB B mode and also the CMB E mode by up to multipoles of
several tens. However, foreground subtraction at an accuracy of
5−10% of the map level is enough to reduce residual Galactic
contamination to well below both the CMB E mode and the
CMB B mode for a wide range of multipoles for r = T/S � 0.3
(here r is defined in Fourier space). If we are able to model
Galactic polarised foregrounds with an accuracy at the several
percent level, then, for the LFI 70 GHz channel the main limi-
tation will come from instrumental noise. This will prevent an
accurate E mode evaluation at � ∼ 7−20, or a B mode detection
for r <∼ 0.3. Clearly, a more accurate recovery of the polarisa-
tion modes will be possible from the exploitation of the Planck
data at all frequencies. In this context, LFI data will be crucial

4 http://lambda.gsfc.nasa.gov/
5 In this comparison, we exploit realistic LFI optical and instrumental
performance as described in the following sections.

Page 4 of 24

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912837&pdf_id=1
http://camb.info/
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912837&pdf_id=2
http://lambda.gsfc.nasa.gov/


N. Mandolesi et al.: The Planck-LFI programme

Fig. 3. CMB E polarisation modes (black long dashes) compatible with
WMAP data and CMB B polarisation modes (black solid lines) for dif-
ferent tensor-to-scalar ratios of primordial perturbations (r ≡ T/S =
1, 0.3, 0.1, at increasing thickness) are compared to WMAP (Ka band,
9 years of observations) and LFI (30 GHz, 4 surveys) sensitivity to the
power spectrum, assuming the noise expectation has been subtracted.
The plots include cosmic and sampling variance plus instrumental noise
(green dots for B modes, green long dashes for E modes, labeled with
cv+sv+n; black thick dots, noise only) assuming a multipole binning of
30% (see caption of Fig. 1 for the meaning of binning and of the number
of sky surveys). Note that the cosmic and sampling (74% sky coverage;
as in WMAP polarization analysis, we exclude the sky regions mostly
affected by Galactic emission) variance implies a dependence of the
overall sensitivity at low multipoles on r (again the green lines refer to
r = 1, 0.3, 0.1, from top to bottom), which is relevant to the parameter
estimation; instrumental noise only determines the capability of detect-
ing the B mode. The B mode induced by lensing (blue dots) is also
shown for comparison.

to model more accurately the polarised synchrotron emission,
which needs to be removed to greater than the few percent level
to detect primordial B modes for r <∼ 0.1 (Efstathiou & Gratton
2009).

2.1.2. Cosmological parameters

Given the improvement relative to WMAP C� achievable with
the higher sensitivity and resolution of Planck (as discussed in
the previous section for LFI), correspondingly superior determi-
nation of cosmological parameters is expected. Of course, the
better sensitivity and angular resolution of HFI channels com-
pared to WMAP and LFI ones will highly contribute to the im-
provement in cosmological parameters measured using Planck.

We present here the comparison between determinations of a
suitable set of cosmological parameters using data from WMAP,
Planck, and Planck-LFI alone.

In Fig. 5 we compare the forecasts for 1σ and 2σ con-
tours for 4 cosmological parameters of the WMAP5 best-
fit ΛCDM cosmological model: the baryon density; the cold
dark matter (CDM) density; reionization, parametrized by the
Thomson optical depth τ; and the slope of the initial power
spectrum. These results show the expectation for the Planck
LFI 70 GHz channel alone after 14 months of observations (red
lines), the Planck combined 70 GHz, 100 GHz, and 143 GHz
channels for the same integration time (blue lines), and the
WMAP five year observations (black lines). We assumed that
the 70 GHz channels and the 100 GHz and 143 GHz are
the representative channels for LFI and HFI (we note that for

Fig. 4. As in Fig. 3 but for the sensitivity of WMAP in V band and LFI
at 70 GHz, and including also the comparison with Galactic and ex-
tragalactic polarised foregrounds. Galactic synchrotron (purple dashes)
and dust (purple dot-dashes) polarised emissions produce the overall
Galactic foreground (purple three dot-dashes). WMAP 3-yr power-law
fits for uncorrelated dust and synchrotron have been used. For compar-
ison, WMAP 3-yr results derived directly from the foreground maps
using the HEALPix package (Górski et al. 2005) are shown over a suit-
able multipole range: power-law fits provide (generous) upper limits to
the power at low multipoles. Residual contamination levels by Galactic
foregrounds (purple three dot-dashes) are shown for 10%, 5%, and 3%
of the map level, at increasing thickness. The residual contribution of
unsubtracted extragalactic sources, Cres,PS

� , and the corresponding uncer-
tainty, δCres,PS

� , are also plotted as thick and thin green dashes. These are
computed assuming a relative uncertainty δΠ/Π = δS lim/S lim = 10%
in the knowledge of their degree of polarisation and the determination
of the source detection threshold. We assumed the same sky coverage
as in Fig. 3. Clearly, foreground contamination is lower at 70 GHz than
at 30 GHz, but, since CMB maps will be produced from a component
separation layer (see Sects. 2.3 and 6.3) we considered the same sky
region.

HFI we have used angular resolution and sensitivities as given
in Table 1.3 of the Planck scientific programme prepared by
The Planck Collaboration 2006), for cosmological purposes, re-
spectively, and we assumed a coverage of ∼70% of the sky.
Figure 5 shows that HFI 100 GHz and 143 GHz channels are
crucial for obtaining the most accurate cosmological parameter
determination.

While we have not explicitly considered the other channels
of LFI (30 GHz and 44 GHz) and HFI (at frequencies≥217 GHz)
we note that they are essential for achieving the accurate separa-
tion of the CMB from astrophysical emissions, particularly for
polarisation.

The improvement in cosmological parameter precision for
LFI (2 surveys) compared to WMAP5 (Dunkley et al. 2009;
Komatsu et al. 2009) is clear from Fig. 5. This is maximized
for the dark matter abundanceΩc because of the performance of
the LFI 70 GHz channel with respect to WMAP5. From Fig. 5 it
is clear that the expected improvement for Planck in cosmolog-
ical parameter determination compared to that of WMAP5 can
open a new phase in our understanding of cosmology.

2.1.3. Primordial non-Gaussianity

Simple cosmological models assume Gaussian statistics for the
anisotropies. However, important information may come from
mild deviations from Gaussianity (see e.g., Bartolo et al. 2004,
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Fig. 5. Forecasts of 1σ and 2σ contours for the cosmological parameters
of the WMAP5 best-fit ΛCDM cosmological model with reionization,
as expected from Planck (blue lines) and from LFI alone (red lines)
after 14 months of observations. The black contours are those obtained
from WMAP five year observations. See the text for more details.

for a review). Planck total intensity and polarisation data will ei-
ther provide the first true measurement of non-Gaussianity (NG)
in the primordial curvature perturbations, or tighten the existing
constraints (based on WMAP data, see footnote 3) by almost an
order of magnitude.

Probing primordial NG is another activity that requires fore-
ground cleaned maps. Hence, the full frequency maps of both
instruments must be used for this purpose.

It is very important that the primordial NG is model depen-
dent. As a consequence of the assumed flatness of the inflaton
potential, any intrinsic NG generated during standard single-
field slow-roll inflation is generally small, hence adiabatic per-
turbations originated by quantum fluctuations of the inflaton
field during standard inflation are nearly Gaussian distributed.
Despite the simplicity of the inflationary paradigm, however, the
mechanism by which perturbations are generated has not yet
been fully established and various alternatives to the standard
scenario have been considered. Non-standard scenarios for the
generation of primordial perturbations in single-field or multi-
field inflation indeed permit higher NG levels. Alternative sce-
narios for the generation of the cosmological perturbations, such
as the so-called curvaton, the inhomogeneous reheating, and
DBI scenarios (Alishahiha et al. 2004), are characterized by a
typically high NG level. For this reason, detecting or even just
constraining primordial NG signals in the CMB is one of the
most promising ways to shed light on the physics of the early
Universe.

The standard way to parameterize primordial non-
Gaussianity involves the parameter fNL, which is typically
small. A positive detection of fNL ∼ 10 would imply that all
standard single-field slow-roll models of inflation are ruled
out. In contrast, an improvement to the limits on the amplitude
of fNL will allow one to strongly reduce the class of non-
standard inflationary models allowed by the data, thus providing

unique insight into the fluctuation generation mechanism. At
the same time, Planck temperature and polarisation data will
allow different predictions of the shape of non-Gaussianities
to be tested beyond the simple fNL parameterization. For
simple, quadratic non-Gaussianity of constant fNL, the angular
bispectrum is dominated by “squeezed” triangle configurations
with �1 
 �2, �3. This “local” NG is typical of models that
produce the perturbations immediately after inflation (such as
for the curvaton or the inhomogeneous reheating scenarios).
So-called DBI inflation models, based on non-canonical kinetic
terms for the inflaton, lead to non-local forms of NG, which are
dominated by equilateral triangle configurations. It has been
pointed out (Holman & Tolley 2008) that excited initial states of
the inflaton may lead to a third shape, called “flattened” triangle
configuration.

The strongest available CMB limits on fNL for local NG
comes from WMAP5. In particular, Smith et al. (2009) obtained
−4 < fNL < 80 at 95% confidence level (C.L.) using the optimal
estimator of local NG. Planck total intensity and polarisation
data will allow the window on | fNL| to be reduced below ∼10.
Babich & Zaldarriaga (2004) and Yadav et al. (2007) demon-
strated that a sensitivity to local non-Gaussianity Δ fNL ≈ 4
(at 1σ) is achievable with Planck. We note that accurate mea-
surement of E-type polarisation will play a significant role in
this constraint. Note also that the limits that Planck can achieve
in this case are very close to those of an “ideal” experiment.
Equilateral-shape NG is less strongly constrained at present,
with −125 < fNL < 435 at 95% C.L. (Senatore et al. 2010).
In this case, Planck will also have a strong impact on this con-
straint. Various authors (Bartolo & Riotto 2009) have estimated
that Planck data will allow us to reduce the bound on | fNL| to
around 70.

Measuring the primordial non-Gaussianity in CMB data to
these levels of precision requires accurate handling of possible
contaminants, such as those introduced by instrumental noise
and systematics, by the use of masks and imperfect foreground
and point source removal.

2.1.4. Large-scale anomalies

Observations of CMB anisotropies contributed significantly to
the development of the standard cosmological model, also
known as the ΛCDM concordance model. This involves a set of
basic quantities for which CMB observations and other cosmo-
logical and astrophysical data-sets agree: spatial curvature close
to zero; �70% of the cosmic density in the form of dark energy;
�20% in CDM; 4−5% in baryonic matter; and a nearly scale-
invariant adiabatic, Gaussian primordial perturbations. Although
the CMB anisotropy pattern obtained by WMAP is largely con-
sistent with the concordanceΛCDM model, there are some inter-
esting and curious deviations from it, in particular on the largest
angular scales. Probing these deviations has required careful
analysis procedures and so far are at only modest levels of sig-
nificance. The anomalies can be listed as follows:

– Lack of power on large scales. The angular correlation func-
tion is found to be uncorrelated (i.e., consistent with zero)
for angles larger than 60◦. In Copi et al. (2007, 2009), it was
shown that this event happens in only 0.03% of realizations
of the concordance model. This is related to the surpris-
ingly low amplitude of the quadrupole term of the angu-
lar power spectrum already found by COBE (Smoot et al.
1992; Hinshaw et al. 1996), and now confirmed by WMAP
(Dunkley et al. 2009; Komatsu et al. 2009).
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– Hemispherical asymmetries. It is found that the power com-
ing separately from the two hemispheres (defined by the
ecliptic plane) is quite asymmetric, especially at low �
(Eriksen et al. 2004a,b; Hansen et al. 2004).

– Unlikely alignments of low multipoles. An unlikely (for
a statistically isotropic random field) alignment of the
quadrupole and the octupole (Tegmark et al. 2003; Copi
et al. 2004; Schwarz et al. 2004; Land & Magueijo 2005).
Both quadrupole and octupole align with the CMB dipole
(Copi et al. 2007). Other unlikely alignments are described
in Abramo et al. (2006), Wiaux et al. (2006) and Vielva et al.
(2007).

– Cold Spot. Vielva et al. (2004) detected a localized non-
Gaussian behaviour in the southern hemisphere using a
wavelet analysis technique (see also Cruz et al. 2005).

It is still unknown whether these anomalies are indicative of new
(and fundamental) physics beyond the concordance model or
whether they are simply the residuals of imperfectly removed
astrophysical foreground or systematic effects. Planck data will
provide a valuable contribution, not only in refining the cosmo-
logical parameters of the standard cosmological model but also
in solving the aforementioned puzzles, because of the superior
foreground removal and control of systematic effects, as well as
Planck’s different scan strategy and wider frequency range com-
pared with WMAP. In particular, the LFI 70 GHz channel will
be crucial, since, as shown by WMAP, the foreground on large
angular scales reaches a minimum in the V band.

2.2. Astrophysics

The accuracy of the extraction of the CMB anisotropy pattern
from Planck maps largely relies, particularly for polarisation, on
the quality of the separation of the background signal of cos-
mological origin from the various foreground sources of astro-
physical origin that are superimposed on the maps (see also
Sect. 2.3). The scientific case for Planck was presented by
The Planck Collaboration (2006) and foresees the full exploita-
tion of the multifrequency data. This is aimed not only at the ex-
traction of the CMB, but also at the separation and study of each
astrophysical component, using Planck data alone or in combi-
nation with other data-sets. This section provides an update of
the scientific case, with particular emphasis on the contribution
of the LFI to the science goals.

2.2.1. Galactic astrophysics

Planck will carry out an all-sky survey of the fluctuations in
Galactic emission at its nine frequency bands. The HFI channels
at ν ≥ 100 GHz will provide the main improvement with re-
spect to COBE characterizing the large-scale Galactic dust emis-
sion6, which is still poorly known, particularly in polarisation.
However, since Galactic dust emission still dominates over free-
free and synchrotron at 70 GHz (see e.g. Gold et al. 2009, and
references therein), LFI will provide crucial information about
the low frequency tail of this component. The LFI frequency
channels, in particular those at 30 GHz and 44 GHz, will be
relevant to the study of the diffuse, significantly polarised syn-
chrotron emission and the almost unpolarised free-free emission.

6 At far-IR frequencies significantly higher than those cov-
ered by Planck, much information comes from IRAS (see e.g.,
Miville-Deschênes & Lagache 2005, for a recent version of the maps).

Results from WMAP’s lowest frequency channels in-
ferred an additional contribution, probably correlated with
dust (see Dobler et al. 2009, and references therein). While
a model with complex synchrotron emission pattern and
spectral index cannot be excluded, several interpretations of mi-
crowave (see e.g. Hildebrandt et al. 2007; Bonaldi et al. 2007)
and radio (La Porta et al. 2008) data, and in particular the
ARCADE 2 results (Kogut et al. 2009), seem to support the
identification of this anomalous component as spinning dust
(Draine & Lazarian 1998; Lazarian & Finkbeiner 2003).
LFI data, at 30 GHz in particular, will shed new light on this
intriguing question.

Another interesting component that will be studied by
Planck data is the so-called “haze” emission in the inner Galactic
region, possibly generated by synchrotron emission from rela-
tivistic electrons and positrons produced in the annihilations of
dark matter particles (see e.g., Hooper et al. 2007; Cumberbatch
et al. 2009; Hooper et al. 2008, and references therein).

Furthermore, the full interpretation of the Galactic dif-
fuse emissions in Planck maps will benefit from a joint anal-
ysis with both radio and far-IR data. For instance, PILOT
(Bernard et al. 2007) will improve on Archeops results (Ponthieu
et al. 2005), measuring polarised dust emission at frequencies
higher than 353 GHz, and BLAST-Pol (Marsden et al. 2008) at
even higher frequencies. All-sky surveys at 1.4 GHz (see e.g.,
Burigana et al. 2006, and references therein) and in the range
of a few GHz to 15 GHz will complement the low frequency
side (see e.g., PGMS, Haverkorn et al. 2007; C-BASS, Pearson
& C-BASS collaboration 2007; QUIJOTE, Rubino-Martin et al.
2008; and GEM, Barbosa et al. 2006) allowing an accurate mul-
tifrequency analysis of the depolarisation phenomena at low and
intermediate Galactic latitudes. Detailed knowledge of the un-
derlying noise properties in Planck maps will allow one to mea-
sure the correlation characteristics of the diffuse component,
greatly improving physical models of the interstellar medium
(ISM). The ultimate goal of these studies is the development of a
consistent Galactic 3D model, which includes the various com-
ponents of the ISM, and large and small scale magnetic fields
(see e.g., Waelkens et al. 2009), and turbulence phenomena (Cho
& Lazarian 2003).

While having moderate resolution and being limited in flux
to a few hundred mJy, Planck will also provide multifrequency,
all-sky information about discrete Galactic sources. This will in-
clude objects from the early stages of massive stars to the late
stages of stellar evolution (Umana et al. 2006), from HII regions
to dust clouds (Pelkonen et al. 2007). Models for both the en-
richment of the ISM and the interplay between stellar formation
and ambient physical properties will be also tested.

Planck will also have a chance to observe some Galactic
micro-blazars (such as e.g., Cygnus X-3) in a flare phase and per-
form multifrequency monitoring of these events on timescales
from hours to weeks. A quick detection software (QDS) system
was developed by a Finnish group in collaboration with LFI DPC
(Aatrokoski et al. 2010). This will be used to identify of source
flux variation, in Planck time ordered data.

Finally, Planck will provide unique information for mod-
elling the emission from moving objects and diffuse interplan-
etary dust in the Solar System. The mm and sub-mm emis-
sion from planets and up to 100 asteroids will also be studied
(Cremonese et al. 2002; Maris & Burigana 2009). The zodiacal
light emission will also be measured to great accuracy, free from
residual Galactic contamination (Maris et al. 2006b).
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Fig. 6. Integral counts of different radio source populations at 70 GHz,
predicted by the de Zotti et al. (2005) model: flat-spectrum radio
quasars; BL Lac objects; and steep-spectrum sources. The vertical dot-
ted lines show the estimated completeness limits for Planck and WMAP
(61 GHz) surveys.

2.2.2. Extragalactic astrophysics

The higher sensitivity and angular resolution of LFI compared
to WMAP will allow us to obtain substantially richer samples
of extragalactic sources at mm wavelengths. Applying a new
multi-frequency linear filtering technique to realistic LFI sim-
ulations of the sky, Herranz et al. (2009) detected 1600, 1550,
and 1000 sources with 95% reliability at 30, 44, and 70 GHz,
respectively, over about 85% of the sky. The 95% complete-
ness fluxes are 540, 340, and 270 mJy at 30, 44, and 70 GHz,
respectively. For comparison, the total number of |b| >
5◦ sources detected by Massardi et al. (2009) at ≥5σ in
WMAP5 maps at 33, 41, and 61 GHz (including several pos-
sibly spurious objects), are 307, 301, and 161, respectively; the
corresponding detection limits increase from �1 Jy at 23 GHz,
to �2 Jy at 61 GHz. The number of detections reported by
Wright et al. (2009) is lower by about 20%.

As illustrated in Fig. 6, the far larger source sample expected
from Planck will allow us to obtain good statistics for differ-
ent subpopulations of sources, some of which are not (or only
poorly) represented in the WMAP sample. The dominant ra-
dio population at LFI frequencies consists of flat-spectrum radio
quasars, for which LFI will provide a bright sample of≥1000 ob-
jects, well suited to cover the parameter space of current phys-
ical models. Interestingly, the expected numbers of blazars and
BL Lac objects detectable by LFI are similar to those expected
from the Fermi Gamma-ray Space Telescope (formerly GLAST;
Abdo 2009; Atwood et al. 2009). It is likely that the LFI and
the Fermi blazar samples will have a substantial overlap, mak-
ing it possible to more carefully define the relationships between
radio and gamma-ray properties of these sources than has been
possible so far. The analysis of spectral properties of the ATCA
20 GHz bright sample indicates that quite a few high-frequency
selected sources have peaked spectra; most of them are likely to
be relatively old, beamed objects (blazars), whose radio emis-
sion is dominated by a single knot in the jet caught in a flaring
phase. The Planck sample will allow us to obtain key informa-
tion about the incidence and timescales of these flaring episodes,
the distribution of their peak frequencies, and therefore the prop-
agation of the flare along the jet. A small fraction of sources
exhibiting high frequency peaks may be extreme high frequency

peakers (Dallacasa et al. 2000), understood to be newly born ra-
dio sources (ages as low as thousand years). Obviously, the dis-
covery of just a few of these sources would be extremely impor-
tant for sheding light on the poorly understood mechanisms that
trigger the radio activity of Galactic cores.

WMAP has detected polarised fluxes at ≥4σ in two or more
bands for only five extragalactic sources (Wright et al. 2009).
LFI will substantially improve on this, providing polarisation
measurements for tens of sources, thus allowing us to obtain
the first statistically meaningful unbiased sample for polarisation
studies at mm wavelengths. It should be noted that Planck po-
larisation measurements will not be confusion-limited, as in the
case of total flux, but noise-limited. Thus the detection limit for
polarised flux in Planck-LFI channels will be �200−300 mJy,
i.e., lower than for the total flux.

As mentioned above, the astrophysics programme of Planck
is much wider than that achievable with LFI alone, both because
the specific role of HFI and, in particular, the great scientific
synergy between the two instruments. One noteworthy example
is the Planck contribution to the astrophysics of clusters. Planck
will detect ≈103 galaxy clusters out to redshifts of order unity by
means of their thermal Sunyaev-Zel’dovich effect (Leach et al.
2008; Bartlett et al. 2008). This sample will be extremely impor-
tant for understanding both the formation of large-scale struc-
ture and the physics of the intracluster medium. To perform
these measurements, a broad spectral coverage, i.e., the com-
bination of data from both Planck instruments (LFI and HFI), is
a key asset. This combination, supplemented by ground-based,
follow-up observations planned by the Planck team, will allow,
in particular, accurate correction for the contamination by radio
sources (mostly due to the high quality of the LFI channels) and
dusty galaxies (HFI channels), either associated with the clusters
or in their foreground/background (Lin et al. 2009).

2.3. Scientific data analysis

The data analysis process for a high precision experiment such as
LFI must be capable of reducing the data volume by several or-
ders of magnitude with minimal loss of information. The sheer-
ing size of the data set, the high sensitivity required to achieve
the science goals, and the significance of the statistical and sys-
tematic sources of error all conspire to make data analysis a far
from trivial task.

The map-making layer provides a lossless compression by
several orders of magnitude, projecting the data set from the
time domain to the discretized celestial sphere (Janssen & Gulkis
1992; Lineweaver et al. 1994; Wright et al. 1996; Tegmark
1997). Furthermore, timeline-specific instrumental effects that
are not scan-synchronous are reduced in magnitude when pro-
jected from time to pixel space (see e.g., Mennella et al. 2002)
and, in general, the analysis of maps provides a more convenient
means of assessing the level of systematics compared to timeline
analysis.

Several map-making algorithms have been proposed to pro-
duce sky maps in total intensity (Stokes I) and linear polarisation
(Stokes Q and U) from the LFI timelines. So-called “destriping”
algorithms have historically first been applied. These take ad-
vantage of the details of the Planck scanning strategy to suppress
correlated noise (Maino et al. 1999). Although computationally
efficient, these methods do not, in general, yield a minimum
variance map. To overcome this problem, minimum-variance
map-making algorithms have been devised and implemented
specifically for LFI (Natoli et al. 2001; de Gasperis et al. 2005).
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The latter are also known as generalized least squares (GLS)
methods and are accurate and flexible. Their drawback is that,
at the size of the Planck data set, they require a signifi-
cant amount of massively powered computational resources
(Poutanen et al. 2006; Ashdown et al. 2007, 2009) and are thus
infeasible to use within a Monte Carlo context. To overcome
the limitations of GLS algorithms, the LFI community has de-
veloped so-called “hybrid” algorithms (Keihänen et al. 2005;
Kurki-Suonio et al. 2009; Keihänen et al. 2010). These algo-
rithms rely on a tunable parameter connected to the 1/ f knee
frequency, a measure of the amount of low frequency corre-
lated noise in the time-ordered data: the higher the knee fre-
quency, the shorter the “baseline” length needed to be chosen to
properly suppress the 1/ f contribution. From this point of view,
the GLS solution can be thought of as the limiting case when
the baseline length approaches the sampling interval. Provided
that the knee frequency is not too high, hybrid algorithms can
achieve GLS accuracy at a fraction of the computational de-
mand. Furthermore, they can be tuned to the desired precision
when speed is an issue (e.g., for timeline-to-map Monte Carlo
production). The baseline map-making algorithms for LFI is a
hybrid code dubbed madam.

Map-making algorithms can, in general, compute the corre-
lation (inverse covariance) matrix of the map estimate that they
produce (Keskitalo et al. 2010). At high resolution this compu-
tation, though feasible, is impractical, because the size of the
matrix makes its handling and inversion prohibitively difficult.
At low resolution, the covariance matrix will be produced in-
stead: this is of extreme importance for the accurate characteri-
zation of the low multipoles of the CMB (Keskitalo et al. 2010;
Gruppuso et al. 2009).

A key tier of Planck data analysis is the separation of as-
trophysical from cosmological components. A variety of meth-
ods have been developed to this end (e.g., Leach et al. 2008).
Point source extraction is achieved by exploiting non-Planck cat-
alogues, as well as filtering Planck maps with optimal functions
(wavelets) capable of recognizing beam-like patterns. In addition
to linearly combining the maps or fitting for known templates,
diffuse emissions are separated by using the statistical distribu-
tions of the different components, assuming independence be-
tween them, or by means of a suitable parametrization and fit-
ting of foreground unknowns on the basis of spatial correlations
in the data or, in alternative, multi-frequency single resolution
elements only.

The extraction of statistical information from the CMB
usually proceeds by means of correlation functions. Since the
CMB field is Gaussian to a large extent (e.g. Smith et al. 2009),
most of the information is encoded in the two-point function
or equivalently in its reciprocal representation in spherical har-
monics space. Assuming rotational invariance, the latter quan-
tity is well described by the set of C� (see e.g., Gorski 1994).
For an ideal experiment, the estimated power spectrum could be
directly compared to a Boltzmann code prediction to constrain
the cosmological parameters. However, in the case of incom-
plete sky coverage (which induces couplings among multipoles)
and the presence of noise (which, in general, is not rotationally
invariant because of the coupling between correlated noise and
scanning strategy), a more thorough analysis is necessary. The
likelihood function for a Gaussian CMB sky can be easily writ-
ten and provides a sound mechanism for constraining models
and data. The direct evaluation of this function, however, poses
intractable computational issues. Fortunately, only the lowest
multipoles require exact treatment. This can be achieved ei-
ther by direct evaluation in the pixel domain or sampling the

posterior distribution of the CMB using sampling methods such
as the Gibbs approach (Jewell et al. 2004; Wandelt et al. 2004).
At high multipoles, where the likelihood function cannot be eval-
uated exactly, a wide range of effective, computationally afford-
able approximations exist (see e.g., Hamimeche & Lewis 2008;
and Rocha et al., in prep., and references therein). The low and
high � approaches to power spectrum estimation will be joined
into a hybrid procedure, pioneered by Efstathiou (2004).

The data analysis of LFI will require daunting computational
resources. In view of the size and complexity of its data set, ac-
curate characterization of the scientific results and error propaga-
tion will be achieved by means of a massive use of Monte Carlo
simulations. A number of worldwide distributed supercomputer
centres will support the DPC in this activity. A partial list in-
cludes NERSC-LBNL in the USA, CINECA in Italy, CSC in
Finland, and MARE NOSTRUM in Spain. The European cen-
tres will benefit from the Distributed European Infrastructure for
Supercomputer Application7.

3. Instrument

3.1. Optics

During the design phase of LFI, great effort was dedicated to the
optical design of the focal plane unit (FPU). As already men-
tioned in the introduction, the actual design of the Planck tele-
scope is derived from COBRAS and specially has been tuned
by subsequent studies of the LFI team (Villa et al. 1998) and
Thales-Alenia Space. These studies demonstrated the impor-
tance of increasing the telescope diameter (Mandolesi et al.
2000), optimizing the optical design, and also showed how com-
plex it would be to match the real focal surface to the horn phase
centres (Valenziano et al. 1998). The optical design of LFI is
the result of a long iteration process in which the optimiza-
tion of the position and orientation of each feed horn involves a
trade-off between angular resolution and sidelobe rejection lev-
els (Sandri et al. 2004; Burigana et al. 2004; Sandri et al. 2010).
Tight limits were also imposed by means of mechanical con-
straints. The 70 GHz system has been improved in terms of the
single horn design and its relative location in the focal surface.
As a result, the angular resolution has been maximized.

The feed horn development programme started in the early
stages of the mission with prototype demonstrators (Bersanelli
et al. 1998), followed by the elegant bread board (Villa et al.
2002) and finally by the qualification (D’Arcangelo et al. 2005)
and flight models (Villa et al. 2009). The horn design has a corru-
gated shape with a dual profile (Gentili et al. 2000). This choice
was justified by the complexity of the optical interfaces (cou-
pling with the telescope and focal plane horn accommodation)
and the need to respect the interfaces with HFI.

Each of the corrugated horns feeds an orthomode transducer
(OMT) that splits the incoming signal into two orthogonal po-
larised components (D’Arcangelo et al. 2009a). The polarisa-
tion capabilities of the LFI are guaranteed by the use of OMTs
placed immediately after the corrugated horns. While the incom-
ing polarisation state is preserved inside the horn, the OMT di-
vides it into two linear orthogonal polarisations, allowing LFI
to measure the linear polarisation component of the incom-
ing sky signal. The typical value of OMT cross-polarisation is
about −30 dB, setting the spurious polarisation of the LFI opti-
cal interfaces at a level of 0.001.

7 http://www.deisa.eu
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Table 2. LFI optical performance.

ET FWHM e XPD Ssp Msp
70 17 dB at 22◦ 13.03 1.22 −34.73 0.17 0.65
44 30 dB at 22◦ 26.81 1.26 −30.54 0.074 0.18
30 30 dB at 22◦ 33.34 1.38 −32.37 0.24 0.59

Notes. All the values are averaged over all channels at the same fre-
quency. ET is the horn edge taper measured at 22◦ from the horn
axis; FWHM is the angular resolution in arcmin; e is the elliptic-
ity; XPD is the cross-polar discrimination in dB; Ssp is the Sub-
reflector spillover (%); Msp is the Main-reflector spillover (%). See text
for details.

Table 2 shows the overall LFI optical characteristics ex-
pected in-flight (Tauber et al. 2010). The edge taper (ET) val-
ues, quoted in Table 2, refer to the horn taper; they are reference
values assumed during the design phase and do not correspond
to the true edge taper on the mirrors (see Sandri et al. 2010, for
details). The reported angular resolution is the average FWHM
of all the channels at the same frequency. The cross-polar
discrimination (XPD) is the ratio of the antenna solid angle of
the cross-polar pattern to the antenna solid angle of the co-polar
pattern, both calculated within the solid angle of the −3 dB con-
tour. The main- and sub-reflector spillovers represent the fraction
of power that reach the horns without being intercepted by the
main- and sub-reflectors, respectively.

3.2. Radiometers

LFI is designed to cover the low frequency portion of the wide-
band Planck all-sky survey. A detailed description of the design
and implementation of the LFI instrument is given in Bersanelli
et al. (2010) and references therein, while the results of the on-
ground calibration and test campaign are presented in Mennella
et al. (2010) and Villa et al. (2010). The LFI is an array of
cryogenically cooled radiometers designed to observe in three
frequency bands centered on 30 GHz, 44 GHz, and 70 GHz
with high sensitivity and practically no systematic errors. All
channels are sensitive to the I, Q, and U Stokes parameters,
thus providing information about both temperature and polari-
sation anisotropies. The heart of the LFI instrument is a com-
pact, 22-channel multifrequency array of differential receivers
with cryogenic low-noise amplifiers based on indium phosphide
(InP) HEMTs. To minimise the power dissipation in the focal
plane unit, which is cooled to 20 K, the radiometers are di-
vided into two subassemblies (the front-end module, FEM, and
the back-end module, BEM) connected by a set of composite
waveguides, as shown in Fig. 7. Miniaturized, low-loss passive
components are implemented in the front end for optimal perfor-
mance and compatibility with the stringent thermo-mechanical
requirements of the interface with the HFI.

The radiometer was designed to suppress 1/ f -type noise in-
duced by gain and noise temperature fluctuations in the ampli-
fiers, which would otherwise be unacceptably high for a simple,
total-power system. A differential pseudo-correlation scheme is
adopted, in which signals from the sky and from a black-body
reference load are combined by a hybrid coupler, amplified by
two independent amplifier chains, and separated by a second hy-
brid (Fig. 8). The sky and the reference load power can then
be measured and their difference calculated. Since the refer-
ence signal has been affected by the same gain variations in the

Fig. 7. The LFI radiometer array assembly, with details of the front-end
and back-end units. The front-end radiometers are based on wide-band
low-noise amplifiers, fed by corrugated feedhorns which collect the ra-
diation from the telescope. A set of composite waveguides transport the
amplified signals from the front-end unit (at 20 K) to the back-end unit
(at 300 K). The waveguides are designed to meet simultaneously radio-
metric, thermal, and mechanical requirements, and are thermally linked
to the three V-Groove thermal shields of the Planck payload module.
The back-end unit, located on top of the Planck service module, con-
tains additional amplification as well as the detectors, and is interfaced
to the data acquisition electronics. The HFI is inserted into and attached
to the frame of the LFI focal-plane unit.

Fig. 8. Schematic of the LFI front-end radiometer. The front-end unit
is located at the focus of the Planck telescope, and comprises: dual-
profiled corrugated feed horns; low-loss (0.2 dB), wideband (>20%) or-
thomode transducers; and radiometer front-end modules with hybrids,
cryogenic low noise amplifiers, and phase switches. For details see
Bersanelli et al. (2010).

two amplifier chains as the sky signal, the sky power can be
recovered to high precision. Insensitivity to fluctuations in the
back-end amplifiers and detectors is realized by switching phase
shifters at 8 kHz synchronously in each amplifier chain. The
rejection of 1/ f noise as well as immunity to other systematic
effects is optimised if the two input signals are nearly equal. For
this reason, the reference loads are cooled to 4 K (Valenziano
et al. 2009) by mounting them on the 4 K structure of the HFI.
In addition, the effect of the residual offset (<1 K in nominal
conditions) is reduced by introducing a gain modulation factor
in the onboard processing to balance the output signal. As shown
in Fig. 8, the differencing receiver greatly improves the stability
of the measured signal (see also Fig. 8 in Bersanelli et al. 2010).
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The LFI amplifiers at 30 GHz and 44 GHz use discrete InP
HEMTs incorporated into a microwave integrated circuit (MIC).
At these frequencies, the parasitics and uncertainties introduced
by the bond wires in a MIC amplifier are controllable and
the additional tuning flexibility facilitates optimization for low
noise. At 70 GHz, there are twelve detector chains. Amplifiers
at these frequencies use monolithic microwave integrated cir-
cuits (MMICs), which incorporate all circuit elements and the
HEMT transistors on a single InP chip. At these frequencies,
MMIC technology provides not only significantly superior per-
formance to MIC technology, but also allows faster assembly
and smaller sample-to-sample variance. Given the large number
of amplifiers required at 70 GHz, MMIC technology can right-
fully be regarded as an important development for the LFI.

Fourty-four waveguides connect the LFI front-end unit,
cooled to 20 K by a hydrogen sorption cooler, to the back-end
unit (BEU), which is mounted on the top panel of the Planck ser-
vice module (SVM) and maintained at a temperature of 300 K.
The BEU comprises the eleven BEMs and the data acquisition
electronics (DAE) unit, which provides adjustable bias to the
amplifiers and phase switches as well as scientific signal con-
ditioning. In the back-end modules, the RF signals are ampli-
fied further in the two legs of the radiometers by room tem-
perature amplifiers. The signals are then filtered and detected
by square-law detector diodes. A DC amplifier then boosts the
signal output, which is connected to the data acquisition elec-
tronics. After onboard processing, provided by the radiometer
box electronics assembly (REBA), the compressed signals are
down-linked to the ground station together with housekeeping
data. The sky and reference load DC signals are transmitted to
the ground as two separated streams of data to ensure optimal
calculation of the gain modulation factor for minimal 1/ f noise
and systematic effects. The complexity of the LFI system called
for a highly modular plan of testing and integration. Performance
verification was first carried out at the single unit-level, fol-
lowed by campaigns at sub-assembly and instrument level, then
completed with full functional tests after integration into the
Planck satellite. Scientific calibration has been carried out in two
main campaigns, first on the individual radiometer chain assem-
blies (RCAs), i.e., the units comprising a feed horn and the two
pseudo-correlation radiometers connected to each arm of the or-
thomode transducer (see Fig. 8), and then at instrument level.
For the RCA campaign, we used sky loads and reference loads
cooled close to 4 K which allowed us to perform an accurate
verification of the instrument performance in near-flight condi-
tions. Instrument level tests were carried out with loads at 20 K,
which allowed us to verify the radiometer performance in the in-
tegrated configuration. Testing at the RCA and instrument level,
both for the qualification model (QM) and the flight model (FM),
were carried out at Thales Alenia Space, Vimodrone (Milano,
Italy). Finally, system-level tests of the LFI integrated with HFI
in the Planck satellite were carried out at Centre Spatial de Liège
(CSL) in the summer of 2008.

3.3. Sorption cooler

The SCS is the first active element of the Planck cryochain. Its
purpose is to cool the LFI radiometers to their operational tem-
perature of around 20 K, while providing a pre-cooling stage
for the HFI cooling system, a 4.5 K mechanical Joule-Thomson
cooler and a Benoit-style open-cycle dilution refrigerator. Two
identical sorption coolers have been fabricated and assembled
by the Jet Propulsion Laboratory (JPL) under contract to NASA.
JPL has been a pioneer in the development and application of

Fig. 9. Top panel: picture of the LFI focal plane showing the feed-horns
and main frame. The central portion of the main frame is designed to
provide the interface to the HFI front-end unit, where the reference
loads for the LFI radiometers are located and cooled to 4 K. Bottom
panel: a back-view of the LFI integrated on the Planck satellite. Visible
are the upper sections of the waveguides interfacing the front-end unit,
as well as the mechanical support structure.

these cryo-coolers for space and the two Planck units are the first
continuous closed-cycle hydrogen sorption coolers to be used for
a space mission (Morgante et al. 2009).

Sorption refrigerators are attractive systems for cooling
instruments, detectors, and telescopes when a vibration-free
system is required. Since pressurization and evacuation is ac-
complished by simply heating and cooling the sorbent ele-
ments sequentially, with no moving parts, they tend to be very
robust and generate essentially no vibrations on the spacecraft.
This provides excellent reliability and a long life. By cooling
using Joule-Thomson (J-T) expansion through orifices, the cold
end can also be located remotely (thermally and spatially) from
the warm end. This allows excellent flexibility in integrating the
cooler with the cold payload and the warm spacecraft.
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3.3.1. Specifications

The main requirements of the Planck SCS are summa-
rized below:

– provision of about 1 W total heat lift at instrument inter-
faces using a ≤60 K pre-cooling temperature at the coldest
V-groove radiator on the Planck spacecraft;

– maintain the following instrument interface temperatures:
LFI at ≤22.5 K [80% of total heat lift],
HFI at ≤19.02 K [20% of total heat lift];

– temperature stability (over one full cooler cycle ≈6000 s):
≤450 mK, peak-to-peak at HFI interface,
≤100 mK, peak-to-peak at LFI interface;

– input power consumption ≤470 W (at end of life, excluding
electronics);

– operational lifetime ≥2 years (including testing).

3.3.2. Operations

The SCS consists of a thermo-mechanical unit (TMU, see
Fig. 10) and electronics to operate the system. Cooling is pro-
duced by J-T expansion with hydrogen as the working fluid. The
key element of the 20 K sorption cooler is the compressor, an
absorption machine that pumps hydrogen gas by thermally cy-
cling six compressor elements (sorbent beds). The principle of
operation of the sorption compressor is based on the properties
of a unique sorption material (a La, Ni, and Sn alloy), which can
absorb a large amount of hydrogen at relatively low pressure,
and desorb it to produce high-pressure gas when heated within
a limited volume. Electrical resistances heat the sorbent, while
cooling is achieved by thermally connecting, by means of gas-
gap thermal switches, the compressor element to a warm radiator
at 270 K on the satellite SVM. Each sorbent bed is connected to
both the high-pressure and low-pressure sides of the plumbing
system by check valves, which allow gas flow in a single direc-
tion only. To dampen oscillations on the high-pressure side of
the compressor, a high-pressure stabilization tank (HPST) sys-
tem is utilized. On the low-pressure side, a low-pressure storage
bed (LPSB) filled with hydride, primarily operates as a storage
bed for a large fraction of the H2 inventory required to oper-
ate the cooler during flight and ground testing while minimiz-
ing the pressure in the non-operational cooler during launch and
transportation. The compressor assembly mounts directly onto
the warm radiator (WR) on the spacecraft. Since each sorbent
bed is taken through four steps (heat up, desorption, cool-down,
absorption) in a cycle, it will intake low-pressure hydrogen and
output high-pressure hydrogen on an intermittent basis. To pro-
duce a continuous stream of liquid refrigerant, the sorption beds
phases are staggered so that at any given time, one is desorbing
while the others are heating up, cooling down, or re-absorbing
low-pressure gas.

The compressed refrigerant then travels in the piping and
cold-end assembly (PACE, see Fig. 10), through a series of heat
exchangers linked to three V-Groove radiators on the spacecraft
that provide passive cooling to approximately 50 K. Once pre-
cooled to the required range of temperatures, the gas is expanded
through the J-T valve. Upon expansion, hydrogen forms liq-
uid droplets whose evaporation provides the cooling power. The
liquid/vapour mixture then sequentially flows through the two
Liquid Vapour Heat eXchangers (LVHXs) inside the cold end.
LVHX1 and 2 are thermally and mechanically linked to the cor-
responding instrument (HFI and LFI) interface. The LFI is cou-
pled to LVHX2 through an intermediate thermal stage, the tem-
perature stabilization assembly (TSA). A feedback control loop

Fig. 10. SCS thermo-mechanical unit. See Appendix A for acronyms.

(PID type), operated by the cooler electronics, is able to control
the TSA peak-to-peak fluctuations down to the required level
(≤100 mK). Heat from the instruments evaporates liquid hydro-
gen and the low pressure gaseous hydrogen is circulated back to
the cold sorbent beds for compression.

3.3.3. Performance

The two flight sorption cooler units were delivered to ESA in
2005. Prior to delivery, in early 2004, both flight models un-
derwent subsystem-level thermal-vacuum test campaigns at JPL.
In spring 2006 and summer 2008, respectively, SCS redundant
and nominal units were tested in cryogenic conditions on the
spacecraft FM at the CSL facilities. The results of these two ma-
jor test campaigns are summarized in Table 3 and reported in full
detail in Morgante et al. (2009).

4. LFI programme

The model philosophy adopted for LFI and the SCS was cho-
sen to meet the requirements of the ESA Planck system which
assumed from the beginning that there would be three develop-
ment models of the satellite:

– The Planck avionics model (AVM) in which the system bus
was shared with the Herschel satellite, and allowed basic
electrical interface testing of all units and communications
protocol and software interface verification.

– The Planck qualification model (QM), which was limited to
the Planck payload module (PPLM) containing QMs of LFI,
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Table 3. SCS flight units performance summary.

SCS Unit Warm Rad. 3 rdVGroove Cold-end T (K) Heat lift Input power Cycle time
T (K) T (K) HFI I/F LFI I/F (mW) (V) (s)

270.5 45 17.2 18.7a,b 1100 297 940
Redundant 277 60 18.0 20.1a,b 1100 460 492

282.6 60 18.4 19.9a,b 1050 388 667
Nominal 270 47 17.1 18.7a 1125 304 940

273 48 17.5 18.7a N/Ac 470 525

Notes. (a) Measured at temperature stabilization assembly (TSA) stage; (b) in SCS-redundant test campaign TSA stage active control was not
enabled; (c) not measured.

HFI, and the Planck telescope and structure that would al-
low a qualification vibration test campaign to be performed
at payload level, as well as alignment checks, and would,
in particular, allow a cryogenic qualification test campaign
to be performed on all the advanced instrumentation of the
payload that had to fully perform in cryogenic conditions.

– The Planck protoflight model (PFM) which contained all the
flight model (FM) hardware and software that would un-
dergo the PFM environmental test campaign, culminating
in extended thermal and cryogenic functional performance
tests.

4.1. Model philosophy

In correspondence with the system model philosophy, it was de-
cided by the Planck consortium to follow a conservative incre-
mental approach involving prototype demonstrators.

4.1.1. Prototype demonstrators (PDs)

The scope of the PDs was to validate the LFI radiometer de-
sign concept giving early results on intrinsic noise, particularly
1/ f noise properties, and characterise systematic effects in a pre-
liminary fashion to provide requirement inputs to the remainder
of the instrument design and at satellite level. The PDs also have
the advantage of being able to test and gain experience with
very low noise HEMT amplifiers, hybrid couplers, and phase
switches. The PD development started early in the programme
during the ESA development pre-phase B activity and ran in
parallel with the successive instrument development phase of el-
egant breadboarding.

4.1.2. Elegant breadboarding (EBB)

The purpose of the LFI EBBs was to demonstrate the maturity
of the full radiometer design across the whole frequency range
of LFI prior to initiating qualification model construction. Thus,
full comparison radiometers (two channels covering a single
polarisation direction) were constructed, centred on 100 GHz,
70 GHz, and 30 GHz, extending from the expected design of the
corrugated feed-horns at their entrance to their output stages at
their back-end. These were put through functional and perfor-
mance tests with their front-end sections operating at 20 K as
expected in-flight. It was towards the end of this development
that the financial difficulties that terminated the LFI 100 GHz
channel development hit the programme.

4.1.3. The qualification model (QM)

The development of the LFI QM commenced in parallel with
the EBB activities. From the very beginning, it was decided that
only a limited number of radiometer chain assemblies (RCA),

each containing four radiometers (and thus fully covering two
orthogonal polarisation directions) at each frequency should be
included and that the remaining instrumentation would be rep-
resented by thermal mechanical dummies. Thus, the LFI QM
contained 2 RCA at 70 GHz and one each at 44 GHz and
30 GHz. The active components of the data acquisition electron-
ics (DAE) were thus dimensioned accordingly. The radiometer
electronics box assembly (REBA) QM supplied was a full unit.
All units and assemblies went through approved unit level qual-
ification level testing prior to integration as the LFI QM in the
facilities of the instrument prime contractor Thales Alenia Space
Milano.

The financial difficulties also disrupted the QM development
and led to the use by ESA of a thermal-mechanical representative
dummy of LFI in the system level satellite QM test campaign be-
cause of the ensuing delay in the availability of the LFI QM. The
LFI QM was however fundamental to the development of LFI as
it enabled the LFI consortium to perform representative cryo-
testing of a reduced model of the instrument and thus confirm
the design of the LFI flight model.

4.1.4. The flight model (FM)

The LFI FM contained flight standard units and assemblies that
went through flight unit acceptance level tests prior to integration
in to the LFI FM. In addition, prior to mounting in the LFI FM,
each RCA went through a separate cryogenic test campaign af-
ter assembly to allow preliminary tuning and confirm the over-
all functional performance of each radiometer. At the LFI FM
test level the instrument went through an extended cryogenic test
campaign that included further tuning and instrument calibration
that could not be performed when mounted in the final configu-
ration on the satellite because of schedule and cost constraints.
At the time of delivery of the LFI FM to ESA for integration on
the satellite, the only significant verification test that remained
to be done was the vibration testing of the fully assembled ra-
diometer array assembly (RAA). This could not be performed
in a meaningful way at instrument level because of the problem
of simulating the coupled vibration input through the DAE and
the LFI FPU mounting to the RAA (and in particular into the
waveguides). Its verification was completed successfully during
the satellite PFM vibration test campaign.

4.1.5. The avionics model (AVM)

The LFI AVM was composed of the DAE QM, and its secondary
power supply box removed from the RAA of the LFI QM,
an AVM model of the REBA and the QM instrument harness.
No radiometers were present in the LFI AVM, and their active
inputs on the DAE were terminated with resistors. The LFI AVM
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Fig. 11. Schematic of the various calibration steps in the LFI development.

was used successfully by ESA in the Planck System AVM test
campaigns to fulfill its scope outlined above.

4.2. The sorption cooler subsystem (SCS) model philosophy

The SCS model development was designed to produce two cool-
ers: a nominal cooler and a redundant cooler. The early part of
the model philosophy adopted was similar to that of LFI, em-
ploying prototype development and the testing of key compo-
nents, such as single compressor beds, prior to the building of
an EBB containing a complete complement of components such
as in a cooler intended to fly. This EBB cooler was submit-
ted to an intensive functional and performance test campaign.
The sorption cooler electronics (SCE) meanwhile started de-
velopment with an EBB and was followed by a QM and then
FM1/FM2 build.

The TMUs of both the nominal and redundant sorption cool-
ers went through protoflight unit testing prior to assembly with
their respective PACE for thermal/cryogenic testing before de-
livery. To conclude the qualification of the PACE, a spare unit
participated in the PPLM QM system level vibration and cryo-
genic test campaign.

An important constraint in the ground operation of the sorp-
tion coolers is that they could not be fully operated with their
compressor beds far from a horizontal position. This was to
avoid permanent non-homogeneity in the distribution of the hy-
drides in the compressor beds and the ensuing loss in efficiency.
In the fully integrated configuration of the satellite (the PFM
thermal and cryogenic test campaign) for test chamber configu-
ration, schedule and cost reasons would allow only one cooler
to be in a fully operable orientation. Thus, the first cooler to
be supplied, which was designated the redundant cooler (FM1),
was mounted with the PPLM QM and put through a cryo-
genic test campaign (termed PFM1) with similar characteris-
tics to those of the final thermal balance and cryogenic tests
of the fully integrated satellite. The FM1 was then later inte-
grated into the satellite where only short, fully powered, health
checking was performed. The second cooler was designated as
the nominal cooler (FM2) and participated fully in the final cryo-
testing of the satellite. For both coolers, final verification (TMU
assembled with PACE) was achieved during the Planck system-
level vibration-test campaign and subsequent tests.

The AVM of the SCS was supplied using the QM of the SCE
and a simulator of the TMU to simulate the power load of a real
cooler.

4.3. System level integration and test

The Planck satellite and its instruments, were integrated at the
Thales Alenia Space facilities at Cannes in France. The SCS

nominal and redundant coolers were integrated onto the Planck
satellite before LFI and HFI.

Prior to integration on the satellite, the HFI FPU was in-
tegrated into the FPU of LFI. This involved mounting the LFI
4 K loads onto HFI before starting the main integration process,
which was a very delicate operation considering that when per-
formed the closest approach of LFI and HFI would be of the
order of 2 mm. It should be remembered that LFI and HFI had
not “met” during the Planck QM activity and so this integration
was performed for the first time during the Planck PFM cam-
paign. The integration process had undergone much study and
required special rotatable ground support equipment (GSE) for
the LFI RAA, and a special suspension and balancing system to
allow HFI to be lifted and lowered into LFI at the correct orien-
tation along guide rails from above. Fortunately the integration
was completed successfully.

Subsequently, the combined LFI RAA and HFI FPU were in-
tegrated onto the satellite, supported by the LFI GSE, which was
eventually removed during integration to the telescope. The pro-
cess of electrical integration and checkout was then completed
for LFI, the SCS and HFI, and the protoflight model test cam-
paign commenced.

For LFI, this test campaign proceeded with ambient func-
tional checkout followed by detailed tests (as a complete subsys-
tem prior to participation with the SCS and HFI in the sequence
of alignment), electromagnetic compatibility (EMC), sine and
random acoustic vibration tests, and the sequence of system level
verification tests with the Mission Operations Control Centre
(MOC, at ESOC, Darmstadt) and LFI DPC. During all of these
tests, at key points, both the nominal and redundant SCS were
put through ambient temperature health checks to verify basic
functionality.

The environmental test campaign culminated with the ther-
mal balance and cryogenic tests carried out at the Focal 5 fa-
cility of the Centre Spatial de Liège, Belgium. The test was de-
signed to follow very closely the expected cool-down scenario
after launch through to normal mission operations, and it was
during these tests that the two instruments and the sorption
cooler directly demonstrated together not only their combined
capabilities but also successfully met their operational margins.

5. LFI test and verification

The LFI had been tested and calibrated before launch at various
levels of integration, from the single components up to instru-
ment and satellite levels; this approach, which is summarised
schematically in Fig. 11, provided inherent redundancy and op-
timal instrument knowledge.
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Table 4. Measured performance parameters of the LFI passive
components.

Feed Horns Return Loss1 , Cross-polar (±45◦) and Co-polar
patterns (E, H and ±45◦ planes) in amplitude
and phase, Edge taper at 22◦

OMTs Insertion Loss, Return Loss, Cross-polarisation,
Isolation

Waveguides Insertion Loss, Return Loss, Isolation

Notes. (1) Return loss and patterns (E, H for all frequencies, also ±45◦
and cross-polar for the 70 GHz system) have been measured for the
assembly Feed Horn + OMT as well.

Passive components, i.e., feed-horns, OMTs, and waveg-
uides, were tested at room conditions at the Plasma Physics
Institute of the National Research Council (IFP-CNR) using a
Vector Network Analyser. A summary of the measured per-
formance parameters is provided in Table 4; measurements
and results are discussed in detail in Villa et al. (2009) and
D’Arcangelo et al. (2009a,b).

In addition, radiometric performance was measured sev-
eral times during the LFI development on individual subunits
(e.g., amplifiers, phase switches, detector diodes) on integrated
front-end and back-end modules (Davis et al. 2009; Artal et al.
2009; Varis et al. 2009) and on the complete radiometric as-
semblies, both as independent RCAs (Villa et al. 2010) and in
RAA, the final integrated instrument configuration (Mennella
et al. 2010).

In Table 5 (taken from Mennella et al. 2010), we list the main
LFI radiometric performance parameters and the integration lev-
els at which they have been measured. After the flight instru-
ment test campaign, the LFI was cryogenically tested again after
integration on the satellite with the HFI, while the final char-
acterisation will be performed in-flight before starting nominal
operations.

The RCA and RAA test campaigns have been important to
characterizing the instrument functionality and behaviour, and
measuring its expected performance in flight conditions. In par-
ticular, 30 GHz and 44 GHz RCAs were integrated and tested
in Italy, at the Thales Alenia Space (TAS-I) laboratories in
Milan, while the 70 GHz RCA test campaign was carried out in
Finland at the Yilinen-Elektrobit laboratories (Villa et al. 2010).
After this testing phase, the 11 RCAs were collected and in-
tegrated with the flight electronics in the LFI main frame at
the TAS-I labs, where the instrument final test and calibration
has taken place (Mennella et al. 2010). Custom-designed cry-
ofacilities (Terenzi et al. 2009b; Morgante et al., in prep.) and
high-performance black-body input loads (Terenzi et al. 2009a;
Cuttaia et al. 2009) were developed to test the LFI in the most
flight-representative environmental conditions.

A particular point must be made about the front-end bias
tuning, which is a key step in determining the instrument sci-
entific performance. Tight mass and power constraints called for
a simple design of the DAE box so that power bias lines were
divided into five common-grounded power groups with no bias
voltage readouts. Only the total drain current flowing through the
front-end amplifiers is measured and is available to the house-
keeping telemetry.

This design has important implications for front-end bias
tuning, which depends critically on the satellite electrical and
thermal configuration. Therefore, this step was repeated at all in-
tegration stages and will also be repeated during ground satellite
tests and in-flight before the start of nominal operations. Details

Table 5. Main calibration parameters and where they have been/will be
measured.

Category Parameters RCA RAA SAT FLI
Tuning FE LNAs Y Y Y Y

FE PS Y Y Y Y
BE offset and gain Y Y Y Y
Quantisation/compression N Y Y Y

Radiom. Photometric calibration Y Y Y Y
Linearity Y Y Y Y
Isolation Y Y Y Y
In-band response Y N N N

Noise White noise Y Y Y Y
Knee freq. Y Y Y Y
1/ f slope Y Y Y Y

Susc. FE temperature fluctuations Y Y Y Y
BE temperature fluctuations Y Y N N
FE bias fluctuations Y Y N N

Notes. The following abbreviations have been used: SAT = Satellite;
FLI = In-flight; FE = Front-end; BE = Back-end; LNA = Low noise
amplifier; PS = Phase switch; Radiom = Radiometric; and Susc =
Susceptibility.

Table 6. Calibrated white noise from ground-test results extrapolated to
the CMB input signal level.

Frequency channel 30 GHz 44 GHz 70 GHz
White noise per ν channel 141–154 152–160 130–146

[μK· √s]

Notes. Two different methods are used to provide a reliable range of
values (see Mennella et al. 2010, for further details). The final verifi-
cation of sensitivity will be derived in-flight during the commissioning
performance verification (CPV) phase.

about the bias tuning performed on front-end modules and on the
individual integrated RCAs can be found in Davis et al. (2009),
Varis et al. (2009), and Villa et al. (2010).

Parameters measured on the integrated instrument were
found to be essentially in line with measurements performed
on individual receivers; in particular, the LFI shows excellent
1/ f stability and rejection of instrumental systematic effects.
On the other hand, the very ambitious sensitivity goals have not
been fully met and the white noise sensitivity (see Table 6) is
∼30% higher than requirements. Nevertheless, the measured per-
formance makes LFI the most sensitive instrument of its kind, a
factor of 2 to 3 superior to WMAP8 at the same frequencies.

6. LFI data processing centre (DPC)

To take maximum advantage of the capabilities of the Planck
mission and achieve its very ambitious scientific objectives,
proper data reduction and scientific analysis procedures were de-
fined, designed, and implemented very carefully. The data pro-
cessing was optimized so as to extract the maximum amount of
useful scientific information from the data set and deliver the
calibrated data to the broad scientific community within a rather
short period of time. As demonstrated by many previous space
missions using state-of-the-art technologies, optimal scientific
exploitation is obtained by combining the robust, well-defined
architecture of a data pipeline and its associated tools with the
high scientific creativity essential when facing unpredictable

8 Calculated on the final resolution element per unit integration time.
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features of the real data. Although many steps required for the
transformation of data were defined during the development of
the pipeline, since most of the foreseeable ones have been imple-
mented and tested during simulations, some of them will remain
unknown until flight data are obtained.

Planck is a PI mission, and its scientific achievements will
depend critically on the performance of the two instruments, LFI
and HFI, on the cooling chain, and on the telescope. The data
processing will be performed by two DPCs (Pasian et al. 2000;
Pasian & Gispert 2000; Pasian & Sygnet 2002). However, de-
spite the existence of two separate distributed DPCs, the success
of the mission relies heavily on the combination of the measure-
ments from both instruments.

The development of the LFI DPC software has been per-
formed in a collaborative way across a consortium spread over
20 institutes in a dozen countries. Individual scientists belong-
ing to the software prototyping team have developed prototype
codes, which have then been delivered to the LFI DPC integra-
tion team. The latter is responsible for integrating, optimizing,
and testing the code, and has produced the pipeline software to
be used during operations. This development takes advantage of
tools defined within the Planck IDIS (integrated data and infor-
mation system) collaboration.

A software policy has defined, to allow the DPC perform the
best most superior algorithms within its pipeline, while fostering
collaboration inside the LFI consortium and across Planck, and
preserving at the same time the intellectual property of the code
authors on the processing algorithms devised.

The Planck DPCs are responsible for the delivery and archiv-
ing of the following scientific data products, which are the deliv-
erables of the Planck mission:

– Calibrated time series data, for each receiver, after removal
of systematic features and attitude reconstruction.

– Photometrically and astrometrically calibrated maps of the
sky in each of the observed bands.

– Sky maps of the main astrophysical components.
– Catalogues of sources detected in the sky maps of the main

astrophysical components.
– CMB power spectrum coefficients and an associated likeli-

hood code.

Additional products, necessary for the total understanding of
the instrument, are being negotiated for inclusion in the Planck
Legacy Archive (PLA). The products foreseen to be added to the
formally defined products mentioned above are:

– Data sets defining the estimated characteristics of each de-
tector and the telescope (e.g. detectivity, emissivity, time re-
sponse, main beam and side lobes, etc.).

– “Internal” data (e.g. calibration data-sets, data at intermedi-
ate level of processing).

– Ground calibration and assembly integration and verification
(AIV) databases produced during the instrument develop-
ment; and by gathering all information, data, and documents
relative to the overall payload and all systems and subsys-
tems. Most of this information is crucial for processing flight
data and updating the knowledge and performance of the
instrument.

The LFI DPC processing can be logically divided into three
levels:

– Level 1: includes monitoring of instrument health and be-
haviour and the definition of corrective actions in the case of
unsatisfactory function, and the generation of time ordered

information (TOI, a set of ordered information on either a
temporal or scan-phase basis), as well as data display, check-
ing, and analysis tools.

– Level 2: TOIs produced at Level 1 will be cleaned by re-
moving noise and many other types of systematic effects on
the basis of calibration information. The final product of the
Level 2 includes “frequency maps”.

– Level 3: “component maps” will be generated by this level
through a decomposition of individual “frequency maps” and
by also using products from the other instrument and, possi-
bly, ancillary data.

One additional level (“Level S”) is also implemented to develop
the most sophisticated simulations based on true instrument pa-
rameters extracted during the ground test campaigns.

In the following sections, we describe the DPC Levels and
the software infrastructure, and we finally report briefly on the
tests that were applied to ensure that all pipelines are ready for
the launch.

6.1. DPC Level 1

Level 1 takes input from the MOC’s data distribution system
(DDS), decompresses the raw data, and outputs time ordered in-
formation for Level 2. Level 1 does not include scientific pro-
cessing of the data; actions are performed automatically by using
pre-defined input data and information from the technical teams.
The inputs to Level 1 are telemetry (TM) and auxiliary data as
they are released by the MOC. Level 1 uses TM data to perform
a routine analysis (RTA – real time assessment) of the spacecraft
and instrument status, in addition to what is performed at the
MOC, with the aim of monitoring the overall health of the pay-
load and detecting possible anomalies. A quick-look data analy-
sis (TQL – telemetry quick look) of the science TM is also done,
to monitor the operation of the observation plan and verify the
performance of the instrument. This processing is meant to lead
to the full mission raw-data stream in a form suitable for subse-
quent data processing by the DPC.

Level 1 also deals with all activities related to the production
of reports. This task includes the results of telemetry analysis,
but also the results of technical processing carried out on TOI to
understand the current and foreseen behaviour of the instrument.
This second item includes specific analysis of instrument per-
formance (LIFE – LFI Integrated perFormance Evaluator), and
more general checking of time series (TSA – time series anal-
ysis) for trend analysis purposes and comparison with the TOI
from the other instrument. The additional tasks of Level 1 relate
to its role as an instrument control and DPC interface with the
MOC. In particular, the following actions are performed:

– Preparation of telecommanding procedures aimed at modi-
fying the instrument setup.

– Preparation of Mission Information dataBases (MIBs).
– Communicate to the MOC “longer-term” inputs derived

from feedback from DPC processing.
– Calibration of REBA parameters to fit long-term trends in

the instrument setup.

In Level 1, all actions are planned to be performed on a “day-to-
day” basis during operation. In Fig. 12, the structure of Level 1
and required timings are shown. For more details, we refer to
Zacchei et al. (2009).
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Fig. 12. Level 1 structure.

6.2. DPC Level 2

At this level, data processing steps requiring detailed instrument
knowledge (data reduction proper) will be performed. The raw
time series from Level 1 will also be used to reconstruct a num-
ber of calibrated scans for each detector, as well as instrumental
performance and properties, and maps of the sky for each chan-
nel. This processing is iterative, since simultaneous evaluation
of quite a number of parameters should be made before the as-
trophysical signal can be isolated and averaged over all detectors
in each frequency channel. Continuous exchange of information
between the two DPCs will be necessary at Level 2 to iden-
tify any suspect or unidentified behaviour or any results from
the detectors.

The first task that the Level 2 performs is the creation of
differenced data. Level 1 stores data from both Sky and Load.
These two have to be properly combined to produce differenced
data, therefore reducing the impact of 1/ f noise achieved by
computing the so-called gain modulation factor R, which is de-
rived by taking the ratio of the mean signals from both Sky
and Load.

After differenced data are produced, the next step is the pho-
tometric calibration that transforms the digital units into physical
units. This operation is quite complex: different methods are im-
plemented in the Level 2 pipeline that use the CMB dipole as
an absolute calibrator allowing for the conversion into physical
units.

Another major task is beam reconstruction, which is imple-
mented using information from planet crossings. An algorithm
was developed that performs a bi-variate approximation of the
main beam section of the antenna pattern and reconstructs the
position of the horn in the focal plane and its orientation with
respect to a reference axis.

The step following the production of calibrated timelines
is the creation of calibrated frequency maps. To achieve this,
pointing information will be encoded into time-ordered pixels
i.e., pixel numbers in the given pixelisation scheme (HEALPix)
by identifying a given pointing direction that is ordered in time.
To produce temperature maps, it is necessary to reconstruct the
beam pattern along the two polarisation directions for the main,
intermediate, and far parts of the beam pattern. This will al-
low the combination of the two orthogonal components into
a single temperature timeline. On this temperature timeline, a

map-making algorithm will be applied to produce a map from
each receiver.

The instrument model allows one to check and control sys-
tematic effects and the quality of the removal performed by
map-making and calibration of the receiver map. Receiver maps
cleaned of systematic effects at different levels of accuracy
will be stored into a calibrated map archive. The production
of frequency-calibrated maps will be performed by processing
together all receivers from a given frequency channel in a single
map-making run. In Figs. 13 and 14, we report the steps per-
formed by Level 2, together with the associated times foreseen.

6.3. DPC Level 3

The goal of the DPC Level 3 is to estimate and characterise
maps all the different astrophysical and cosmological sources of
emission (“components”) present at Planck wavelengths. Using
the CMB component obtained after point-source extraction and
cleaning from diffuse, Galactic emission, the APS of the CMB
is estimated for temperature, polarisation, and cross tempera-
ture/polarisation modes.

The extraction of the signal from Galactic point-like objects,
and other galaxies and clusters is achieved as a first step, either
using pre-existing catalogues based on non-Planck data, or filter-
ing the multi-frequency maps with optimal filters to detect and
identify beam-like objects (see Herranz et al. 2009, and refer-
ences therein).

The algorithms dedicated to the separation of diffuse emis-
sion fall into four main categories, depending on the criteria ex-
ploited to achieve separation, and making use of the wide fre-
quency coverage of Planck (see Leach et al. 2008, and refer-
ences therein). Internal linear combination and template fitting
achieves linear mixing and combination of the multi-frequency
data with other data sets, optimized for CMB or foreground re-
covery. The independent component analysis works in the sta-
tistical domain, without using foreground modelling or spatial
correlations in the data, but assuming instead statistical inde-
pendence between the components that are to be recovered. The
correlated component analysis, on the other hand, makes use of
a parametrization of foreground unknowns, and uses spatial cor-
relations to achieve separation. Finally, parametric methods con-
sist of modelling foreground and CMB components by treating
each resolution element independently, achieving fitting of the
unknowns and separation by means of a maximum likelihood
analysis. The LFI DPC Level 3 includes algorithms that belong
to each of the four categories outlined above. The complemen-
tarity of different methods for different purposes, as well as the
cross-check on common products, are required to achieve reli-
able and complete scientific products.

As for power spectrum estimation, two independent
and complementary approaches have been implemented
(see Gruppuso et al. 2009, and references therein): a Monte-
Carlo method suitable for high multipoles (based on the
master approach, but including cross-power spectra from inde-
pendent receivers); and a maximum likelihood method for low
multipoles. A combination of the two methods will be used to
produce the final estimation of the APS from LFI data, before
its combination with HFI data. In Fig. 15, we report the steps
performed in the Level 3 pipeline with the associated timescales
foreseen.

The inputs to the Level 3 pipeline are the three calibrated fre-
quency maps from LFI together with the six calibrated HFI fre-
quency maps that should be exchanged on a monthly basis. The
Level 3 pipeline has links with most of the stages of the Level 1
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Fig. 13. Level 2 calibration pipeline.

and Level 2 pipelines, and therefore the most complete and
detailed knowledge of the instrumental behaviour is important
for achieving its goals. Systematic effects appearing in the time-
ordered data, beam shapes, band width, source catalogues, noise
distribution, and statistics are examples of important inputs to
the Level 3 processing. Level 3 will produce source catalogues,
component maps, and CMB power spectra that will be delivered
to the PLA, together with other information and data needed for
the public release of the Planck products.

6.4. DPC Level S

It was widely agreed within both consortia that a software sys-
tem capable of simulating the instrument footprint, starting from
a predefined sky, was indispensable for the full period of the
Planck mission. Based on that idea, an additional processing
level, Level S, was developed and upgraded whenever the knowl-
edge of the instrument improved (Reinecke et al. 2006). Level S
now incorporates all the instrument characteristics as they were

understood during the ground test campaign. Simulated data
were used to evaluate the performance of data-analysis algo-
rithms and software against the scientific requirements of the
mission and to demonstrate the capability of the DPCs to work
using blind simulations that contain unknown parameter values
to be recovered by the data processing pipeline.

6.5. DPC software infrastructure

During the entire Planck project, it has been (and will con-
tinue to be) necessary to deal with aspects related to in-
formation management, which pertain to a variety of activ-
ities concerning the whole project, ranging from instrument
information (e.g., technical characteristics, reports, configura-
tion control documents, drawings, public communications) to
software development/control (including the tracking of each
bit produced by each pipeline). For this purpose, an inte-
grated data and information system (IDIS) was developed. IDIS
(Bennett et al. 2000) is a collection of software infrastructure
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Fig. 14. Level 2 Map-making pipeline.

for supporting the Planck DPCs in their management of large
quantities of software, data, and ancillary information. The in-
frastructure is relevant to the development, operational, and post-
operational phases of the mission.

The full IDIS can be broken down into five major
components:

– Document management system (DMS), to store and share
documents.

– Data management component (DMC), allowing the inges-
tion, efficient management, and extraction of the data (or
subsets thereof) produced by Planck activities.

– Software component (SWC), allowing the system to admin-
ister, document, handle, and keep under configuration con-
trol the software developed within the Planck project.

– Process Coordinator (ProC), allowing the creation and run-
ning of processing pipelines inside a predefined and well
controlled environment.

– Federation layer (FL), which allows controlled access to the
previous objects and acts as a glue between them.

The use of the DMS has allowed the entire consortia to in-
gest and store hundreds of documents and benefit from an ef-
ficient way of retrieving them. The DMC is an API (applica-
tion programming interface) for data input/output, connected
to a database (either relational or object-oriented) and aimed
at the archiving and retrieval of data and the relevant meta-
information; it also features a user GUI. The ProC is a controlled
environment in which software modules can be added to cre-
ate an entirely functional pipeline. It stores all the information
related to versioning of the modules used, data, and temporary
data created within the database while using the DMC API. In
Fig. 16, an example of the LFI pipeline is shown. Finally, the
FL is an API that, using a remote LDAP database, assigns the
appropriate permission to the users for data access, software ac-
cess, and pipeline run privileges.

6.6. DPC test performed

Each pipeline and sub-pipeline (Level 1, Level 2, and Level 3)
has undergone different kinds of tests. We report here only the
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Fig. 15. Level 3 pipeline structure.

Fig. 16. IDIS ProC pipeline editor.

official tests conducted with ESA, without referring to the inter-
nal tests that were dedicated to DPC subsystems. Level 1 was the
most heavily tested, as this pipeline is considered launch-critical.
As a first step, it was necessary to validate the output with re-
spect to the input; to do that, we ingested inside the instrument
a well known signal as described in Frailis et al. (2009) with the

purpose of verifying whether the processing inside Level 1 was
correct. This also had the benefit of providing an independent
test of important functionalities for the REBA software responsi-
ble for the onboard preprocessing of scientific data. Afterwards,
more complete tests, including all interfaces with other elements
of the ground segment, were performed. Those tests simulate
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one week of nominal operations (SOVT1 – system operation
validation test; Keck 2008) and, during the SOVT2, one week
of the commissioning performance verification (CPV) phase.
During these tests, it was demonstrated that the LFI Level 1 is
able to deal with the telemetry as it would be acquired during
operations.

Tests performed on Level 2 and Level 3 were more science-
oriented to demonstrate the scientific adequacy of the LFI DPC
pipeline, i.e., its ability to produce scientific results commen-
surate with the objectives of the Planck mission. These tests
were based on blind simulations of growing complexity. The
Phase 1 test data, produced with Level S, featured some sim-
plifying approximations:

– the sky model was based on the “concordance model”
CMB (no non-Gaussianity);

– the dipole did not include modulations due to the Lissajous
orbit around L2;

– Galactic emission was obtained assuming non-spatially
varying spectral index;

– the detector model was “ideal” and did not vary with time;
– the scanning strategy was “ideal” (i.e., no gaps in the data).

The results of this test were in line with the objectives of the
mission (see Perrotta & Maino 2007)).

The Phase 2 tests are still ongoing. They take into account
more realistic simulations with all the known systematics and
known problems (e.g., gaps) in the data.

7. Pre-launch status

We have provided an overview of the LFI programme and of
its organization within the ESA Planck mission. After a brief
description of the Planck main properties and observational
strategy, the main scientific goals have been presented, rang-
ing from fundamental cosmology to Galactic and extragalactic
astrophysics by focusing on those more relevant to LFI. The
LFI design and development have been outlined, together with
the model philosophy and testing strategy. The LFI approach
to on-ground and in-flight calibration and the LFI ground seg-
ment have been described. We have reported on the data analysis
pipeline that has been successfully tested.

Ground testing shows that the LFI operates as anticipated.
The observational program will begin after the Planck/Herschel
launch on May 14th, 2009.

A challenging commissioning and final calibration phase
will prepare the LFI for nominal operations that will start about
90 days after launch. After ∼20 days, the instrument will be
switched on and its functionality will be tested in parallel with
the cooling of the 20 K stage. Then the cooling period of the HFI
focal plane to 4 K will be used by the LFI to tune voltage biases
of the front end amplifiers, phase switches, and REBA parame-
ters, which will set the final scientific performance of the instru-
ment. Final tunings and calibration will be performed in parallel
with HFI activities for about 25 days until the last in-flight cali-
bration phase, the so-called “first light survey”. This will involve
14 days of data acquisition in nominal mode that will benchmark
the whole system, from satellite and instruments to data trans-
mission, ground segment, and data processing levels.

The first light survey will produce the very first Planck maps.
This will not be designed for scientific exploitation but will
rather serve as a final test of the instrumental and data process-
ing capabilities of the mission. After this, the Planck scientific
operations will begin.

Note that at the time of publishing this article, Planck was
launched successfully with Herschel on May 14th, 2009, and it
has completed its first full sky survey as foreseen.
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Appendix A: List of Acronyms

AIV = assembly integration and verification
API = application programming interface
APS = angular power spectrum
ASI = Agenzia Spaziale Italiana (Italian Space Agency)
ATCA = Australian Telescope Compact Array
AVM = avionics model
BEM = back-end module
BEU = back-end unit
CDM = cold dark matter
COBE = COsmic Background Explorer
COBRAS = COsmic Background Radiation Anisotropy
Satellite
CMB = cosmic microwave background
CPV = commissioning performance verification
CSL = Centre Spatial de Liège
DAE = data acquisition electronics
DBI = Dirac-born-infeld (inflation)
DC = direct current
DDS = data distribution system
DMC = data management component
DMS = document management system
DPC = data processing centre
EBB = Elegant BreadBoarding
EMC = electromagnetic compatibility
ESA = European Space Agency
ESOC = European Space Operations Centre
ET = edge taper
FEM = front-end module
FL = federation layer
FM = flight model
FPU = focal plane unit
FWHM = full width half maximum
GLAST = Gamma-ray Large Area Space Telescope
GLS = generalized least squares
GSE = ground support equipment
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GUI = graphical user interface
HEALPix = Hierarchical Equal Area isoLatitude Pixelization
HEMT = high electron mobility transistor
HFI = High Frequency Instrument
HPST = high-pressure stabilization tank
IDIS = integrated data and information system
IR = infra red
ISM = inter-stellar medium
JPL = Jet Propulsion Laboratory
JT = Joule-Thomson
LDAP = Lightweight Directory Access Protocol
LFI = Low Frequency Instrument
LIFE = LFI integrated perFormance Evaluator
LNA = low noise amplifier
LPSB = low-pressure storage bed
LVHX = Liquid Vapour Heat eXchange
MIB = mission information base
MIC = microwave integrated circuit
MMIC = monolithic microwave integrated circuit
MOC = mission operation centre
NASA =National Aeronautics and Space Administration (USA)
NG = non Gaussianity
OMT = orthomode transducer
PACE = piping and cold-end assembly
PD = prototype demonstrator
PFM = Planck protoflight model
PI = Principal Investigator
PID = proportional integral derivative
PLA = Planck Legacy Archive
PPLM = Planck PayLoad Module
ProC = Process Coordinator
PS = phase switch
QM = qualification model
RAA = radiometer array assembly
RCA = radiometer chain assembly
REBA = Radiometer Electronics Box Assembly
RF = radio frequency
RTA = real time assessment
SAMBA = SAtellite for Measurement of Background
Anisotropies
SCE = sorption cooler electronics
SCS = sorption cooler subsystem
SOVT = system operation validation test
SS = scanning strategy
SVM = SerVice Module
SWC = SoftWare Component
TM = TeleMetry
TMU = thermo-mechanical unit
TOI = time order information
TQL = telemetry quick look
TSA = temperature stabilization assembly; time series analysis
WMAP =Wilkinson Microwave Anisotropy Probe
WR = warm radiator
XPD = cross-polar discrimination
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