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ABSTRACT
Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) lumi-

nosity function does not significantly evolve at 4< z < 7 and is approximatelyM∗
UV ∼ −21. We investigate

this apparent non-evolution by examining a sample of 178 bright,MUV < −21 galaxies atz = 4 to 7, analyzing
their stellar populations and host halo masses. Including deepSpitzer/IRAC imaging to constrain the rest-frame
optical light, we find thatM∗

UV galaxies atz = 4–7 have similar stellar masses of log(M/M⊙) = 9.6–9.9 and are
thus relatively massive for these high redshifts. However,bright galaxies atz = 4–7 are less massive and have
younger inferred ages than similarly bright galaxies atz = 2–3, even though the two populations have similar
star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances
of these brightz = 4–7 galaxies to halo mass functions from the BolshoiΛCDM simulation implies that the
typical halo masses in∼ M∗

UV galaxies decrease from log(Mh/M⊙) = 11.9 at z = 4 to log(Mh/M⊙) = 11.4 at
z = 7. Thus, although we are studying galaxies at a similar massacross multiple redshifts, these galaxies live
in lower mass halos at higher redshift. The stellar baryon fraction in units of the cosmic meanΩb/Ωm rises
from 5.1% atz = 4 to 11.7% atz = 7; this evolution is significant at the∼ 3σ level. This rise does not agree
with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency
of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.
Subject headings: early universe — galaxies: evolution — galaxies: formation— galaxies: high-redshift —

ultraviolet: galaxies

1. INTRODUCTION

Tracing the buildup of stellar mass from the epoch of the
first galaxies through the present can be used to constrain
models of galaxy formation. Understanding what physics
governs this buildup is one of the key outstanding questions
in galaxy evolution. There is a consensus that the cosmic star
formation rate (SFR) density rises from the dawn of galaxies,
peaks at redshiftsz ∼ 2–3, and then declines steeply atz < 2
(e.g., Madau & Dickinson 2014). The physical origin of this
evolution in galaxy stellar mass growth is poorly understood,
especially at high redshifts. While studies of galaxy evolu-
tion routinely quantify the stellar content of distant galaxies,
it remains challenging to relate the stellar masses to the sup-
ply of gas fueling star formation. Theoretical works attempt
to address these fundamental questions to a varying degree
of success, but observational data have remained incomplete,
particularly at the massive end, and they are dominated by
systematic uncertainties unavoidable in the stitching together
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of datasets from different campaigns (e.g., Behroozi et al.
2013a).

The advances facilitated by the Wide Field Camera 3
(WFC3) on theHubble Space Telescope (HST) over the past
half-decade have led to the discovery of>1000 redshiftz >
6 galaxies (e.g., Finkelstein et al. 2010, 2012a,b, 2013, 2015;
Bouwens et al. 2010, 2012, 2014, 2015; Oesch et al. 2010,
2012, 2013, 2014; McLure et al. 2010, 2013; Wilkins et al.
2011; Schenker et al. 2013). Among the detailed analyses
facilitated by these large samples is the measurement of the
rest-frame ultraviolet luminosity function, which quantifies
the relative abundances of galaxies over a wide dynamic range
in luminosity. As the UV light probes recent star formation
activity, the integral of the rest-frame UV luminosity func-
tion provides an estimate of the cosmic SFR density (e.g.,
Madau et al. 1996; Bouwens et al. 2012; Madau & Dickinson
2014; Finkelstein et al. 2015). The luminosity function is
typically parameterized with the Schechter (1976) functional
form that is a power law at low luminosities and declines ex-
ponentially at high luminosities. Its parameters are the char-
acteristic luminosityM∗

UV , the faint-end slopeα, and the nor-
malizationφ∗. Previous studies typically found that these
parameters evolved with redshift: the characteristic luminos-
ity decreased with increasing redshift as the faint-end slope
steepened (e.g., Bouwens et al. 2007, 2011a,b; McLure et al.
2013). This “luminosity evolution” of the luminosity function
was widely accepted as it fit the general trend observable in
the evolution of the cosmic SFR density.

More recent work, however, has shown that the picture de-
scribed above is incomplete. The first evidence came from
Ono et al. (2012), Finkelstein et al. (2013), and Bowler et al.
(2014), where a larger than expected number of bright galax-
ies turned up asz = 7 surveys moved to wider fields.

http://arxiv.org/abs/1504.00005v2
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FIG. 1.— The spectral energy distribution of a representative galaxy in each of our redshift bins, shown as the blue circles.For filters where the signal-to-noise
was<2, we show the 1σ upper limits. The black curve shows the best-fit stellar population model, and we list the ID and best-fit stellar mass for each galaxy.

Finkelstein et al. (2015) and Bouwens et al. (2015) have con-
firmed this excess, and recent studies have concluded it is
not attributable to gravitational lensing (Mason et al. 2015;
Barone-Nugent et al. 2015). Both Finkelstein et al. (2015)
and Bouwens et al. (2015) computed the evolution of the rest-
frame UV luminosity function atz = 4–8, finding that con-
trary to the preceding results derived from smaller datasets,
the characteristic luminosityM∗

UV was remarkably redshift-
independent betweenz = 4, 5, 6, and 7. The constancy broke
down only atz = 8 where the data were least constraining.
Most of the evolution took place in the characteristic number
density: it declined towards higher redshifts. Therefore,while
galaxies in general became less common at higher redshifts—
consistent with the decline in the cosmic SFR density—bright
galaxies remained relatively common in the distant universe.

Here, we seek to constrain the physical properties in dis-
tant UV-bright galaxies and attempt to understand how they
maintained high levels of star formation. In §2, we de-
scribe the bright galaxy sample that we have taken from
Finkelstein et al. (2015) and discuss the additional constraints
that can be placed on the stellar populations with the inclusion
of Spitzer/IRAC photometry. In §3, we use cosmic abundance
matching to estimate the halo masses and the stellar-to-halo
mass ratios for these galaxies. In §4, we discuss the evolu-
tion of the stellar baryon fraction with redshift, and in §5,
we present our conclusions. We assume the WMAP7ΛCDM
cosmological model (Komatsu et al. 2011) throughout, with
H0 = 70.2 km s−1 Mpc−1, Ωm = 0.275, andΩΛ = 0.725. All
magnitudes given are in the AB system (Oke & Gunn 1983).

2. STELLAR POPULATIONS IN UV-BRIGHT GALAXIES

Here we wish to constrain the physical processes that reg-
ulate the abundance of bright galaxies in the distant universe.
These luminous systems are observed only a short time af-
ter the Big Bang and trace prominent density peaks at their
epoch. We further investigate sources withM1500< −21. This
magnitude is approximately the value ofM∗

UV at these red-
shifts (Bouwens et al. 2015; Finkelstein et al. 2015), though
the exact value ofM∗

UV does get progressively more uncer-
tain with increasing redshift (± 0.09 at z = 4 to ± 0.4 at
z = 7; Finkelstein et al. 2015). Using ground-based data,
Bowler et al. (2015) have found evidence thatM∗

UV may be
fainter than−21 at z = 7, though only at the 2σ level, and
thus not significantly discrepant with the measurements of
Bouwens et al. (2015) and Finkelstein et al. (2015). Because
this study is concerned with the physics driving the apparently
high star-formation rates in distant bright galaxies, the exact
luminosity we choose is not critical. In order to explore rel-
atively bright galaxies, we choose the approximate value of

M∗
UV at these redshifts as our threshold.
We use the sample of∼ 7500 galaxies at 4. z . 8 from

Finkelstein et al. (2015) and refer the reader to that paper for
details on the photometry, photometric redshift sample se-
lection, and derivation of UV absolute magnitude at 1500 Å
(MUV). From their full catalog, here we analyze the 150, 75,
28, 18, and 3 galaxies withMUV < −21 atz = 4, 5, 6, 7, and
8, respectively, which come from the CANDELS GOODS-
South and North fields (with a total area of∼ 280 arcmin2).
The redshift bins are bounded by∆z = ±0.5 from the central
redshift.

2.1. Inclusion of Spitzer/IRAC Photometry

To learn more about these intriguing systems, we turn to
stellar population modeling. We use theHST photometry
from Finkelstein et al. (2015) that includes ACS and WFC3
PSF-matched total fluxes in the wavelength range 0.4 – 1.8
µm (see Koekemoer et al. 2011, for details on the imaging).
This catalog also includes photometry from theSpitzer Space
Telescope Infrared Array Camera (IRAC; Fazio et al. 2004)
imaging of our fields. The IRAC imaging probes the rest-
frame optical atz > 4 and thus provides significant con-
straining power on the stellar masses of our galaxies. It also
gives a more accurate handle on the ages and dust attenu-
ations by reducing the degeneracy between the two param-
eters. The details of the long-wavelength photometry are
presented in Finkelstein et al. (2015); here, we review them
only briefly. The mosaics were obtained by coadding all the
available data in these fields: the GOODS (Dickinson et al.,
in prep),Spitzer Extended Deep Survey (SEDS; Ashby et al.
2013), andSpitzer-CANDELS (S-CANDELS; Ashby et al.
2015) wide-field programs, as well as the deep pointings
from Spitzer program 70145 (the IRAC Ultra-Deep Field of
Labbé et al. 2013) over the Hubble Ultra Deep Field and its
parallels, and program 70204 (PI Fazio) which observed a re-
gion in the GOODS-S field to 100 hr depth. The final mosaics
have a depth of& 50 hr over both CANDELS GOODS fields
and>100 hr over the HUDF main field (Ashby et al. 2015).

TheTPHOT software (Merlin et al. 2015), an updated ver-
sion of TFIT (Laidler et al. 2007), was used to measure
photometry in theSpitzer/IRAC imaging. This software
models the low-resolution IRAC images by convolving the
HST/WFC3H-band image with an empirically derived IRAC
PSF, simultaneously fitting all IRAC sources. This provides
robust photometry even for moderately blended sources. The
full description of ourTPHOT IRAC photometry catalog is
presented in Song et al. (2015).

All high-redshift galaxies were visually inspected in the
TPHOT residual maps. If an object was on or near a strong
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residual, reliable IRAC photometry was not possible, affect-
ing 20-30% of the galaxies in our bright galaxy sample. To
obtain the most robust stellar mass measurements, in our sub-
sequent analysis we do not include these affected galaxies.
Over 90% of the remaining galaxies in our sample had a 3.6
µm or 4.5µm detection of at least 3σ significance, with a
magnitude range atz ≥ 6 of 23.5 ≤ m3.6 ≤ 25.5. This is
expected, as galaxies withM1500 < −21 should be massive
enough at all redshifts to yield an IRAC detection absent
crowding. In fact, when comparing median stellar masses
derived excluding and including galaxies without IRAC con-
straints, the median stellar mass of galaxies with IRAC con-
straints is at most∼ 0.1 dexlower than that of the whole sam-
ple. This is because galaxies with true mid-infrared fluxes
well below the IRAC detection limit can have poorly con-
strained SEDs. In contrast, our results show that the typical
UV bright z > 6 galaxy has a lower mass-to-light ratio than
other possible solutions, thus the IRAC detection prior does
not drive us to higher M/L models.

The IRAC photometry used here is the same as by
Finkelstein et al. (2015) who used the IRAC and additional
HST/ACS F814W photometry to re-measure the photometric
redshifts, removing 14, 14, and 1 galaxies from theirz = 4,
5, and 6 samples, respectively. The galaxy sample we con-
sider here comes from the cleaned sample of Finkelstein et al.
(2015), thus these presumed lower redshift interlopers have
already been removed. In this work, we have performed an
additional iteration of visual inspection of the IRAC imag-
ing, which results in a few more galaxies having preferred
lower redshift solutions. From our sample we remove seven
such additional galaxies which now have preferred lower red-
shift solutions (two from ourz =4 sample, and five from our
z =5 sample). We also remove five additional sources from
our z = 4 sample which have 2.7< zphot < 3.5, as we do not
wish to bias ourz = 4 sample stellar mass measurements. Af-
ter excluding these objects, galaxies in the remaining sample
all have photometric redshifts withinzsample− 0.5 < zphot <
zsample+ 0.7, thus we consider the effects of potential low-
redshift interlopers to be minimal. The inclusion of the very
small number of sources atzphot = zsample+ 0.5 – 0.7 (eight at
z = 4, six atz = 5 and 1 atz = 7; see tables in Appendix) make
no difference to the median stellar mass discussed below. See
Finkelstein et al. (2015) for a quantitative description ofthe
potential contamination.

2.2. Spectral Energy Distribution Fitting

The technique we used to fit stellar population models
to photometry was similar to the one we employed before
(Finkelstein et al. 2010, 2012b,a, 2013, 2015). We used
the updated (2007) stellar population synthesis models of
Bruzual & Charlot (2003) to generate a grid of model spec-
tra1. We varied the stellar mass (defined as the total gas
mass converted into stars), the stellar population metallicity,
the time since the onset of star formation (henceforth, the

1 The 2007 update to the stellar population models of Bruzual &Charlot
(2003) may overestimate the contribution of thermally pulsating asymptotic
giant branch (TP-AGB) stars. However, these stars typically begin to dom-
inate the emission at population ages&1 Gyr and rest frame wavelengths
& 1µm. Our longest wavelength filter (4.5µm) at our lowest redshift (z =
4) probes only 0.9µm, and all other filter/redshift combinations probe bluer
rest-frame wavelengths. The TP-AGB contribution may impact the SED in
post-starburst galaxies at wavelengths as low as 0.5µm (Kriek et al. 2010).
However, our galaxies are highly star-forming, with inferred population ages
are≪1 Gyr. Thus, our choice to use the updated models likely has noeffect
on our results.

age), and the star formation history (SFH). We assumed the
Salpeter2 initial mass function (IMF). Allowed metallicities
spanned (0.02 – 1)Z⊙ and ages spanned 1 Myr to the age
of the universe at the source redshift. We allowed several
different SFH scenarios, including a single burst, continuous
star formation, and both the exponentially decaying and ris-
ing (so-called “tau” and “inverted-tau”) models. We included
nebular emission lines using the prescription of Salmon et al.
(2015), which takes the line ratios from Inoue (2011), assum-
ing that the gas has the same metallicity as the stars and that
all the ionizing photons emitted by the model stellar popu-
lation are reprocessed in the galaxy and their escape is neg-
ligible. To the rest frame spectra we added dust attenuation
using the starburst attenuation curve of Calzetti et al. (2000)
in the range of 0≤ E(B −V) ≤ 0.8 (0≤ AV ≤ 3.2 mag). Then
we redshifted the models to 0< z < 11 and added intergalac-
tic medium (IGM) attenuation (Madau 1995). The resulting
model spectra were integrated through ourHST andSpitzer
filter bandpasses to derive synthetic photometry for compari-
son with our observations.

We emphasize that our model parameterization assumes
that the SFH of each object follows one of the simple sce-
narios (i.e., single burst, continuous, tau, or inverted-tau), not
a superposition of such scenarios. This may seem like an
oversimplification, but evidence is mounting that the SFHs in
distant galaxies vary smoothly with time (e.g. Papovich et al.
2011; Finlator et al. 2011; Reddy et al. 2012b; Salmon et al.
2015). Therefore, the simple scenarios may in fact be rather
good approximations, in particular when deriving the stellar
mass (e.g., Lee et al. 2010). Therefore, the SFHs and thus
the physical properties of the bright galaxies that we con-
sider here should not be strongly affected by burstiness (e.g.,
Jaacks et al. 2012).

The best-fit model was found viaχ2 minimization. We in-
cluded an extra systematic error of 5% of the object flux in
each band to crudely account for the residual uncertaintiesin
the zero point correction and PSF matching process. The un-
certainties in the best-fit parameters were derived via Monte
Carlo simulations, perturbing the observed flux of each object
in each filter with a number drawn from a Gaussian distribu-
tion with a standard deviation equal to the flux uncertainty in
the filter. Taking the source redshift to be statistically uncor-
related with other spectral energy distribution (SED) fitting
parameters, in each Monte-Carlo realization we drew the red-
shift from the photometric redshift statistical likelihood func-
tion of the given object. To prevent low-redshift solutions
from biasing the physical parameters, we limited the random
redshift to be within∆z = ±1 of the best-fit photometric red-
shift. This treatment of the source redshift effectively folded
the uncertainty in redshift into the uncertainty in the phys-
ical parameters (most notably, the stellar mass andM1500;
Finkelstein et al. 2012a). For each galaxy, 103 Monte Carlo
realizations were generated and this provided a sample of as
many values for each model parameter. SFRs for the best-fit
model and for each Monte Carlo realization, were derived by
converting the dust-corrected value ofM1500 to a SFR via the
relation of Kennicutt (1998).

For our subsequent analysis, we discarded realizations with
poor best-fit models withχ2 > 20 to ensure robustness of the
derived properties. This removed a relatively small numberof
galaxies (16, 9, 1, 0 and 1 atz = 4, 5, 6, 7 and 8, respectively).

2 To convert our results to those obtained from a Chabrier IMF,one should
divide the stellar masses and SFRs by a factor of∼ 1.7.
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FIG. 2.— Joint probability distributions for the stellar masses of bright
galaxies (M1500< −21) in ourz = 4, 5, 6 and 7 galaxy samples (blue line). The
histograms are of the best-fit values, and the red dashed lineand red shaded
regions denote the median and 1σ uncertainty on the median, respectively, of
the joint PDFs. Little significant evolution in the median stellar mass is seen
over this redshift range.

The final sample contains 94, 46, 19, 14, and 1 galaxy atz =
4, 5, 6, 7, and 8, respectively. As there is only one galaxy at
z = 8 that satisfies these criteria, we focus on 4< z < 7 for
the remainder of this paper. Figure 1 shows the SED fit for a
typical galaxy in each of our redshift bins.

2.3. Physical Properties

The results of SED fitting are summarized in Table 1. To
derive the median stellar population properties, rather than
stacking the images or fluxes of the galaxies, we stacked
samples of Monte Carlo realizations in the model parameter
space. In each redshift bin, the stacked sample allowed us
to quantify the multivariate distribution of galaxy properties.
The joint probability distribution functions for stellar mass
marginalized over other parameters are shown in Figure 2.
The median of a parameter such as the stellar mass is taken
to be the median value in the bin. The 1σ confidence interval
on the median was calculated via 103 bootstrap simulations
where we rederived the median from a randomly drawn (with
replacement) sample of the galaxies in each redshift bin.

As shown in Table 1, the median stellar population param-
eters do not evolve significantly with redshift. Broadly speak-
ing, MUV < −21 galaxies atz = 4–7 are moderately massive
(log[M∗/M⊙] ≈ 9.6–9.9), somewhat young (<100 Myr), and
have non-negligible dust attenuation (E(B − V ) = 0.07–0.13
corresponding toAV ≈ 0.3–0.5 mag) and high SFRs (∼40–60
M⊙ yr−1).

Significant amounts of dust are likely produced in galax-
ies as early asz ∼ 7, as Finkelstein et al. (2012b) and
Bouwens et al. (2014) have previously noted that massive
and/or UV-bright galaxies had similarly red UV continuum
slopes atz = 4–7, with a typical value of the UV spectral slope
β ∼ −1.8. Both studies concluded that this implied a similar
amount of dust in bright/massivez = 4–7 galaxies, indepen-
dent of redshift. We confirm this result, findingE(B−V) ∼ 0.1
in bright galaxies atz = 4–7 (constrained at 68% confidence
to be> 0 and. 0.15). Therefore, although fainter/lower-
mass galaxies appear to be less dusty at higher redshifts (e.g.,
Finkelstein et al. 2012b; Bouwens et al. 2014), this is not true
for the brightest galaxies. This can be confirmed with ALMA,
and in fact ALMA has recently detected dust emission from
normal galaxies out toz ∼ 5–7.5 (e.g., Watson et al. 2015;

TABLE 1
MEDIAN PHYSICAL PROPERTIES OFGALAXIES WITH M1500< −21

Redshift Number log(M∗/M⊙) Age E(B −V ) SFR
(Myr) (M⊙ yr−1)

z = 4 94 9.86± 0.04 44± 2 0.13± 0.01 56± 4
z = 5 46 9.80± 0.06 35± 2 0.12± 0.02 52± 10
z = 6 19 9.78± 0.07 40± 4 0.07± 0.02 40± 8
z = 7 14 9.64± 0.13 29± 8 0.09± 0.02 41± 9

NOTE. — Median values of physical parameters from the joint prob-
ability distribution describing all galaxies in a given redshift bin that
have a measurement in the IRAC 3.6µm channel and a best-fit model
with χ

2 < 20. The number of galaxies satisfying these criteria in each
redshift bin is given in the second column. The statistical uncertain-
ties on median values were derived via 103 Monte-Carlo simulations in
which the median was rederived from a randomly drawn sample (with
replacement) of the galaxies in each redshift bin. The spread in values
for individual galaxies is larger.

Capak et al. 2015).
If the amount of UV attenuation due to dust among bright

galaxies had evolved fromz = 7 to 4, then it could have led
to our selecting a lower stellar mass at a given UV absolute
magnitude (a similar effect could occur if the dust attenuation
curve is redshift dependent). However, our results show that
this is not the case, as not only does our inferred attenuation
exhibit no evolution, but the median stellar mass also appears
roughly constant over the redshift interval.

Our fiducial analysis assumed a dust attenuation curve from
Calzetti et al. (2000) for consistency with previous results in
the literature. However, a number of recent studies have found
that a Small Magellanic Cloud (SMC)-like (Pei 1992) attenua-
tion curve may be more appropriate for high-redshift galaxies
(e.g., Reddy et al. 2012a; Tilvi et al. 2013; Capak et al. 2015).
This dust attenuation curve has more attenuation for given
values ofE(B − V), thus we explored how our results would
change had we assumed this attenuation curve in our fidu-
cial analysis. Even with this different attenuation curve,the
amount of dust attenuation appears to be roughly constant
in these bright galaxies, with slightly lower values of E(B-
V) = 0.06 – 0.08. We find that our median stellar masses
would change by at most 0.14 dex (consistent with results
from Papovich et al. 2001 that the choice of attenuation curve
does not significantly affect stellar mass measurements), re-
sulting in a minimal change to our major conclusion below
on the stellar baryon fraction (although the slope of the stel-
lar baryon fraction evolution assuming SMC dust is less than
our fiducial scenario, and thus evolution is detected at reduced
significance due to a lower value and larger uncertainty on the
median mass of the z=7 sample in this scenario). We conclude
that our assumption of a Calzetti et al. attenuation curve does
not result in a strong bias in our results.

The youngish character of these galaxies is surprising. Al-
though age is notoriously difficult to measure robustly, the
addition of the IRAC photometry does help, in particular at
z = 6, where the ensemble is constrained to have a typical
age< 50 Myr (68% C.L.). While evolved galaxies are not
absent at these high redshifts (for example, z7_GNW_17001
has log(M∗/M⊙) = 10.7 and an age of 400 Myr), they seem to
be exceptions. This is in stark contrast with galaxies atz . 3 ,
where those residing at the bright-end of the luminosity func-
tion tend to be more evolved.

Reddy et al. (2006) published a stellar population analysis
of galaxies at redshiftsz ∼ 1–3.5. Using the results from their
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models that assume a constant SFH, the median galaxy with
MUV < −21 (derived from the observed R-band magnitude
and spectroscopic redshift) atz ∼ 2 – 3 has log(M∗/M⊙) =
10.2, an age of 260 Myr,E(B − V ) = 0.16 and SFR = 70
M⊙ yr−1 (the results are similar when the sample is split into
two redshift bins centered atz = 2 andz = 3). Thus, bright
galaxies at the peak of cosmic star-formation activity have
similar SFRs and dust attenuations as bright galaxies in the
epoch of reionization, but the lower redshift galaxies are∼ 2–
2.5× more massive and have rest-UV/optical light dominated
by stars>5× older. Such a comparison with lower redshift
makes sense if one is interested in the evolution of properties
of similarly bright galaxies with redshift. It is also validif we
wish to explore the evolution of galaxies withMUV < M∗

UV
with redshift, asM∗

UV at z ∼ 2.3 and 3 (−20.7 and−20.97, re-
spectively; Reddy & Steidel 2009) are similar to what we find
at z ≥ 4.

A more interesting question is how UV-bright galaxies at
z ∼ 2–3 are related to UV-bright galaxies atz ∼ 6–8. Specif-
ically, in view of the hierarchical galaxy assembly, are the
former galaxies descendants of the latter? Are the latter
progenitors of the former? Moreover, galaxy merging com-
plicates direct number-counting-based matching across red-
shifts. A few recent studies have tried comparing galax-
ies at different redshifts at the same cumulative number
density (e.g., van Dokkum et al. 2010; Papovich et al. 2011;
Leja et al. 2013). Behroozi et al. (2013a) showed that such a
comparison is adequate for identifying the low-z descendant
population of a high-z population (see also Jaacks et al. 2015).
This is because the majority of massive high-z galaxies do
not end up merging into substantially more massive systems.
However, the converse is not true: reflecting hierarchal merg-
ing, the cumulative number density of the high-z progenitor
population of a low-z population has a comparatively higher
cumulative number density.

As shown in the following subsection, galaxies atz = 6
and 7 haven(MUV < −21) = 3.6× 10−5 Mpc−3 and 2.4×
10−5 Mpc−3, respectively. Using the luminosity functions of
Reddy & Steidel (2009) at 1.9< z < 2.7 (the median redshift
of thez ∼ 2–3 comparison sample we quote here isz = 2.44),
we find n(MUV < −21) = 2.24× 10−4 Mpc−3, unsurprisingly
more abundant than our high-redshift sample. To match the
cumulative number densities of our high-redshift samples,we
need to select objects withMUV < −20.0 and< −19.8 for our
z = 6 and 7 sample, respectively. TheMUV < −21 galaxies at
z ∼ 2–3 are thus plausible descendants of the high-z galaxies
at these fainter magnitudes.

Although above we only report stellar population results for
bright galaxies, we performed SED fitting on the entire sam-
ple of Finkelstein et al. (2015), finding thatMUV = −20 galax-
ies atz = 6 have mean stellar masses of log(M∗/M⊙) = 8.7
and mean ages of 34 Myr. Atz = 7, MUV = −19.8 galaxies
have median stellar masses of log(M∗/M⊙) = 8.5 and median
ages of 28 Myr. We conclude that, compared to either sim-
ilarly bright or similarly abundant galaxies at lower-redshift,
UV-bright galaxies atz > 6 are significantly younger and less
massive, but have similar SFRs, as inferred from their similar
UV luminosities, and exhibit relatively little evolution of dust
attenuation at these luminosities.

We acknowledge that ages are notoriously difficult to con-
strain, as they are tied to the assumed star-formation histo-
ries (e.g., Papovich et al. 2001). In more realistic scenarios,
the young stars that dominate the observed SED are mod-

estly "outshining" the older generations, potentially biasing
the measured age. However, the stellar masses (which we use
for our primary result in the following sections) are robustto
age variations (Lee et al. 2010), thus this potential bias does
not affect our main results.

3. HALO MASSES OF UV-BRIGHT GALAXIES

3.1. Halo Masses

Given the relatively high stellar masses and SFRs seen in
our sample ofz ≥ 6 galaxies, one may wonder if the processes
governing gas cooling and the conversion of cold gas into stars
differ from those at lower redshift. As a step toward answer-
ing this question, we compare the stellar massesM∗ of these
systems to the baryon masses in halos (Ωb/Ωm)Mh computed
assuming a cosmic-mean baryon fraction ofΩb/Ωm = 0.1669
(Komatsu et al. 2011). The clustering of these systems would
have provided the most direct constraints on the halo mass,
but the numbers and surface densities of these galaxies, partic-
ularly atz ≥ 7, are not yet sufficient to permit a robust cluster-
ing analysis (though see Barone-Nugent et al. 2014). Instead,
we use abundance matching to estimate the halo masses for
our bright galaxies. We refer the reader to previous works for
a full discussion of abundance matching (e.g., Moster et al.
2010; Behroozi et al. 2010). Here, we review the procedure
only briefly.

Abundance matching assumes that the galaxy luminosity or
stellar mass is a monotonic function of the halo mass. The
most luminous galaxies are assumed to live in the most mas-
sive halos. This is certainly a plausible assumption among the
luminous galaxies we study here, but perhaps not among the
more stochastic dwarf galaxies. Starting with a cosmological
simulation (in this case, the pureΛCDM simulation Bolshoi),
one selects simulation snapshots close in redshift to the target
redshift of an observational survey. In these snapshots, one
selects a simulation volume equal to the volume of the sur-
vey. One then identifies all virialized halos in the volume and
rank-orders them by mass. After rank-ordering the observed
galaxies by their luminosities, one places each galaxy in the
simulated halo of the matching rank. This procedure provides
a mapping of galaxy statistics onto host halo statistics.

Here, we use Schechter parameterization of the observed
luminosity functions at each redshift from Finkelstein et al.
(2015) to estimate the host halo masses for the bright (M1500<
−21) galaxies in our sample. Given the present stellar mass
function uncertainties, luminosity-based matching is cur-
rently more robust than the stellar mass-based matching. In
the future, the matching should be performed directly with
the stellar mass as it should be more correlated than the UV
luminosity with the host halo mass (e.g., Lee et al. 2009;
Gerke et al. 2013).

For our analysis, we use the results from the Bolshoi cos-
mological simulations (Klypin et al. 2011), which has 20483

particles in a 250 (Mpc/h)3 box. This translates to a halo
mass resolution of log(Mh/M⊙) = 10. As we will find that our
galaxies have halo masses≫ 1010 M⊙, the resolution of Bol-
shoi is more than sufficient for the present analysis. We use
the halo mass functions derived in Behroozi et al. (2013b),
which are a modification of the Tinker et al. (2008) mass func-
tions, include subhalos, and are accurate at very high red-
shifts (see Appendix G of Behroozi et al. 2013b). We derived
halo mass functions at our redshifts of interest by volume-
averaging the Bolshoi snapshot mass functions over the same
redshift ranges as those defining our galaxy samples.
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FIG. 3.— Top left: The cumulative luminosity function atz = 4, 5, 6, and 7. Bottom Left: Cumulative halo mass functions at z = 4, 5, 6, and 7, derived by
volume-averaging the Bolshoi snapshot mass functions overthe same redshift ranges as those defining our galaxy samples. The arrows show our results from
abundance matching atz = 7, where galaxies withM1500< −21, which haven(MUV < −21) = 2.5×10−5 Mpc3, have halo masses of log(Mh/M⊙) = 11.35. Right:
Relation between observed UV absolute magnitude and abundance-matching-derived halo mass at our redshifts of interest. The arrows denote the halo masses at
our magnitude of interest ofMUV = −21.

The top-left panel of Figure 3 shows the cumulative lumi-
nosity functions atz = 4–7 and the bottom-left panel shows the
cumulative halo mass functions at the same redshifts. To infer
the host halo masses for the bright galaxies withM1500< −21,
we first find the cumulative number density of galaxies at
that magnitude. For example, forz = 7, the number density
is indicated with the horizontal arrow in the two left panels
of Figure 3. The host halo masses can then be inferred by
finding the halo mass above which the cumulative halo num-
ber density equals the cumulative galaxy density. We find
log(Mh/M⊙) = 11.93, 11.68, 11.57, and 11.35 atz = 4, 5, 6,
and 7, respectively. To estimate the uncertainties in the halo
masses, we ran 103 Monte Carlo simulations, in each drawing
a luminosity function randomly from the MCMC sample gen-
erated during the luminosity function estimation, which ac-
count for both Poisson noise and uncertainties in the luminos-
ity function completeness simulations (see Finkelstein etal.
2015). We find that the uncertainties in the halo mass are low,
∼0.01–0.03 dex, reflecting relatively low uncertainties in the
cumulative luminosity functions.

3.1.1. Cosmic Variance

To estimate how our measured abundances of bright galax-
ies are affected by cosmic variance, we used a suite of semi-
analytic models. These models, based on Somerville et al.
(2008), were provided to the CANDELS team, and include
a set of mock catalogs, one for each of the five CANDELS
fields (with each individual mock catalog covering a volume
somewhat larger than the observed volume). We tuned the
dust attenuation in these SAMs to match the observed UV lu-
minosity functions from Finkelstein et al. (2015). In each of
our redshift bins, we used the SAMS to extract 64 indepen-
dent volume elements comparable to one GOODS-sized field
(16′ × 10′) and 3192 independent volume elements compa-
rable to a single WFC3 pointing (2.1′ × 2.1′). In each red-
shift bin, the fractional uncertainty due to the combination of
Poisson fluctuations and cosmic variance was derived as the
standard deviation (computed over all of the realizations of a
given field size) of the number of galaxies in a luminosity bin

of ∆MUV = 0.5 mag centered atMUV = −21, divided by the
mean number of galaxies in the bin.

The total fractional uncertainty due to Poisson fluctuations
and cosmic variance was then derived by combining the vari-
ances from two GOODS-sized fields and five single WFC3
pointing-sized fields, as this was the area used in the luminos-
ity function calculation by Finkelstein et al. (2015), who used
GOODS-S, GOODS-N, and five individual fields (the HUDF,
the two HUDF parallels, and the first two first-year Frontier
Fields parallel fields). We find that the fractional uncertainties
due to cosmic variance are 0.132, 0.159, 0.212, and 0.327 at
z = 4, 5, 6, and 7, respectively. We include these uncertainties
in the Monte Carlo simulations discussed in the above para-
graph, and find that the uncertainty in the derived halo mass
increases by a factor of∼ 2 to 0.03 dex atz = 4 and 0.06 dex at
z = 7 with the inclusion of the uncertainty due to cosmic vari-
ance. Our derived halo masses, and these total uncertainties,
are listed in Table 2.

3.2. Evolution of the Stellar-to-Halo Mass Ratio

Comparing the halo masses estimated in the previous sub-
section to the median stellar masses estimated in §2.3, we can
calculate the ratio of the median stellar mass to halo mass
(SMHM). We findM∗/Mh = 0.009, 0.013, 0.016, and 0.020 at
z = 4, 5, 6, and 7, respectively. Thus, at a constant UV lumi-
nosity, the stellar-to-halo mass ratio increases with increasing
redshift. These results are listed in Table 2.

The cosmic baryon mass fraction is much higher than the
M∗/Mh ratios we derive, atΩb/Ωm = 0.1669 (Komatsu et al.
2011). In Figure 4, we show the evolution of the SMHM ra-
tio in the units ofΩb/Ωm as a function of redshift. We re-
fer to this quantity as the stellar baryon fraction (SBF), asit
measures the amount of baryons converted into stars com-
pared to the cosmic allotment of baryons in the halo. We
find that the SBF evolves from 0.117± 0.043 at z = 7 to
0.051± 0.006 atz = 4. This factor of∼ 3 evolution is sig-
nificant, as fitting a linear function for SBF(z) yields the slope
dSBF/dz = 0.0239±0.0074, with the trend detected at 3.2σ
significance.
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FIG. 4.— The stellar baryon fraction (SBF) in bright (MUV = −21) galaxies fromz = 4 to 7. We define the SBF as the stellar to halo mass ratio in units of the
cosmic baryon mass fractionΩb/Ωm. We find that the SBF increases with increasing redshift, which may be responsible for the apparent lack of evolution in the
characteristic magnitudeM∗

UV observed over this redshift range.

The inferred significance of the trend depends on our as-
sumed uncertainties in the stellar baryon fractions. We as-
sumed an uncertainty in the halo mass and median stellar mass
as reported in Table 2. The quoted stellar mass uncertainties,
which decrease from 0.14 dex atz = 7 to 0.04 dex atz = 4, are
well below the uncertainty for an individual object, as herewe
are interested in the accuracy with which we can constrain the
median stellar mass at different redshifts. However, theseval-
ues are consistent with the typical uncertainty in the median
stellar mass atMUV = −21 derived by Song et al. (2015), who
fit the mass-to-light ratio over a wide dynamic range in UV
luminosity, finding that it decreases from 0.1 dex atz = 7 to
0.02 dex atz = 4. If one used the median of individual galaxy
mass uncertainties in each of our samples, which decreases
from 0.19 dex atz = 7 to 0.11 dex atz = 4, the trend of in-
creasing SBF with redshift is still apparent (albeit reduced in
significance to∼ 1.7σ).

Finally, we recall that our fiducial sample was selected to
include galaxies withMUV < −21. Given the shape of the
luminosity function, the median magnitude of this sample is
very close to−21 (ranging from−21.2 to −21.3). To check
if our sample selection biases the median masses, we exam-
ined how the evolution of the stellar baryon fraction changes
if we use the median stellar mass of galaxies with luminosi-
ties MUV = −21± 0.25. We find a comparable number of
galaxies as in our fiducial sample, specifically 118, 76, 20,
and 17 galaxies atz = 4, 5, 6, and 7, respectively. The me-
dian stellar mass is slightly lower than in our fiducial sam-
ple, log(M∗/M⊙) = 9.68, 9.66, 9.50 and 9.52 andz = 4, 5,
6 and 7, respectively. The amplitude of the redshift deriva-
tive of the stellar baryon fraction is thus lower,dSBF/dz =
0.0123± 0.0041, yet the evolution is still significant at the
3.1σ level. We conclude that there is significant evolution in
the stellar baryon fraction in that it decreases with decreasing
redshift, and that this evolution is stable against severaldef-

initions of both the median stellar mass and the stellar mass
uncertainty.

3.2.1. Comparison to Previous Results

Behroozi et al. (2013b) recently studied the evolution of
the SMHM relation by modeling all available observational
constraints, including luminosity functions, stellar mass func-
tions, and SFRs, and exploring the galaxy evolution parame-
ter space with an MCMC search. They found that the SMHM
curve peaks at a roughly constant halo mass of log(Mh/M⊙) =
11.7 at z = 0–4. Specifically, atz = 4, they found a peak
SBF at a halo mass of log(Mh/M⊙) ≈ 12.0, consistent with
the typical halo mass we derive for our brightz = 4 galax-
ies, log(Mh/M⊙) = 11.9. Then they went on to find that the
peak of the SMHM relation atz ≥ 5 occurs at a halo mass
steadily decreasing with redshift, log(Mh/M⊙) = 11.9, 11.6,
and 11.4 atz = 5, 6, and 7, respectively. This is very similar
to what we find for the typical halo masses ofM∗

UV galaxies,
log(Mh/M⊙) = 11.7, 11.6, and 11.4 atz = 5, 6, and 7, respec-
tively. The peak SMHM ratio measured by Behroozi et al.
(2013b) is somewhat higher,∼3.7% atz = 7 (converting from
a Chabrier to our Salpeter IMF) than the 2.0% we find here.
However the two values are indistinguishable given the sig-
nificant uncertainties in the high-redshift observables, par-
ticularly the stellar mass functions used by Behroozi et al.
(2013b).

Although here we are specifically concerned with the halo
masses of bright galaxies, in the right-hand panel of Figure3
we also provide the abundance-matching-derived halo masses
at all observed magnitudes in each of our redshift bins. Our
derived halo mass of log(Mh/M⊙) = 11.35 atz = 7 is consis-
tent with a recent clustering-based measure of log(Mh/M⊙)≈
11.2 from Barone-Nugent et al. (2014). However, their halo
mass estimate was for galaxies withMUV < −19.4, a sam-
ple that has a lower average luminosity than our sample, and
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TABLE 2
DARK MATTER HALO PROPERTIES OFBRIGHT GALAXIES

Redshift logn(MUV < −21) logMh Median Stellar Baryon
(Mpc−3) (M⊙) M∗/Mh Fraction

z = 4 −3.86 11.93+0.03
−0.03 0.009±0.001 0.051±0.006

z = 5 −4.01 11.68+0.04
−0.03 0.013±0.002 0.079±0.013

z = 6 −4.45 11.57+0.06
−0.03 0.016±0.003 0.097±0.019

z = 7 −4.62 11.35+0.09
−0.06 0.020±0.007 0.117±0.043

NOTE. — The uncertainties in the halo mass are derived via Monte
Carlo simulations and include the uncertainty in the numberdensity of
MUV < −21 galaxies, which reflects our fiducial luminosity functionun-
certainties as well as cosmic variance. The uncertainties in M∗/Mh and
the stellar baryon fraction assume an uncertainty in the median stellar
mass from Table 1.

thus a lower halo mass is expected, as shown in the right-hand
panel of Figure 3. Ourz = 4 results are consistent with earlier
clustering-based estimates by Lee et al. (2006), while atz =
5 andz = 6, our derived halo masses are somewhat higher
than the clustering-based estimates from Lee et al. (2006) and
Overzier et al. (2006), respectively, likely due to the fainter
luminosities considered in those works (MUV < −20 −19.5,
respectively). Although there are minor differences, it isen-
couraging that two independent methods, abundance match-
ing and clustering, tentatively agree on the halo mass esti-
mates at such high redshifts, though certainly the clustering-
based can be made more robust atz > 6.

3.2.2. UV Luminosity Scatter

The halo mass estimates in § 3.1 did not explicitly model
the effect of the scatter in UV luminosity at a fixed halo
mass. The estimates compared the number density in galaxies
with MUV < −21 to the number density in halos with masses
> Mh to derive the characteristic halo massesMh. The halo
mass-luminosity relation has an intrinsic scatter that is usually
treated as a Gaussian in the magnitudeMUV centered on some
median (or mean) halo-mass-dependent magnitude. Because
of this scatter, some halos with masses> Mh can can host
galaxies with atypically low luminosities,MUV > −21, plac-
ing them outside of our luminosity cut. However, in § 3.1, the
halos hosting these faint interlopers were being counted inthe
cumulative halo mass function and this could have biased the
derivedMh. If we had known which halos hosted faint inter-
lopers (which we do not), we would have excluded them from
the halo counting to derive a more accurateMh. Excluding a
fraction of halos at every halo mass, the resulting characteris-
tic halo massMh would have been lower than the scatter-blind
estimate (Behroozi et al. 2010).

Here, we attempt to quantify this bias. We estimate the
amplitude of the luminosity scatter from the relation between
the UV luminosity and the stellar mass derived by Song et al.
(2015). This is warranted because the stellar mass is ex-
pected to be more correlated with the halo mass than with
UV luminosity. We find that at the mass of our sample
log(M∗/M⊙) ∼ 9.8, the scatter in the UV absolute magnitude
is∼ 0.3 dex at all redshifts we consider.

To assess the impact of luminosity scatter on our abundance
matching-determined halo masses, we carried out the itera-
tive deconvolution described in Reddick et al. (2013) to geta
handle on the true, underlying bivariate distribution of halo
masses and observed UV luminosities that exhibits an intrin-
sic luminosity scatter at fixed halo mass. We performed abun-

dance matching on the bivariate distribution properly apply-
ing the MUV < −21 cut to find halo masses log(Mh/M⊙) =
11.65, 11.44, 11.36, and 11.13 atz = 4, 5, 6, and 7, respec-
tively. These values are∼ 0.2 – 0.25 dex lower than the val-
ues obtained by scatter-blind abundance matching in § 3.1.
Therefore we expect that the true host halo masses of our
MUV < −21 galaxies are slightly lower than those reported in
Table 2. If the luminosity scatter had been 0.5 dex, our halo
masses would be overestimated by 0.7–0.9 dex.

Since halo masses at all redshifts are corrected by a similar
logarithmic increment, the effect of luminosity scatter does
not affect our detection of an evolving stellar baryon fraction.
But for higher luminosity scatter which could characterizea
different regime in which galaxy formation is more stochastic,
this effect could be more significant.

3.2.3. Systematic Uncertainties in Stellar Mass

Our derivation of the stellar masses required a variety of
assumptions that could have potentially biased our results.
Could any of the biases explain away our conclusion that UV-
bright galaxies fromz = 4 to 7 have similar stellar masses but
are found in progressively lower mass halos toward higher
redshifts? One strong assumption we made is that of the
Salpeter IMF. If the high-mass slope of the IMF evolved
with redshift, this certainly could have biased the conclusion.
Other assumptions involve the parameterization of SFHs and
the treatment of metallicities and dust attenuations. As dis-
cussed earlier, the UV-continuum slopes in UV-bright galax-
ies appear to be roughly constant across this redshift range,
and so dust abundances will only affect our results if the typ-
ical dust-law changes as a function of redshift. Direct mea-
surement of the metallicities is beyond our current capabilities
at these high redshifts (though see Finkelstein et al. 2013), but
a plausible metallicity variation produces only a minor change
in colors. The SFH parametrization is potentially more trou-
bling, though recent results indicate that at least on aver-
age, galaxy-scale SFRs are smooth functions of time (e.g.,
Salmon et al. 2015).

A basic test of any bias in the mass measurements is to com-
pare the shapes of the SEDs of our galaxies. Figure 5 shows a
median flux stack of galaxies in each of our redshift bins ver-
sus the rest-frame wavelength, scaled vertically to a common
redshiftz = 6. The shapes of the SEDs are remarkably simi-
lar, especially in the rest-frame UV, where they appear iden-
tical. Modest differences are visible in the rest-frame optical,
likely due to the lower signal-to-noise ofSpitzer/IRAC data,
as well as the strong nebular [OIII ] and Hα lines which red-
shift through the bandpasses. Given the highly similar SED
shapes, it is unlikely that an unaccounted for systematic ef-
fects strongly bias our results. Rather, we appear to be study-
ing a very similar type of galaxy at each redshift; this type
of galaxy lives in lower mass halos at higher redshift. This
conclusion is confirmed by stellar population model fits to the
stacks, which yield stellar masses consistent within∼0.3 dex
of the median stellar masses in Table 1 (log[M∗/M⊙] = 9.8,
10.0, 9.9 and 9.9 atz = 4, 5, 6, and 7, respectively).

3.2.4. Dusty Star-Forming Galaxies

Our sample is selected on the basis of UV luminosity and
therefore it is prudent to examine what effect that may have
on our results. In particular, a rest-frame UV selection may
miss extremely dusty galaxies which have their UV light at-
tenuated below our detection sensitivity. Such systems, re-
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FIG. 5.— The median flux-stacked SEDs of our samples of bright galaxies
at each redshift. The spectral shapes of these SEDs are remarkably similar,
with minor differences appearing at longer wavelengths dueto the presence
of nebular emission lines, as well as the generally lower signal-to-noise of
the long-wavelength data. The near identical nature of these SEDs confirms
our conclusion that bright galaxies fromz = 4 to 7 are physically very similar,
and that these log(M∗/M⊙) = 9.6–9.9 galaxies on average inhabit lower mass
halos at higher redshifts.

ferred to as sub-millimeter galaxies (SMGs; after their se-
lection wavelength), have been well studied at moderate red-
shifts. These galaxies are typically very massive (log M/M⊙

> 11; Casey et al. 2014). If we were missing a large popula-
tion of these galaxies, it would bias our derived halo massesto
be too high (as we would be placing our observed galaxies in
the most massive halos in our volume, which would truly be
occupied by these dusty galaxies). If the abundance of SMGs
evolves with redshift atz > 4, then not accounting for these
systems would bias our halo masses differently at different
redshifts, biasing our inferred evolution of the stellar baryon
fraction.

To explore the potential bias introduced by our UV-only se-
lection, we compare the space density of SMGs atz = 4 to our
UV luminosity function. The space density of SMGs at high
redshift is very uncertain for a variety of reasons, including
the relatively shallow depths of sub-millimeter surveys, and
the difficulty of obtaining redshifts for such systems. We start
at z = 2, where Chapman et al. (2005) found a space density
for SMGs of 5× 10−5 Mpc −3. A more complete survey for
SMGs at multiple wavelengths was performed by Casey et al.
(2013), who found a SMG SFR density∼2× higher (see Fig.
23 of Casey et al. 2014), implying a space density ofz = 2
SMGs of 10−4 Mpc −3. To estimate the evolution in this
quantity to z = 4, we use the redshift evolution shown by
Casey et al. (2014), which shows that the SFR density from
SMGs is an order of magnitude lower atz ∼ 4 than atz ∼ 2.
Therefore we adopt 10−5 Mpc −3 as a fiducial space density
for z = 4 SMGs.

We simulated the absence of SMGs in our sample by adding
this abundance to our observed cumulative luminosity func-
tions, and repeating the abundance matching analysis. The
absence of such a population of SMGs results in a bias of the
z = 4 halo mass for our galaxies of interest of only 0.02 dex
(11.91 versus our fiducial result of 11.93). This is within the
68% confidence range on our fiducial halo mass, therefore not
significant. If the abundance of SMGs stays constant toz =
7, the declining UV luminosity function results in a slightly
larger overestimate of the halo mass of 0.06 dex atz = 7. Were

this the case, the observed evolution in the stellar baryon frac-
tion would be even stronger than we observe. However, such
a high abundance of dusty galaxies atz = 7 is highly unlikely.
We therefore conclude that our selection does not affect our
main conclusions in this study.

4. DISCUSSION

To understand the physical effects responsible for our ob-
served trend of an increasing SBF with increasing redshift,
here we consider a variety of possible mechanisms, with the
caveat that our observations cannot uniquely distinguish be-
tween these scenarios. First, galactic gas at higher redshifts
has higher surface densitiesΣg ∝ fgasM

1/3
h (1+ z)2, wherefgas

is the gas fraction in the cooled, virialized phase. The typi-
cal free-fall time to which the gas-to-stars conversion rate is
proportional (albeit with a small coefficient—dimensionless
SFR—see, e.g., Krumholz et al. 2012) istFF ∝ (1 + z)−3/2.
However, masses of the most massive progenitors (MMP) of
our galaxies’ host halos areMh,MMP(z′) = Mh(z)e−α(z′−z) with
α ≈ 1, wherez′ > z is the progenitor redshift (Neistein et al.
2006; Fakhouri et al. 2010). Therefore the mass-doubling
growth time istgrow(z) ∼ [(1 + z)H(z)d lnMh,MMP/dz]−1 ∝ (1+
z)−5/2. This means that the ratio of the free-fall time to the
growth timeincreases with increasing redshift astFF/tgrow ∝

1+ z, suggesting that if the minor progenitors are inefficient
star formers so that they do not contribute substantial stel-
lar mass to the main branch, it should be progressively more
difficult at high redshifts to convert the gas acquired through
growth into stars (Bouché et al. 2010; Krumholz & Dekel
2012; Dekel et al. 2013). Second, the gas-phase metallicity
and associated dust abundance appear to decrease with in-
creasing redshift and decreasing mass (e.g., Finkelstein et al.
2012b; Bouwens et al. 2014). Because metals and dust are the
principal gas-cooling and UV-shielding agents, the observed
trend of decreasing dust with increasing redshift could have a
dramatic effect on the abundance of the cold (T . 1000K)
gas in which star formation seems to exclusively happen
(Krumholz & Dekel 2012; Krumholz et al. 2012). The drop
in cold gas abundance toward higher redshifts would imply
lower SFRs.

All this suggests that from the supply-versus-consumption
side alone, we expect an opposite trend from the one mea-
sured, a trend in which the stellar baryon fraction decreases
with increasing redshift. How should we then interpret the
stellar baryon fractions that increase with increasing redshift?
We can only speculate. Our observations imply that cold gas
is less readily available for star-formation at lower redshifts.
How might this come about? One scenario involves the tran-
sition of gas from the warm to cold phase, which occurs at
a density∼ 0.1–1cm−3 (e.g., Wolfire et al. 1995, 2003). As
the gas density decreases towards lower redshift, a progres-
sively smaller mass fraction of the neutral gas phase is cold.
Additionally, the nature of gas collapse in the disk is criti-
cal, as the galaxy-wide star formation rate may be particu-
larly sensitive to whether the central gaseous structure (typi-
cally a clumpy disk) is violently self-gravitating (Dekel et al.
2009; Ceverino et al. 2010). Star formation is most efficient
when large gas clumps become self-gravitating, and large
self-gravitating clumps of gas have been observed to form
stars with high efficiency atz ∼ 3 (e.g., Genzel et al. 2011).

Another possibility is that we are witnessing the effect
of the growth of the circumgalactic medium (CGM) around
galaxies. Observations with the Cosmic Origins Spectrograph
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onHST have recently revealed circumgalactic ionized gas ha-
los at low redshift containing significant baryon and synthe-
sized metal fractions (Werk et al. 2014). The CGM likely
grew over time, as shock waves driven by supernova blast
waves and superbubbles raised an increasing cumulative gas
fraction to high temperatures. This reprocessed gas would be
deposited in a warm ionized CGM and, at least for a period of
time, off limits to conversion into the cold phase. However,
the physics of the CGM is poorly understood, and in particu-
lar it is not clear at what rate the CGM gas recondenses back
into the warm neutral phase in the disk.

Finally, the feedback which builds the CGM may be less ef-
ficient at high redshift, further increasing the amount of cold
gas available for star formation. One may expect that the ef-
fects of feedback are less significant at high redshift where
halos are denser and at fixed mass have higher circular ve-
locities. Both make it more difficult for SNe to power galac-
tic outflows that eject material into the CGM or outside the
halo. Using the virial estimate from Bryan & Norman (1998)
we calculated the circular velocities of the host halos in our
galaxy sample to be 242, 219, 219 and 197 km s−1 at z =
4, 5, 6 and 7, respectively. Thus, the circular velocities in
fact decrease towards higher redshift, which would if any-
thing make it easier to eject material at higher redshift. How-
ever, the properties of the feedback mechanisms may evolve
as well. First, as galaxies evolve and the typical gas density
decreases, the supernova remnant thermalization efficiency,
which is an increasing function of the cooling time in HII re-
gions shock-heated by supernova blastwaves, increases, i.e., a
progressively smaller fraction of the initial∼ 1051erg per su-
pernova is quickly irradiated (see, e.g., Creasey et al. 2013).
This implies that at lower redshifts, a larger fraction of super-
nova energy may be available to drive galaxy-wide outflows,
thus making the feedback from star formation more effective.
It is also possible that due to the very short growth times at
high redshifts, so much gas is piling on that the outflows are
somehow bottled in. Furthermore, the higher dust content at
lower redshift can lead to stronger momentum-driven radia-
tive stellar feedback, regulating further star formation (see,
e.g., Murray et al. 2010; Andrews & Thompson 2011).

One additional potential physical mechanism which may
evolve is the ability of feedback from active galactic nuclei
(AGNs) to suppress star formation, which is commonly im-
plemented in theoretical models to avoid an overabundance of
bright/massive galaxies (see discussion in Somerville & Davé
2014). This type of feedback requires an accreting super-
massive black hole, and although there are some examples
of bright AGNs at very high redshift, the AGN/quasar lu-
minosity function appears to decrease rapidly atz > 3 (e.g.,
Richards et al. 2006). Bowler et al. (2015) have recently ob-
served that the bright end of the galaxy UV luminosity func-
tion was steeper than the halo mass function atz = 6, but not
at z = 7, and hypothesized that such an observation could
be explained if feedback in bright/massive galaxies due to
AGN first “turned on” atz . 6. However, the details of how
AGN couple with galaxies and their surroundings, particu-
larly at these epochs, are highly uncertain, so it remains un-
clear whether black hole accretion has significantly affected
the growth of the galaxies we consider here.

While the scenarios we have discussed are clearly specula-
tive, our observations imply that the latter effects, primarily
a reduced efficiency of feedback at higher redshift due to a
variety of redshift-dependent effects, control the evolution of

the stellar baryon fraction. We conclude that the true causeof
how a larger fraction of the baryons turns into stars at higher
redshifts is most certainly determined by a delicate competi-
tion of factors.

Regardless of the underlying cause, the consequences of the
increased availability of cold gas are intriguing. Our results
at z = 6 and 7 show that∼10%–12% of the cosmic comple-
ment of baryons in these galaxies has been converted into
stars. The remaining baryons must exist in the gas phase.
If they are in the warm or cold neutral phase or the molec-
ular phase, then the gas fraction in these phases is much
higher than at lower redshifts (Magdis et al. 2012). A high
gas mass fraction at very high redshifts is not unexpected and
may soon be confirmed the Atacama Large Millimeter Array
(ALMA; e.g., by measuring the dynamical mass via spectrally
resolved FIR emission lines). There are indirect empirical
hints that neutral and molecular gas fractions increase with
redshift. Papovich et al. (2011) studied the evolution of ob-
served galaxy SFRs, stellar masses, and sizes, and concluded
that the gas-to-stellar mass fraction must rise with redshift,
reachingMgas/M∗ = 3.9 atz = 7 (at a higher cumulative num-
ber density of 2×10−4 Mpc−3). This could intriguingly play
some role in the decreasing visibility of Lyα at z > 6 (e.g.,
Fontana et al. 2010; Pentericci et al. 2011; Tilvi et al. 2014;
Pentericci et al. 2014).

Finally, we examine the likely descendants of these bright
z = 4–7 galaxies. Specifically, being among the most rapidly
star forming galaxies at their redshifts, could some of them
end up evolving into extreme systems such as sub-millimeter
galaxies (SMGs) by lower redshifts? Using the halo mass
evolution tool from Behroozi et al. (2013a), we calculated the
68% confidence range of the descendant halo masses of our
sample of bright high-redshift galaxies. We find that byz = 2,
galaxies we observe atz = 4, 5, 6, and 7 will exist in halos with
log(Mh/M⊙) = 12.3–12.8, 12.3–12.8, 12.4–13, and 12.4–
13.1, respectively. SMGs are thought to be hosted by halos
with log(Mh/M⊙) ≈ 13 (e.g., Hickox et al. 2012; Casey et al.
2014), thus the majority ofM∗

UV galaxies atz = 4–5 will evolve
into galaxies atz = 2 with halos slightly less massive than
those of the typical SMGs. However, the SMG host halo mass
begins to be consistent with the expected descendants of the
z = 6–7 galaxies, thus some subset of very UV-bright galaxies
at z > 6 may, in principle, turn into lower-redshift SMGs. A
basic test of this is to see whether, if we assume these galaxies
keep their current SFRs, they can grow large enough to match
the stellar mass of a typical SMG byz = 2. If we assume a SFR
of 50M⊙ yr−1 (Table 1), we find that thez = 2 descendants of
M∗

UV galaxies atz = 6 and 7 will have log(M∗/M⊙) = 11.1.
This is in the range of SMG stellar masses found in the lit-
erature (see review in Casey et al. 2014). Our assumed con-
stant SFR of∼ 50M⊙ yr−1, which implies stellar masses con-
sistent with those observed in SMGs, is approximately the
SFR disk galaxies should have prior to coalescence to pro-
duce SMGs in the merger-driven scenario for SMG formation
(Narayanan et al. 2010).

5. CONCLUSIONS

Recent observations have shown that the characteristic UV
luminosityM∗

UV does not significantly evolve fromz = 4 to 7,
which is unexpected given the general decline in the cosmic
SFR density towards higher redshift over that time. To investi-
gate the physical effects behind this observed non-evolution in
M∗

UV , we have inspected the stellar populations inM∗
UV galax-
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ies atz = 4 to 7. We have found the following results:

• Galaxies withMUV < − 21 appear to have very similar
physical properties atz = 4, 5, 6, and 7, including stellar
mass, dust attenuation and SFR.

• Using abundance matching to infer the likely hosting
halo masses, we found thatMUV < −21 galaxies, which
we have measured to have log(M∗/M⊙) =9.6–9.9, live
in progressively smaller halos towards higher redshift,
with log(Mh/M⊙) = 11.93 atz = 4, and log(Mh/M⊙) =
11.35 atz = 7.

• The stellar baryon fraction, defined as the fraction of
baryons in stars in units of the cosmic meanΩb/Ωm
rises from 0.051±0.006 atz = 4 to 0.117±0.043 at
z = 7. This trend is significant at the 3.2σ level.

• The observed trend of an increasing SBF with increas-
ing redshift does not agree with simple expectations of
how galaxies grow. Therefore, our observations im-
ply a change in the physical properties governing star-
formation atz > 4, such as, for example, a reduced effi-
ciency of stellar and supernova feedback toward higher
redshifts.

Future studies can improve upon our results by probing a
larger volume to increase the sample of bright galaxies, al-
lowing us to establish the evolution of the SBF at greater
significance, as well as extending this analysis toz = 8 and
9. Additionally, a more robust determination of the ratio be-
tween stellar mass and halo mass, and thus the SBF, can be

done with accurate stellar mass functions, which are only now
being computed atz ≥ 6. Finally, through ALMA followup
of distant galaxies, we will begin to not only directly probe
their dust emission, removing some of the potential system-
atic biases inherent when assuming a dust attenuation curve,
but ALMA can also directly probe the evolution of galaxy
gas reservoirs with redshift. A direct observation of increas-
ing cold gas reservoirs with increasing redshift would provide
a complementary observation pointing to decreased feedback
at high redshift leading to an increased stellar baryon fraction.
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APPENDIX

In the above text, we discuss the median stellar population properties of our sample of galaxies. Galaxies of course are an
inhomogeneous population, thus in this appendix we providetables of the individual properties for each of the bright galaxies
used in our analysis (those with IRAC measurements, and a best-fitting SED model withχ2 < 20; see §2.3). Each column in
these tables lists the best-fitting value along with the 68% confidence range in parentheses.

TABLE A1
STELLAR POPULATIONS OFBRIGHT GALAXIES AT z = 4

ID Right Ascension Declination Redshift log M∗ Age E(B-V) SFR
(J2000) (J2000) (M⊙) (Myr) (M⊙ yr−1)

z4_GSD_34736 53.096840 -27.866074 3.51 (3.44–3.66) 9.97 (10.13–10.49) 10 (19–101) 0.34 (0.18–0.34) 451 (109–434)
z4_GSD_30292 53.086891 -27.844139 3.51 (3.46–3.75) 10.49(10.31–10.51) 57 (49–90) 0.24 (0.16–0.32) 132 (64–322)
z4_GNW_9013 189.085114 62.160465 3.54 (3.49–3.60) 9.97 (9.93–10.15) 1015 (202–1015) 0.10 (0.02–0.10) 54 (26–53)
z4_ERS_4095 53.143330 -27.690090 3.55 (3.48–3.67) 10.27 (10.17–10.55) 49 (30–101) 0.16 (0.14–0.28) 88 (73–299)
z4_ERS_9969 53.120926 -27.709446 3.57 (3.52–3.64) 9.68 (9.43–9.68) 57 (30–286) 0.04 (0.00–0.10) 20 (14–38)

z4_GNW_26176 189.483200 62.284786 3.63 (3.57–3.71) 9.99 (9.96–10.18) 90 (40–202) 0.12 (0.02–0.14) 65 (27–85)
z4_GNW_1986 189.159058 62.115471 3.64 (3.58–3.70) 9.98 (9.96–10.19) 101 (49–1015) 0.08 (0.06–0.10) 55 (44–77)
z4_ERS_16929 53.087231 -27.729538 3.64 (3.58–3.72) 9.42 (9.21–9.85) 19 (10–40) 0.14 (0.14–0.20) 59 (55–109)
z4_GSD_29028 53.087368 -27.839535 3.64 (3.52–3.75) 10.17(10.12–10.22) 80 (80–101) 0.10 (0.06–0.10) 38 (25–40)
z4_ERS_20075 53.020580 -27.742151 3.65 (3.59–3.71) 10.55(10.54–10.66) 202 (202–570) 0.06 (0.02–0.08) 75 (53–104)
z4_GND_30689 189.339355 62.216450 3.66 (3.59–3.75) 9.45 (9.40–9.70) 39 (30–71) 0.04 (0.00–0.10) 20 (14–36)
z4_GSW_4356 53.109478 -27.879360 3.67 (3.61–3.77) 9.72 (9.66–9.90) 57 (49–90) 0.00 (0.00–0.08) 19 (19–43)
z4_GSD_15786 53.071735 -27.798437 3.67 (3.60–3.75) 9.61 (9.67–9.88) 49 (57–1015) 0.04 (0.00–0.10) 19 (14–33)
z4_GSD_535 53.198959 -27.737940 3.69 (3.57–3.81) 9.59 (9.53–9.79) 49 (40–57) 0.00 (0.00–0.08) 18 (17–39)
z4_ERS_3396 53.117710 -27.686771 3.69 (3.64–3.75) 9.90 (9.53–9.90) 49 (30–49) 0.10 (0.08–0.16) 48 (40–74)

z4_GSD_21002 53.121414 -27.814621 3.69 (3.63–3.76) 9.80 (9.57–9.85) 30 (10–30) 0.18 (0.16–0.24) 93 (70–152)
z4_GSD_35257 53.107422 -27.869299 3.70 (3.58–3.82) 10.46(10.24–10.47) 101 (71–101) 0.28 (0.10–0.28) 222 (45–240)
z4_ERS_11888 53.069328 -27.714815 3.70 (3.62–3.78) 9.55 (9.29–9.76) 49 (19–49) 0.00 (0.00–0.18) 14 (14–77)
z4_GSD_11269 53.031239 -27.785215 3.71 (3.61–3.79) 10.06(10.02–10.16) 49 (40–101) 0.10 (0.10–0.24) 45 (43–176)
z4_GSD_27735 53.138859 -27.835371 3.72 (3.65–3.79) 9.56 (9.36–9.63) 30 (19–57) 0.14 (0.02–0.18) 54 (17–78)
z4_GSW_2898 53.144775 -27.871527 3.78 (3.68–3.87) 10.18 (9.88–10.20) 39 (30–49) 0.20 (0.06–0.26) 131 (35–200)
z4_GSD_31543 53.066261 -27.849056 3.81 (3.75–3.98) 10.12(10.00–10.20) 49 (30–57) 0.12 (0.10–0.20) 52 (41–117)
z4_GND_38889 189.181412 62.189281 3.81 (3.75–4.05) 10.40(10.38–10.48) 57 (49–71) 0.14 (0.14–0.22) 68 (65–163)
z4_ERS_4079 53.110340 -27.689985 3.81 (3.74–3.99) 10.09 (9.87–10.17) 19 (10–57) 0.32 (0.06–0.34) 325 (31–373)
z4_GSW_7015 53.189873 -27.892590 3.83 (3.75–3.93) 10.15 (9.77–10.15) 49 (30–80) 0.16 (0.06–0.22) 84 (32–152)
z4_GSW_6936 53.073589 -27.892235 3.83 (3.76–3.92) 10.47 (10.40–10.49) 286 (202–718) 0.00 (0.00–0.12) 22 (22–81)
z4_GSW_9851 53.181850 -27.906641 3.85 (3.79–3.95) 9.97 (9.64–9.94) 49 (30–49) 0.12 (0.00–0.20) 56 (18–114)

z4_GNW_12987 189.040390 62.186352 3.92 (3.84–4.00) 9.66 (9.49–9.69) 57 (40–71) 0.02 (0.00–0.02) 19 (15–23)
z4_ERS_5026 53.133690 -27.693453 3.93 (3.82–4.05) 9.67 (9.63–9.90) 39 (30–101) 0.06 (0.00–0.12) 27 (16–49)

z4_GSD_34857 53.076183 -27.866360 3.98 (3.89–4.11) 10.32(10.23–10.37) 286 (40–286) 0.16 (0.14–0.16) 123 (96–128)
z4_GSD_23593 53.232452 -27.822868 3.99 (3.89–4.14) 9.48 (9.33–9.92) 19 (19–80) 0.18 (0.14–0.22) 72 (52–101)
z4_GSD_905 53.168266 -27.741940 4.01 (3.92–4.11) 9.78 (9.44–9.76) 90 (19–90) 0.00 (0.00–0.20) 13 (13–88)

z4_GNW_25081 189.331039 62.290836 4.01 (3.90–4.10) 9.39 (9.34–9.43) 10 (10–10) 0.26 (0.24–0.26) 140 (122–144)
z4_ERS_3543 53.144386 -27.687588 4.02 (3.87–4.16) 10.01 (9.96–10.26) 39 (40–404) 0.16 (0.06–0.16) 78 (30–83)

z4_GND_40720 189.179291 62.182003 4.02 (3.84–4.20) 9.70 (9.26–9.74) 30 (19–80) 0.20 (0.02–0.20) 75 (12–83)
z4_GNW_18460 189.286835 62.367325 4.05 (3.92–4.16) 10.28(10.22–10.38) 286 (202–806) 0.00 (0.00–0.10) 20 (19–53)
z4_ERS_22264 53.075272 -27.755194 4.06 (3.96–4.17) 10.12(10.01–10.24) 39 (30–508) 0.16 (0.10–0.16) 93 (62–99)
z4_GND_27047 189.356354 62.227554 4.10 (3.92–4.21) 10.47(10.26–10.54) 202 (49–904) 0.12 (0.12–0.20) 52 (50–98)
z4_GNW_21799 189.329178 62.331532 4.10 (4.03–4.17) 9.82 (9.69–9.96) 57 (40–80) 0.00 (0.00–0.04) 24 (23–35)
z4_GNW_23907 189.467804 62.297764 4.10 (3.98–4.21) 9.94 (9.82–10.31) 80 (19–101) 0.20 (0.14–0.24) 122 (79–164)
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z4_GND_7728 189.270905 62.291943 4.10 (4.01–4.20) 10.23 (9.78–10.24) 101 (19–101) 0.20 (0.16–0.22) 133 (91–163)
z4_GSD_15152 53.027557 -27.796583 4.12 (4.05–4.22) 10.41(10.23–10.44) 101 (49–101) 0.20 (0.20–0.24) 171 (178–266)
z4_GNW_17778 189.311584 62.382095 4.14 (4.00–4.29) 9.76 (9.29–9.82) 30 (19–49) 0.18 (0.10–0.20) 85 (41–99)
z4_ERS_11615 53.107601 -27.713976 4.14 (4.01–4.26) 9.52 (9.61–9.96) 19 (30–101) 0.18 (0.02–0.18) 79 (18–83)
z4_GND_23790 189.233093 62.236786 4.15 (4.06–4.27) 10.50(10.49–10.60) 101 (57–404) 0.18 (0.08–0.18) 211 (83–221)
z4_GSD_20508 53.192692 -27.813051 4.17 (4.06–4.26) 9.65 (9.61–9.92) 30 (30–202) 0.14 (0.04–0.16) 59 (25–76)
z4_GNW_18340 189.299255 62.370079 4.19 (4.03–4.30) 11.29(11.17–11.33) 1015 (904–1015) 0.18 (0.18–0.24) 146 (142–226)
z4_GNW_15232 189.014038 62.200378 4.22 (4.11–4.31) 10.18(9.80–10.18) 71 (30–80) 0.22 (0.20–0.26) 178 (139–242)
z4_ERS_14762 53.016903 -27.723013 4.22 (4.11–4.32) 9.40 (9.32–9.84) 19 (19–80) 0.16 (0.08–0.18) 57 (28–78)
z4_GNW_11056 189.013092 62.173153 4.23 (4.08–4.31) 9.64 (9.61–9.78) 39 (30–57) 0.04 (0.00–0.08) 26 (16–38)

z4_GSW_66 53.230198 -27.839573 4.24 (4.17–4.33) 9.76 (9.76–10.22) 19 (19–90) 0.18 (0.12–0.18) 138 (80–143)
z4_GSD_9138 53.215435 -27.778782 4.24 (4.10–4.37) 10.07 (9.82–10.08) 101 (80–101) 0.18 (0.00–0.20) 92 (18–102)
z4_GNW_3896 189.145218 62.129818 4.24 (4.12–4.39) 9.80 (9.77–10.12) 10 (10–40) 0.34 (0.32–0.34) 346 (297–359)
z4_GNW_8115 189.145187 62.154770 4.25 (4.09–4.34) 9.62 (9.54–9.79) 49 (40–80) 0.02 (0.00–0.06) 19 (15–31)
z4_GNW_26546 189.445068 62.281898 4.26 (4.02–4.38) 10.36(10.35–10.59) 101 (57–286) 0.28 (0.00–0.30) 151 (12–228)
z4_GND_9704 189.201706 62.278599 4.27 (4.19–4.36) 9.85 (9.85–10.23) 30 (30–90) 0.14 (0.04–0.16) 95 (38–117)
z4_GND_21065 189.290955 62.244240 4.29 (4.13–4.41) 10.47(10.17–10.53) 202 (80–286) 0.30 (0.18–0.30) 264 (81–240)
z4_GND_31952 189.119812 62.212612 4.29 (4.19–4.37) 9.56 (9.50–9.90) 30 (30–57) 0.12 (0.06–0.14) 45 (27–58)
z4_GNW_24624 189.388474 62.294460 4.30 (4.17–4.43) 9.34 (9.35–9.62) 39 (30–57) 0.00 (0.00–0.10) 12 (11–41)
z4_GNW_11698 188.988419 62.177494 4.30 (4.19–4.39) 9.62 (9.42–9.66) 30 (19–49) 0.16 (0.02–0.20) 61 (14–82)
z4_GNW_460 189.120911 62.101513 4.30 (4.18–4.40) 9.41 (9.36–9.80) 30 (19–71) 0.08 (0.00–0.16) 27 (14–64)
z4_GNW_2957 189.185181 62.122967 4.30 (4.17–4.42) 9.90 (9.89–10.12) 30 (30–49) 0.16 (0.12–0.18) 84 (59–95)
z4_GNW_31531 189.295654 62.349960 4.31 (4.15–4.43) 10.32(10.10–10.46) 404 (49–286) 0.24 (0.16–0.30) 122 (54–208)
z4_GNW_7377 189.108002 62.151005 4.31 (4.25–4.37) 10.35 (10.24–10.35) 80 (30–80) 0.00 (0.00–0.12) 57 (56–179)
z4_GSD_21252 53.143112 -27.815502 4.33 (4.24–4.39) 10.05(10.03–10.47) 57 (30–101) 0.18 (0.16–0.22) 181 (149–266)
z4_GND_30347 189.324326 62.217796 4.34 (4.24–4.41) 9.71 (9.54–9.82) 1015 (40–404) 0.08 (0.06–0.12) 26 (21–39)
z4_GNW_24183 189.466507 62.296875 4.35 (4.21–4.43) 10.09(9.95–10.22) 570 (71–570) 0.14 (0.10–0.18) 68 (42–107)
z4_GNW_21312 189.366592 62.330898 4.38 (4.25–4.46) 9.66 (9.72–10.34) 10 (10–30) 0.26 (0.22–0.32) 210 (154–394)
z4_GND_27301 189.093216 62.226814 4.39 (4.29–4.47) 10.00(9.90–10.14) 904 (40–718) 0.14 (0.10–0.18) 50 (37–74)
z4_GSD_16522 53.076065 -27.800694 4.39 (4.32–4.47) 9.67 (9.52–10.14) 19 (10–90) 0.22 (0.22–0.26) 160 (154–224)
z4_GNW_21830 189.366791 62.331589 4.40 (4.30–4.48) 9.95 (9.95–10.26) 30 (30–286) 0.20 (0.14–0.20) 118 (65–120)
z4_GND_7158 189.252747 62.298897 4.41 (4.31–4.50) 10.27 (9.94–10.30) 101 (40–101) 0.26 (0.22–0.28) 146 (90–167)

z4_GNW_32075 189.304321 62.353088 4.41 (4.31–4.48) 10.46(10.45–10.77) 30 (30–202) 0.26 (0.20–0.26) 384 (229–397)
z4_GNW_7816 189.049530 62.152920 4.42 (4.33–4.49) 9.70 (9.71–10.15) 19 (19–71) 0.18 (0.12–0.20) 100 (64–121)
z4_GSW_5453 53.199787 -27.884937 4.42 (4.32–4.49) 9.90 (9.77–10.03) 286 (80–570) 0.16 (0.14–0.20) 52 (42–75)
z4_GND_39360 189.242157 62.187439 4.44 (4.32–4.54) 9.86 (9.79–10.15) 71 (30–90) 0.18 (0.16–0.24) 65 (54–118)
z4_GSW_1319 53.201015 -27.860250 4.44 (4.37–4.51) 9.84 (9.60–9.87) 39 (30–90) 0.14 (0.00–0.18) 60 (16–89)
z4_GNW_8416 189.195557 62.156864 4.45 (4.31–4.54) 10.51 (10.39–10.58) 286 (49–286) 0.24 (0.20–0.30) 136 (91–259)
z4_GND_32575 189.173126 62.210808 4.45 (4.36–4.53) 9.75 (9.37–9.72) 39 (30–49) 0.14 (0.06–0.18) 49 (21–72)
z4_GNW_13552 189.061249 62.189472 4.45 (4.34–4.54) 9.92 (9.94–10.38) 19 (19–71) 0.24 (0.20–0.26) 164 (109–184)
z4_GNW_8070 189.107422 62.154560 4.45 (4.37–4.53) 9.81 (9.71–9.88) 30 (30–49) 0.16 (0.04–0.18) 96 (29–105)
z4_ERS_5818 53.069077 -27.696518 4.47 (4.38–4.56) 9.43 (9.37–9.64) 39 (30–49) 0.02 (0.00–0.16) 16 (13–65)

z4_GNW_20572 189.313507 62.320702 4.47 (4.37–4.56) 9.83 (9.52–9.86) 39 (30–90) 0.16 (0.04–0.16) 58 (17–56)
z4_GNW_18301 189.335205 62.370796 4.47 (4.39–4.54) 9.97 (9.88–10.31) 30 (30–90) 0.18 (0.16–0.22) 116 (98–194)
z4_GNW_18575 189.297821 62.365429 4.49 (4.42–4.55) 10.70(10.37–10.74) 30 (19–57) 0.28 (0.24–0.30) 739 (458–894)
z4_GNW_2261 189.192337 62.117081 4.50 (4.42–4.57) 9.96 (9.62–9.97) 39 (30–80) 0.14 (0.02–0.18) 79 (23–115)
z4_GND_40010 189.335739 62.184937 4.51 (4.44–4.56) 10.16(9.98–10.20) 57 (30–90) 0.06 (0.00–0.16) 62 (35–158)
z4_GNW_7213 189.108322 62.150093 4.51 (0.69–4.57) 9.89 (6.51–9.87) 30 (19–90) 0.20 (0.10–0.66) 116 (0–142)
z4_GNW_7206 189.108185 62.149807 4.54 (4.46–4.61) 9.97 (9.85–10.12) 19 (19–30) 0.26 (0.22–0.28) 245 (149–279)
z4_GSW_8512 53.177471 -27.900093 4.54 (4.48–4.60) 9.53 (9.54–10.02) 19 (19–40) 0.18 (0.18–0.26) 67 (67–152)
z4_GND_25942 189.147903 62.230583 4.54 (4.44–4.63) 10.09(9.89–10.23) 19 (19–57) 0.30 (0.24–0.32) 325 (180–360)
z4_GSD_36028 53.079254 -27.877260 4.54 (4.46–4.59) 10.21(9.96–10.22) 1015 (30–202) 0.10 (0.06–0.12) 83 (56–104)
z4_GND_14271 189.305084 62.263287 4.56 (4.44–4.65) 10.79(10.45–10.79) 39 (40–80) 0.36 (0.30–0.36) 537 (295–541)
z4_GNW_18613 189.276077 62.364826 4.57 (4.47–4.64) 10.04(10.06–10.58) 19 (19–57) 0.22 (0.20–0.26) 219 (184–335)
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TABLE A2
STELLAR POPULATIONS OFBRIGHT GALAXIES AT z = 5

ID Right Ascension Declination Redshift log M∗ Age E(B-V) SFR
(J2000) (J2000) (M⊙) (Myr) (M⊙ yr−1)

z5_GSW_8762 53.208008 -27.901289 4.51 (4.44–4.57) 9.72 (9.50–9.78) 49 (30–71) 0.06 (0.00–0.08) 31 (16–38)
z5_GND_36639 189.186142 62.197327 4.56 (4.45–4.68) 10.25(10.11–10.52) 80 (19–101) 0.28 (0.26–0.32) 223 (203–330)
z5_GNW_17976 189.300125 62.377483 4.57 (4.42–4.74) 10.19(10.12–10.37) 286 (80–286) 0.22 (0.10–0.26) 102 (31–164)
z5_GSD_9044 53.091724 -27.778580 4.58 (4.48–4.67) 10.26 (10.02–10.25) 202 (40–508) 0.06 (0.06–0.18) 32 (33–110)
z5_GSW_6918 53.234589 -27.892109 4.66 (4.58–4.75) 9.52 (9.38–9.59) 57 (49–57) 0.00 (0.00–0.02) 14 (13–18)
z5_GND_38041 189.299210 62.192570 4.67 (4.60–4.74) 9.36 (9.31–9.89) 10 (10–19) 0.22 (0.20–0.28) 106 (94–198)
z5_GND_16758 189.176086 62.256329 4.71 (4.62–4.84) 10.03(9.96–10.11) 19 (19–30) 0.26 (0.26–0.28) 277 (272–336)
z5_GSD_33149 53.070778 -27.856453 4.71 (4.62–4.81) 10.02(9.63–10.30) 101 (10–508) 0.20 (0.10–0.24) 116 (49–172)
z5_GSD_13326 53.095345 -27.790989 4.71 (4.64–4.79) 10.19(9.98–10.26) 30 (19–80) 0.26 (0.16–0.26) 228 (86–238)
z5_ERS_3475 53.070839 -27.687143 4.72 (4.66–4.81) 9.95 (9.84–10.39) 19 (19–40) 0.26 (0.26–0.32) 205 (211–369)

z5_GND_38212 189.273590 62.192028 4.72 (4.65–5.06) 9.84 (9.82–10.19) 30 (30–71) 0.16 (0.08–0.20) 72 (43–136)
z5_GSW_1565 53.238213 -27.862486 4.75 (4.70–4.79) 9.96 (9.51–9.96) 30 (19–30) 0.18 (0.12–0.20) 135 (73–158)
z5_GND_12253 189.294418 62.269447 4.77 (4.70–4.90) 10.06(9.87–10.19) 570 (40–718) 0.14 (0.10–0.20) 55 (39–104)
z5_ERS_12604 53.021912 -27.716784 4.81 (4.76–4.89) 9.60 (9.60–9.84) 39 (40–1015) 0.08 (0.02–0.10) 30 (17–34)
z5_GNW_25539 189.489624 62.288536 4.81 (4.76–4.87) 10.34(10.03–10.43) 19 (19–40) 0.26 (0.18–0.26) 570 (266–567)
z5_ERS_2517 53.119019 -27.682158 4.82 (4.76–4.93) 9.70 (9.41–9.77) 30 (30–80) 0.18 (0.00–0.16) 73 (14–68)

z5_GND_17343 189.091400 62.254662 4.83 (4.75–4.95) 10.16(10.05–10.19) 30 (19–71) 0.24 (0.06–0.24) 214 (45–230)
z5_ERS_6044 53.048820 -27.697111 4.85 (4.78–4.94) 9.85 (9.78–9.87) 90 (30–90) 0.00 (0.00–0.20) 15 (15–94)
z5_GSW_6966 53.245884 -27.892273 4.94 (0.83–4.98) 10.29 (10.20–10.37) 19 (10–30) 0.34 (0.28–0.36) 506 (265–566)
z5_GNW_6112 189.064835 62.143963 4.95 (4.90–5.06) 9.85 (9.47–10.02) 19 (10–71) 0.26 (0.06–0.28) 183 (31–221)
z5_GSD_10352 53.021172 -27.782366 4.95 (4.91–4.99) 10.43(10.36–10.80) 57 (19–90) 0.22 (0.08–0.24) 474 (137–571)
z5_GNW_4779 189.203064 62.136204 4.96 (4.88–5.15) 9.86 (10.07–10.31) 19 (30–286) 0.28 (0.04–0.32) 174 (20–244)
z5_GND_15230 189.205124 62.260712 5.02 (4.96–5.08) 9.41 (9.41–9.69) 39 (30–49) 0.00 (0.00–0.12) 15 (15–59)
z5_GNW_16101 189.000168 62.207241 5.02 (4.78–5.06) 9.50 (9.20–9.52) 49 (30–49) 0.02 (0.00–0.04) 18 (12–20)
z5_GNW_10657 189.130219 62.170780 5.03 (4.80–5.15) 9.35 (9.19–9.44) 49 (30–57) 0.00 (0.00–0.06) 13 (11–27)
z5_GNW_19973 189.371780 62.324554 5.03 (4.80–5.12) 10.10(10.15–10.59) 10 (10–202) 0.38 (0.22–0.34) 681 (140–473)
z5_ERS_2314 53.088764 -27.680889 5.05 (5.01–5.20) 9.55 (9.43–9.60) 30 (19–49) 0.14 (0.00–0.20) 52 (16–86)
z5_PAR1_1735 53.246998 -27.686445 5.07 (4.99–5.18) 10.06(9.74–10.09) 49 (30–71) 0.16 (0.08–0.18) 69 (32–79)
z5_GNW_13254 189.039703 62.187725 5.24 (5.15–5.32) 9.88 (9.74–9.93) 71 (49–71) 0.00 (0.00–0.04) 22 (21–33)
z5_ERS_9511 53.155231 -27.700718 5.26 (5.05–5.40) 9.90 (9.49–9.99) 49 (19–90) 0.12 (0.00–0.20) 47 (14–98)

z5_GNW_25408 189.457428 62.289562 5.27 (5.11–5.40) 9.62 (9.35–9.66) 71 (40–80) 0.00 (0.00–0.02) 12 (11–15)
z5_PAR1_1385 53.273891 -27.683685 5.29 (5.20–5.36) 9.66 (9.67–9.99) 30 (30–71) 0.16 (0.12–0.22) 60 (42–113)
z5_GSD_17901 53.200577 -27.804909 5.33 (5.23–5.43) 9.91 (9.57–9.97) 57 (30–90) 0.08 (0.00–0.12) 34 (17–48)
z5_GND_34380 189.249146 62.205204 5.35 (5.24–5.45) 10.42(10.35–10.61) 49 (40–508) 0.18 (0.14–0.24) 136 (85–234)
z5_GND_33094 189.266449 62.209164 5.36 (5.26–5.43) 9.82 (9.54–9.79) 49 (40–80) 0.10 (0.02–0.10) 39 (16–36)
z5_GNW_27194 189.523804 62.278839 5.40 (5.30–5.50) 10.14(10.01–10.30) 57 (40–202) 0.08 (0.04–0.16) 50 (33–105)
z5_GND_39570 189.175720 62.186714 5.45 (5.33–5.55) 9.74 (9.80–10.22) 19 (30–49) 0.22 (0.12–0.22) 126 (49–140)
z5_GND_10054 189.169846 62.277298 5.46 (5.37–5.53) 9.92 (9.62–9.91) 57 (40–90) 0.08 (0.00–0.14) 35 (16–58)
z5_GND_35096 189.283508 62.203049 5.48 (5.35–5.55) 10.32(9.81–10.38) 202 (19–101) 0.08 (0.04–0.22) 43 (31–167)
z5_GSD_4579 53.170231 -27.762848 5.48 (5.42–5.54) 9.67 (9.49–9.76) 30 (19–49) 0.12 (0.08–0.14) 49 (33–60)
z5_GNW_3960 189.055939 62.129990 5.52 (5.38–5.67) 9.88 (9.59–9.88) 71 (30–90) 0.02 (0.00–0.08) 23 (16–42)
z5_GND_18617 189.353439 62.250774 5.53 (5.46–5.63) 9.68 (9.56–9.91) 19 (19–30) 0.16 (0.12–0.18) 95 (67–122)
z5_GND_24948 189.320312 62.233444 5.54 (5.47–5.63) 9.53 (9.54–10.10) 10 (10–30) 0.26 (0.26–0.32) 179 (178–331)
z5_GNW_28218 189.503250 62.273884 5.55 (5.48–5.62) 10.47(10.16–10.47) 30 (19–49) 0.26 (0.14–0.26) 435 (125–431)
z5_GSD_4436 53.170811 -27.762228 5.58 (5.49–5.65) 9.53 (9.53–9.78) 30 (19–49) 0.10 (0.02–0.18) 35 (17–84)

z5_GNW_29490 189.312943 62.344555 5.69 (5.55–5.84) 9.58 (9.58–9.89) 10 (10–19) 0.28 (0.28–0.30) 200 (182–254)
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TABLE A3
STELLAR POPULATIONS OFBRIGHT GALAXIES AT z = 6

ID Right Ascension Declination Redshift log M∗ Age E(B-V) SFR
(J2000) (J2000) (M⊙) (Myr) (M⊙ yr−1)

z6_GSD_29074 53.156788 -27.839560 5.56 (5.46–5.66) 9.71 (9.54–10.02) 30 (19–90) 0.16 (0.00–0.18) 67 (16–85)
z6_GSD_17919 53.074165 -27.804928 5.65 (5.53–5.75) 9.72 (9.55–9.85) 80 (57–202) 0.00 (0.00–0.04) 13 (12–20)
z6_GNW_10970 189.075775 62.172729 5.67 (5.57–5.75) 10.52(10.37–10.56) 404 (40–570) 0.20 (0.18–0.24) 170 (146–243)
z6_GND_16399 189.234833 62.257507 5.67 (5.58–5.76) 9.66 (9.44–9.75) 39 (19–57) 0.08 (0.02–0.18) 27 (16–87)
z6_GND_16819 189.328232 62.256317 5.69 (5.61–5.76) 10.09(9.82–10.20) 19 (19–30) 0.28 (0.20–0.26) 319 (130–302)
z6_ERS_4104 53.066242 -27.689983 5.72 (5.61–5.84) 9.57 (9.48–9.67) 39 (30–49) 0.02 (0.00–0.04) 21 (17–27)

z6_GSW_12831 53.106689 -27.930193 5.79 (5.72–5.84) 10.05(9.96–10.24) 49 (40–101) 0.06 (0.00–0.10) 57 (34–83)
z6_GSW_6659 53.151745 -27.890762 5.80 (5.68–5.91) 9.65 (9.39–9.82) 39 (19–71) 0.08 (0.00–0.14) 31 (14–52)
z6_GSD_27934 53.101673 -27.836084 5.80 (5.70–5.90) 10.61(10.59–10.67) 19 (19–30) 0.38 (0.36–0.40) 1066 (863–1186)
z6_MAIN_5871 53.166721 -27.804167 5.80 (5.76–5.83) 9.90 (9.64–9.91) 57 (40–57) 0.04 (0.00–0.04) 34 (21–34)
z6_GND_28043 189.418427 62.224796 5.85 (5.75–5.94) 10.00(9.69–10.14) 49 (19–80) 0.10 (0.02–0.18) 46 (25–104)
z6_GNW_22717 189.416199 62.333141 5.88 (5.66–6.04) 10.17(9.74–10.27) 806 (30–806) 0.20 (0.02–0.22) 94 (17–117)
z6_GSD_23051 53.225368 -27.821125 5.96 (5.86–6.05) 10.07(9.91–10.26) 39 (30–202) 0.14 (0.02–0.18) 89 (30–122)
z6_GNW_23437 189.388000 62.301167 6.02 (5.85–6.18) 9.84 (9.60–9.87) 101 (57–101) 0.00 (0.00–0.08) 12 (11–27)
z6_PAR1_1068 53.234592 -27.680861 6.13 (6.05–6.23) 10.10(9.90–10.16) 39 (40–80) 0.18 (0.06–0.18) 109 (34–103)
z6_GNW_22555 189.301788 62.307808 6.15 (6.06–6.25) 9.63 (9.41–9.65) 57 (40–57) 0.02 (0.00–0.02) 18 (12–19)
z6_ERS_7413 53.158138 -27.702112 6.25 (6.12–6.39) 9.91 (9.66–10.07) 30 (19–49) 0.10 (0.00–0.14) 85 (38–127)

z6_GSD_21289 53.076241 -27.815453 6.30 (6.20–6.39) 9.63 (9.54–9.88) 39 (30–202) 0.10 (0.00–0.16) 32 (13–63)
z6_GSD_233 53.188583 -27.733210 6.39 (6.29–6.48) 9.88 (9.42–9.93) 30 (19–49) 0.20 (0.04–0.20) 112 (23–115)

TABLE A4
STELLAR POPULATIONS OFBRIGHT GALAXIES AT z = 7

ID Right Ascension Declination Redshift log M∗ Age E(B-V) SFR
(J2000) (J2000) (M⊙) (Myr) (M⊙ yr−1)

z7_GSD_25074 53.233047 -27.827383 6.66 (6.47–6.79) 10.09(9.87–10.15) 404 (49–508) 0.18 (0.00–0.14) 82 (15–55)
z7_ERS_12574 53.094410 -27.716846 6.71 (6.58–6.85) 9.83 (9.63–10.06) 49 (30–202) 0.08 (0.00–0.18) 35 (16–90)

z7_GNW_24443 189.356888 62.295319 6.72 (6.65–6.81) 10.02(9.80–10.05) 30 (30–71) 0.18 (0.00–0.18) 155 (29–160)
z7_GNW_24671 189.361710 62.294373 6.72 (6.27–7.07) 9.15 (8.53–9.25) 19 (10–40) 0.10 (0.00–0.10) 37 (11–33)
z7_GSD_21368 53.154922 -27.815744 6.75 (6.62–6.97) 10.14(9.89–10.34) 404 (30–286) 0.20 (0.00–0.26) 82 (14–142)
z7_GNW_17001 189.032486 62.216415 6.76 (6.55–6.92) 10.74(10.70–10.82) 404 (286–570) 0.06 (0.02–0.12) 22 (14–37)
z7_GSD_21172 53.155342 -27.815178 6.84 (6.76–6.96) 10.19(9.95–10.20) 30 (19–80) 0.24 (0.00–0.30) 231 (24–396)
z7_GSD_10175 53.210335 -27.782211 7.05 (6.78–7.32) 9.70 (9.23–9.81) 19 (10–71) 0.22 (0.00–0.24) 129 (15–141)
z7_GND_18181 189.082687 62.252476 7.09 (6.94–7.28) 9.36 (9.28–9.96) 10 (10–49) 0.22 (0.12–0.24) 123 (47–142)
z7_GND_11402 189.186172 62.270863 7.16 (7.00–7.34) 9.69 (9.22–9.76) 30 (10–49) 0.10 (0.02–0.18) 51 (21–114)
z7_GNW_4703 189.094528 62.135540 7.17 (7.04–7.37) 9.55 (9.06–9.68) 39 (10–49) 0.02 (0.00–0.10) 27 (22–61)
z7_GNW_19939 189.273392 62.324783 7.25 (7.03–7.75) 8.79 (8.64–9.29) 10 (10–30) 0.10 (0.00–0.12) 34 (14–42)
z7_GND_42912 189.157883 62.302372 7.49 (7.33–7.70) 9.51 (9.41–9.65) 10 (10–10) 0.24 (0.20–0.28) 178 (133–224)
z7_PAR2_3098 53.281712 -27.867699 7.66 (7.44–7.82) 9.82 (9.56–9.90) 30 (19–49) 0.14 (0.02–0.18) 69 (23–111)
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