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PHYSICAL REVIE% D VOLUME 11, NUMBER 2 15 JANUARY 1975

Electromagnetic radiation induced by a gravitational wave

Stephen Boughn
Department of Physics, Stanford University, Stanford, California 94305

(Received 8 July 1974)

The electromagnetic radiation induced by a gravitational wave incident on a point charge and
a static point dipole is calculated using a mul. ipole expansion of the fields. The calculation
is easily extended to the case of a relativistic source. The presence of this radiation does
not violate the principle of equivalence. Estimates -are made of the electromagnetic radiation
induced by a plane gravitational wave incident on a plasma. For hot plasmas the radiated power
can be considerably enhanced; however, it is still rather small and the frequency of the radia-
tion would probably be too low for this process to be of any astrophysical significance.

INTRODUCTION

Since Einstein first introduced the principle of
equivalence, the question of whether or not a
charge radiates when falling freely in a gravita-
tional field has generated much discussion. Only
recently have explicit calculations been carried
out within the framework of Einstein-Maxwell
theory which bear upon this problem. ' ' These
calculations involved the motions of particles near
Schwarzschild and Reissner -Nordstrom black
holes. In this paper I will investigate the radia-
tion from a point charge and static point dipole in-
duced by a plane, polarized gravitational wave.
The results are interesting examples of how grav-
ity can induce electromagnetic radiation; however,
it is doubtful that these processes are of any astro-
physical significance.

The mathematical procedure is straightforward.
The generalized Maxwell's equations will be
solved in a space-time that has been slightly
curved by the gravity wave. For a polarized grav-
itational wave propagating in the x, direction, the
deviation of the metric tensor g&, from the Min-
kowskian form g» is most simply expressed in
the special "transverse-traceless" (TT) coordinate
system':

0 0 0 0

,.(„„,) 0 0 0 0
b'av

= gPv —'gPv =he' ""~
0 0 1 0
0 0 0 -1

The radiation is assumed to be weak, i.e. , h «1.
In the presence of the gravity wave Maxwell's
equations must be expressed in their covariant
form, '

-A 'Bg+A BAH—-4'
where A is the electromagnetic vector potential,

is the 4-current density, A is the Ricci tensor,
and the semicolon denotes covariant differentiation.

If we assume that the region of space-time of
interest has negligible stress-energy, then Ein-
stein's equations tell us that 8~~=0.

COORDINATE CHOICE

Before solving Maxwell's equations one must
decide upon an appropriate coordinate system. Al-
though formally the results are independent of the
choice, one should pick a frame in which the inter-
pretation of these results is made simple. In gen-
eral an appropriate frame is one which is close
enough to a Lorentz frame that gravitational cor-
rections to the behavior of measuring instruments
are negligible compared to the measurement of
interest. Only in such a coordinate system will
electric and magnetic field vectors have the same
physical significance they have in special relativ-
ity. From this standpoint the transverse-traceless
gauge is acceptable since it deviates from a Lo-
rentz frame by an amount of order It, &&1 at large
distances where the electromagnetic field is to
be sampled. Corrections due to gravitational ef-
fects in measuring instruments will then be of
order h and can be neglected.

The specification of the source J is also coordi-
nate -dependent. The generally covariant expres-
sion for the 4-current of a source consisting of
point charges is'

~"l, &)-z "f~, t)g v&lx. -x)( d, )
where g= —detg 8. The trajectories of noninteract-
ing point particles in the presence of gravity are
given by the geodesic equation

x i„ dx dx
dT '- dT d7 '

In the TT gauge of Eq. (1) I',",=0, and the solution
to this equation for particles initially at rest is
dx /dT=dx"/dt=(1, 0, 0, 0). Also, g '= I+terms
of order h' a, nd higher. Equation (3), therefore,
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reduces to the classical form

J"(x) =p q„&(x„—x)5, +terms of order h'.
Ji '

s (k&y -~ t) 'vQrh"e'
4m BX2

(8)

(4)

The above analysis neglected any interaction be-
tween the particles. If a dipole consists of two

oppositely charged particles separated by a dis-
tance d and held apart by a spring, then in general
the gravitational wave will excite oscillations of
the system. The resulting time-dependent dipole
moment will serve as a source for radiation in the
usual way. This radiation is well understood clas-
sically and will not be considered in this paper.
Therefore, we treat the source as consisting of
point charges sufficiently free so that Eq. (4) holds.

SOLVING MAXWELL'S EQUATIONS

If we expand the covariant derivatives in terms
of the metric tensor in Eq. (1), Maxwell's equa-
tions become

UA„—(gas/rt~)k 8yA„S

-qM(&~it aAg +27„aAs 8+I'as A„s) =-47'J„,
(5)

J& ~ ei, (k~&- ~t)
47t ~x3

The fields from A.' fall off as x ' or faster, ' conse-
quently, any radiation will be associated with the
perturbation 4 . In effect, the gravitational wave
induces a 4-current density J' in a flat space-time
background, and it is this current which acts as a
source for electromagnetic radiation. One can
check that J~ satisfies the important requirement
that it be conserved, i.e. , J' = 0.

Although J' can be expressed analytically, it is
not a simple source and the only practical approach
to the problem is to expand the radiation field in
multipoles. The power radiated by a source $(x, t)
= e '"' J(x) can be expressed by the sum'

&= (8»') 'P [IA, (&, m) I'+ IA, (t, m) I']
Sm

A„and A~ are the coefficients of the magnetic and
electric multipole fields and are given by the ex-
pressions

where terms of order h' and higher have been neg-
lected (note I"„~SO-h), I' ~8 are the usual Riemann-
Christoffel symbols, and the comma denotes
ordinary differentiation. Since h «1 we expect A
to be close to the flat-space-time solution A'„
where

Aa(l, m) = 4mi

A~(t, m) = —4

j, (ur)X+ (Vx J)d'x,

j,(kr )X,* ~ (~ x g x J)d 'x,
(10)

A = -4' (6)
where j& are spherical Bessel functions and X,
are vector spher ical har monic s.

For both of the sources treated in this paper A~
is of the form Ao =($, 0, 0, 0). Consider a pertur-
bation ~~ to this solution. Substituting A~-A. ~
+ eA„ into Eg. (5), using Eq. (6), and dropping
terms of order A, we obtain

RADIATION FROM A POINT CHARGE

The scalar potential for a point charge q is
q/r (the-minus sign is a. result of using the

covariant form of the vector potential); therefore,
from Eq. (8) the induced current density becomes

= -4mJ',

where & has been set equal to 1 for convenience,
the connection coefficients I' ~8 are expressed in
terms of h, and we have introduced the 4-vector

zxJ' = 0, ', u qhe' k"~ ', ,'cuqhe'""~ -LX
0 4~~3 4++3

(11)

If one substitutes Eq. (11) into Eq. (10) and using
the expansion

J' =01

&0...— ~)

4~ ~x' ~x'
2 3

e'""' = P [4m(2 l' + 1)]' 'i' Y, „j, (kr),
=0

the integrals can be evaluated and one obtains a
rather lengthy expression for Az(l, m):
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3 i/2 m 2~+1
A~ = i&u'qh(2('/2)' '(-1)

l(l+1)

&QI' (2l'+l)I2mW3( )'(2 )-( ) (2+I+2)(I'+I)F( )F'( )

+ i [(1+m)(f —m+1)]' ' +[(&—m)(&+I +1)]. l'l1 l' I 1 l 1

000 0 —m+1 1 0 -~ —1 —1

(, (I' —I+2) (I
—F+2)

—v3 [(&+m)(l —m+1)]' 2
.+[(l —m)(l+rn+1)]

l' l 2

x (I'+I+2)(l'+l)F( )F )

where

!

t' f,

(m, m, m,

is the Wigner 3-j coefficient and I'(n) is the gamma
function. The magnetic multipole coefficients
A„(l, m) all vanish. From the above expression
one can see that the only nonvanishing As(l, m)
are l ~ 2 and m=+2. This is not too surprising
considering the spin-2 nature of the graviton. Fig-
ure 1 is a plot of the multipole coefficients and the
power radiated in each multipole,

P, = (s~~')-'g [l&„(l,~) I'+ l&~(f, I) I'1

proximately a factor of q'/~' less than the cross
section for scattering electromagnetic radiation
(Thomson scattering) and approximately q'/m'
times greater than the cross section for scattering
gravitational radiation. ' If the particle is an elec-
tron, q'/m' = 5 &&10" and o =10 "cm'.

The results presented above are readily gener-
alized to the case where the source is a highly
relativistic, y»1, point charge. The metric ten-
sor of the gravity wave in the rest frame of a par-
ticle moving with velocity v = —vx, takes exactly
the same form as in Eq. (1), except that the fre-
quency is Doppler -shifted, ~' = 2y~. Therefore,
the power radiated in the rest frame of the source
is

For large f, P, ~ 1/l so the sum P"P, diverges.
Therefore, an infinite plane wave incident on a
point charge induces an infinite amount of electro-
magnetic radiation. The divergence is avoided if
either the charge is screened at some distance d

or the gravity wave is in the form of a wave packet
of dimension d. In each case the sum will be
effectively terminated at l = kd. Physically this is
because the large angular momenta associated

'h high multipoles arise from radiation incident
with large angular momenta, i.e. , large impact
parameters. An approximate expression for the
radiation emitted with the sum terminated at multi-
pole number l is

O. I

3
~w O.OI—

IO

EJ'

Ol
3

E

I

le

P= [0.35+ kin(L/10)](d'q%' for f~ 10. (12)

The cross section o for the production of electro-
magnetic radiation is obtained by dividing E(l. (12)
by the flux of incident gravitational radiation, ' +
= (1/32')(o%':

0.001 I

IO

MULTIPOLE NUMBER, L

O. I

IOO

o = P/F = [35+42(in(l/10)]q'. (13)

For a particle of mass ~ and charge q, o is ap-

FIG. 1. Power P& and coefficients Az(l, m) of the
multipole components of the induced radiation field of
a point charge.
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P = [1.4+-', In(f/10)]~'y'q'h'. (14)

RADIATION FROM A POINT DIPOLE

Now consider a static point dipole which has the
usual flat-space-time scalar potential Q = -(p x)/r'.
To simplify the calculation I have assumed p = t)xy.

Az(l, m) and A„(l, m) are calculated using the same
procedure as above. In this case, however, the
dipole field falls off rapidly enough that for large
l, P, ~1/P and the infinite sum converges. The
first term is again quadrupolar,

Pl = 2 5.6 x 10-4p '~'h ' . (15)

For a dipole formed by two charges +q and -q
separated by a distance d, this power is roughly
a factor (hd)' less than that of a single charge q.
It is interesting to compare this case with the
radiation implied by changes in the "proper" length
d of a finite dipole. Both the expression for proper
length' and the equation of geodesic deviation tell
us that particles lying on the x, axis are not accel-
erated with respect to one another and from this
point of view should not radiate, contrary to the
above calculation. The point is that radiation is
a global, not local, phenomenon, and cannot be
determined by investigating the relative accelera-
tions of charged particles in a local inertial frame.

Recall that in this analysis all charges are as-
sumed to be noninteracting. Suppose we attach
the point charges to the ends of a stiff spring (i.e. ,
a spring with a resonant frequency larger than the
frequency of the gravitational wave) of length d. It
is a well-known result" that in a TT frame the
spring responds to a gravitational plane wave with
an oscillation of amplitude -kd if the spring is
transverse to the direction of propagation. Thus,
the dipole moment has a time-dependent component
dp/dt —vhqd. From classical electrodynamics the
power radiated from an oscillating dipole is
s ~5p~'tu'-p'&u'h'. This is of the same order given

We recall from relativistic kinematics that in the
original frame of the observer most of this radia-
tion will be emitted within an angle 6=1/y of the
forward direction -x, and with a frequency between
y~' and 2yo'. From the transformation properties
of the fields the intensity of the radiation is in-
creased by y' for radiation in the forward direction.
The total power emitted in the observer's frame
is then of the same order as that in the particle's
rest frame. Hence, by Eq. (14) the cross section
o for a relativistic particle is up by y' from that
for the nonrelativistic case. In the forward direc-
tion the intensity is increased by a factor of y4 and
at a frequency of about y' times the frequency of
the gravity wave.

in Eq. (15). Consequently, this type of radiation
must not be neglected for tightly bound dipoles
lying perpendicular to the propagation vector of
the gravity wave.

ASTROPHYSICAL SIGNIFICANCE

The incredibly small cross sections together
with the over-all electrical neutrality of matter
indicate that the processes described in this paper
are of little astrophysical significance. Still, let
us estimate the radiation produced by a plane wave
incident on a plasma of large dimension. For our
purposes a simple model of a plasma is a distribu-
tion of randomly oriented dipoles of magnitude p
= qn

' ', where n is the number density of charged
particles. This model is the easiest way to in-
corporate the constraint of zero net charge of the
plasma. Because of random orientation the radiat-
ed power yer unit volume will be roughly n times
the power emitted by a single diyole,

dP
yy dipole~yzP . np ~~/ = q2~ ggj 3

Within a tenuous plasma, electromagnetic radia-
tion with a frequency less than the plasma frequen-
cy, &v~=4& qn' m' (where m is the electron mass),
is exponentially damped with a penetration depth of
5=1/u&~. " Consequently, we expect only the outer
layer 5 of the plasma to emit the gravitationally
induced radiation. Therefore, the induced lux is
on the order of

——~- ~'q~W-~«m~2dP
induced yy

The ratio of this to the incident flux +&& of gravity
waves is

ff = E;„g„„~/Fp~ qQJ n m

If we choose the typical values of m =electron
mass, q = electron charge, ~ = 10' sec ', and
n =10"/cm', then B-10 ". If the plasma is very
hot the electrons may be relativistic and conse-
quently emit a rather broad band spectrum of radia-
tion while the heavier positive cha, rges will emit
at the primary frequency. Then the two compo-
nents of the plasma act independently and one would
expect coherent radiation to occur for regions of
dimension A. 5 on the outer la.yer of the plasma,
(where A, denotes the radiation wavelength). The
power emitted by such a region is, from Eq. (10),

P- (n5/e')'v'q'h',

which results in a flux of roughly &-mnh'. The
ratio of this to the flux of gravity waves is
R-mn/v'. For the values of m, n, and tu chosen
above A-10 '. This ratio is still too small to
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be interesting, furthermore, the expected fre-
quency of gravity waves is so low that the electro-
magnetic radiation produced would have trouble
propagating through interstellar space and certain-
ly would never penetrate the ionosphere of the
earth. Highly rela, tivistic particles, y»1, as
demonstrated, would raise the frequency of the
induced radiation by a factor -y' and the radiated
flux by -z'; however, it is difficult to imagine a
source which mould produce a sufficient density of
such particles to give this process astrophysical
significance.

DISCUSSION

Though apparently of little astrophysical signifi-
cance, the processes treated in this paper are
interesting examples of the interaction of gravita-
tional and electromagnetic waves. Strictly speak-
ing, a gravity wave cannot interact with a, point
particle. A point charge, however, has a non-
vanishing quadrupole moment due to the distribu-
tion of field energy about the charge. It is there-
fore able to absorb energy from the gravitational
wave. The subsequent reradiation of this energy
as electromagnetic waves was the subject treated
in this paper. Since the energy quadrupole mo-
ment of a point charge diverges we might expect
an infinite amount of energy to be absorbed from
the gravity wave. This agrees with the divergent
cross section for electromagnetic emission cal-
culated above.

Momentum as well as energy is transferred in
this process. Although it would take a detailed
calculation to determine the momentum carried
amay by the particle, it is quite possible that it is
comparable to that of the radiation. If this is the

case the particle will experience a radiation reac-
tion force on the order of h q2u . By attaching an
accelerometer to the charge one could in principle de-
tect this force. The magnitude of the response de-
pends only on the force -k'q'~', which is defined at a
point, and the response time is a property of the
accelerometer alone. Consequently, this measure-
ment might be construed as a violation of the
equivalence principle as it is usually stated, i.e. ,
"no local measurement can detect the curvature
of space -time. " This statement is rather vague
in that no specification of what constitutes a local
measurement is given. Possibly one could pre-
scribe conditions of locality which the above mea-
surement fails to meet. A much more satisfac-
tory resolution is to restate the equivalence
principle in the only may general relativists
ever use it, namely, "all the fundamental laws
of physics reduce to their special-relativistic
form at the origin of a local inertial frame, i.e. ,
a frame such that I'" z-—0 at the spatial origin. "
The phenomena dealt with in this paper are not
laws of physics but rather global solutions to the
laws of physics and depend on their structure in
a large region of space-time. The presence of a,

radiation reaction force in no way affects the local
structure of physical laws and does not constitute
a violation of the equivalence principle.
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