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Monitoring Operators in Magnetic Resonance and Light Modulation

Taomas R. CARVER* AND ROBERT B. PARTRIDGET
The Clarendon Laboratory, Oxford University, Oxford, England
(Received 7 July 1965)

A density matrix description of magnetic resonance is constructed, with detailed application
to spin J=1 (or greater) particles. Different types of “monitoring” or “measurement’’ opera-
tors employed in atomic beam, induction, and optical experiments are constructed, and used
as a compact introductory basis for the description of resonance line shapes and other char-
acteristics of these experiments. Of particular interest are the similarities and unique differences
between the optical experiments known by the names “optical pumping,” “double resonance,”
and “light beats” on the one hand, and magnetic induction and atomic beam experiments on

the other. -

I. INTRODUCTION

HE great experimental activity in the many

fields of magnetic resonance and the large
amount of original and review literature in these
fields extending over a period of several decades
would seem to make further general discussion
superfluous. However, the more recent optical
experiments which have been popularly called
“‘optical pumping,” ‘“‘double resonance,”’ and
“light beat’’ experiments make it particularly
interesting to draw some simple distinctions be-
tween the different ways in which information
about the magnetic dipole resonance of a spin
system may be obtained. We are stimulated to
make these points because a description of these
experiments may be made in a more unifted
and, in some cases, simpler form than that which
appears in the original literature, and also be-
cause the introductory and review literature in
the field of ‘“‘double resonance” is still rather
limited or not conveniently accessible.! It will
be seen that optical monitoring has a greater
versatility in measuring the detailed develop-
ment of the state of the system, in principle at
least, than does induction resonance.

Qur approach is to construct the density ma-
trix g(¢), for an ensemble of spin J particles sub-
jected to a constant magnetic field, a steady
rotating field, relaxation or damping processes,
and regeneration processes which maintain a

* On a John Simon Guggenheim Foundation Fellowship
and sabbatical leave from Princeton University, 1964-65.

1 Present address: Palmer Physical Laboratory, Prince-
ton University, Princeton, New Jersey.

1 C. Cohen-Tannoudji, thesis, University of Paris, 1962
[published in Ann. Phys, (Paris) 7, 423 (1962)]. This

remains the definitive study of the optical pumping cycle
and the theory of double-resonance phenomena.

population difference between the Zeeman levels
which are denoted by m. We then construct the
monitoring operators M, appropriate to dif-
ferent resonance experiments and discuss the
results of these experiments in terms of the expec-
tation value of M, (M) =trace (¢M). We empha-
size the specific results for the J=1 system be-
cause this is the simplest case which shows new
effects in addition to those predicted by the classi-
cal Bloch resonance model. The new effects arise
essentially because there are more than two en-
ergy levels. Our principal reason for using the
density matrix description is that it forms a com-
pact and complete description of the state of the
system from which the reader may draw the
desired conclusions by inspection. We are also
motivated by a desire to provide a vivid illustra-
tion of the use of the density matrix, examples of
which are not plentiful in the textbook literature.
Most of the conclusions we draw are implicit in
the original literature. We do not concern our-
selves with the experimental magnitudes or
practical advantages of one method compared
to another.

II. THE DENSITY MATRIX

We consider a spin J particle with magnetic
moment vJ interacting with a constant magnetic
field Hy and a field of magnitude H; rotating at
a frequency w in a plane perpendicular to H,.
This H; may be one rotating component of an
oscillating field. The Hamiltonian is

jt=—vJ-H
3= —~J- (Hok+H, coswti+H, sinwt}). (1)
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340 T. R.

We separate the Hamiltonian into time in-
dependent and dependent parts,

Jo=we], and J;=>0(].coswt+], sinwt), (2)

where we define b= —vH; and wy= —vyH,.
We wish to solve the equation of motion of the
density matrix!!

7
é=£[91 3C0+5C1], (3)

where the square brackets indicate the quantum
mechanical commutation operation. Noting that
the time-independent Hamiltonian 3¢, may be
formed by the transformation

Jcll:e(i/f%)-]zwtgcl(t)g—(i/h)szt:beY <4)

we attempt a solution in the rotating frame? of
Fig. 1,
0(t) = e (/W Taoty! (£l Trut, (5)

Equation (4) may be
obvious to those who
see that the exponential
operator is an operator
of rotation around the
z axis at frequency w.
It may be shown in de-
tail by considering a par-
ticular value of J, or it
may be proved (see Ref.
6, p. 25) by defining the
inverse transformation
to (4>1

e*(i/h)szthe(i/h)szt — f(t),

Fic. 1.

#)
and showing that f(¢) obeys the familiar equation
af/der+wf=0, 4"

whose solution, of course, is f(f)=]J. coswt
+J, sinwt. When (5) is substituted in (3) it gives

6 () =~:;[9'<t>, Lo—o)+8.] (6

where we must make use of the fact that J, and
exp(J.) commute. Since the Hamiltonian which
we define as

GC,:JZ(wO“w)"*’sz:Jza_*’Jwb (7>

21. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod.
Phys. 26, 167 (1954).
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is time independent, the formal solution of (6) is
o () = =GB (=10 g ! (1) (WK (t=10) (8)

and the formal solution in the nonrotating system
is

o(t) = e CiIM Taato=GIMK (i—to) g/ (#))
X GRS (1= t0) o (il 1) T st (9)

We must also make the transformation of g (¢)
in (9) to the nonrotating frame,

90/ (to) :e(i/h)sztooo (to)e—(i/h).]'zwm

(10)

although this is not necessary if the initial den-
sity matrix in the nonrotating frame go(¢,) does
not have off diagonal elements. Equation (9) is
not a convenient form because 3¢’ is not diagonal
even though it is time independent. If a time
independent unitary transformation can be found
to make 3¢’ diagonal in the usual manner such
that

R™13¢'R =3¢/, (11)

it is quickly shown by series expansion? of the
exponential containing 3¢’ that the identity

ekt = R p:(/MRTIR/RIR—1 (11)
permits (9) and (10) to be written as
o(f) = e~ (/M T2t R g (/M (=) R—1 (/) Tzwto

X go(to)e— (/M T wtR p(i/ M (-t R—1p(i/M T 20t (12)

By defining cos=348/p and sinB=5/p, where

pr=082+06% and S=wi—uw, (13)
so that we may write
3¢'=J.8+4]b=(J. cosB+ ]z sinB)p, (14)

it can be seen that the necessary transformation
to diagonalize 3¢’ in this particular case is the
rotation around the y axis through the angle 8,
which restores the system to the z axis. The R is
the rotation operatort D¢ (0, —8,0) which
gives

R(J, cosB+].sing)pR=]J.p=3¢. (15)

At this point it may be helpful to note that,
working outward from the initial density matrix

po(to) in Eq. (12), there are a series of unitary

3 W. Franzen and M. Alam, Phys, Rev. 133, A460 (1964).
4+ M. E. Rose, Elementary Theory of Angular Momentum
(John Wiley & Sons, Inc., New York, 1957).
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rotations: to a rotating frame in which the
Hamiltonian is made time independent, to a
constant tilted frame in which the Hamiltonian
is diagonal and may be expressed in terms of
simple eigenvalues of 3¢/, and back again to the
original frame.

By writing the eigenvalues of J.w as (m, m’,
mo, or mo')hw and the eigenvalues of J,p as
(n or wn")hp, the individual elements of the
density matrix (12) may be written

Pm,m’ (t)

—_ Z 6——7:(m-—'m'._.mo+m0/)thm’an,moRm, ’n,Rn,’m‘)’

nn'
mo,mo’

X e~ iltmo—mo")at(n—n)p] (t—tO)Pmo,mo' (to)' (16)
The R, are the individual matrix elements of
the rotation operator and are the same as the
(m|u) of Dodd and Series. We have attempted to
follow the notation of Dodd and Series,* but we
have defined wq as the Larmor frequency and o
as the radio frequency as in slightly more con-
ventional usage.® The result (16) is the density
matrix equivalent of well-known wavefunction
solutions. 2% 5.7

The expression (16) is directly useful in atomic
beam resonance because there is usually no
damping and the time ¢—{, represents the transit
time of the particle through the region in which
the rotating or oscillating field acts on the
particle. However, to obtain a practical experi-
mental line shape it is necessary to average the
expression over various transit times determined
by the velocity distribution in the beam, and
perhaps over variations of field strength as well.

In the steady-state resonance of the usual
“bulk” sample we must include the effects of
relaxation or damping, and of population re-
generation. It is beyond the scope and the neces-
sity of this discussion to describe the relaxation
as anything other than a uniform decay of all
the elements of the density matrix to a uniform
distribution, the equation for which is

¢()=—TLe(®)—1],

¢ J. N. Dodd and G. W. Series, Proc. Roy. Soc. (London)
A263, 353 (1961).

8 C. P. Slichter, Principles of Magnetic Resonance
(Harper and Row, New York, 1963).

7 H. Salwen, Phys. Rev. 99, 1274 (1955).

(17)
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where I is the unit or identity matrix. The solu-
tion of (17) is

o(f) =e Ty (fo) + 1. (18)

This damping may be caused by radiation
which is absorbed or emitted, or by collisions,
and we do not wish to distinguish between the
damping of diagonal elements (7:) and the
damping of off diagonal elements (7%) although
it may be done.® In resonance jargon, 17=1%.

We also wish to account for processes of popu-
lation regeneration in the form

(&) = We®, (19)
where W represents the rate at which particles
are steadily supplied to the states of an ensemble
in a constant configuration g° by means of optical
pumping processes, state selectors or thermal
processes. Examples are discussed later, but the
process of supplying a J =1 system with particles
in the ms=1 state (polarization), for example,
is represented by

1 00
00{le) =0%= [0 0 0| for all ¢,. (20)
0 0 0

These steady-state processes may be included
by the integral superposition:® of solutions (16)
for all ¢y such that 0 <¢—¢,< o, with the damping
factor of (18) included, and with the constant
o substituted for g¢(f). From (16) we can see
that the relevant integral is -

© WQ
WQO/ g1 @=iD) (t0)  (f— fg) = . (21)
0 T+
where Q= (mo¢—my)w+ (n—n")p. The steady-
state system is then-described by

— 7 ey, — ’
Pm,m? (t)': Z gitm—m—motmo ot 700
nn’
mo,mo’

Rm,an,rm)Rm’ 'nI_RnI ,mg’

X ‘ . (22)
I+ (mo—mo Yo+ (m—n")p]

It can be seen that considerable simplification
results through the omission of the mo—m'o
terms in the usual case when g° does not contain
off diagonal elements.

8 J. P. Barrat, Proc. Roy. Soc. (London) A263, 371 (1961).
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III. THE DENSITY MATRIX FOR J=1}

T. R. CARVER AND R. B.
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common #, that is, Ry, 2Ry m, The R matrix for

AND 1 spin % is*
The evaluation of (22) is somewhat tedious ) -
for spins greater than % because of the presence R — coszf  —sinzf (23)
of the denominator which is different for each sinig cosip '
element. It is convenient to make a table of the
products of the rotation elements that have a and for spin 1 is
cos?3f —V2 sin}f cosip sin?3f
R®={v2siniB cosif cos?if—sint3  —V2sinlp cosifl. (24)
sin?38 V2 sinig cosif cos?ip

It is useful to remind the reader that R® may
be found from R® by the operation

R G+i+G=i) = U-IR @R U

and the extraction of the appropriate submatrix
for J=j+j or J=j—j'. In this case J=1 and
j=j"=% & represents an outer product, and
the U’s are coupling matrices whose elements
are the Wigner vector coupling coefficients.? In
this case

1,1 1,0 0,0 1, —1
131 0 o0 0
U= 4, -3 0 2% 24 0 (26)
—4, o 24 —2% 0
—1, -0 o0 0 1

The terms of the density matrix, (16) or (22),
found element by element, may then be simplified
by frequent use of the identities

1—A—F/2
w
— |27 (X —iY)eiet
T
2-Y(D—iE)eiet

where
X=0b5(4624+024T2) /A,
V=060 (r24462+562/2)/A,
X'=350%/A,
V'=318%/2A,
X—X'=B/2; X+X'=y
Y—-V'=C/2; YV4+V=x",

and where the resonance functions, 4 through F,
of wg—w are defined to be the same as those of

®V. Heine, Group Theory in Quantum Mechanics
-(Pergamon Press, Inc., New York, 1960).

278X 41T )e it

2 H(X —i Y )eiet

cos?3f-+sin?3B=1;  cos?3B—sin*4p=46/p
2 cos3BsiniB=0b/p; cos*38—sin*iB=8/p. (27)

For simplicity and versatility we give the results
for the particular case p, (¢) in which we have
supplied polarization to the ensemble in the form
given by (20) or its spin 4 equivalent. Other
cases may be found by superposition.

The result for /=1 is

W 1-3P e
0 O=—| 1 . (29)
IO —ax")e! 3P
where
P=b¥Ay;  Ay= (D2024D);
x' =b8/A1; x'=0bT/A; (28"

Except for a constant, x’ and x”’ are the same
as the Bloch functions!?; hence our notation. The
result for J=11s p,1(¢) =

21 (D +iE)e %t
24X iV e,
F/2

(29)

Dodd and Series.® We define them below for
convenience, but the reader is directed to
Refs. 22 and 26 for plots of these functions

A=b2(4524b2+T2) /Ay,
B =2b5(462—2b2+T2) /Ay,
C=20T (462 +b24T2) /Ay,

(297)
D=0%(202—0%2—T?)/A,,
E :3b2F6/A2,
F=3b%/Ay,

1 See Ref. 6; also, G. E. Pake, Am. J. Phys. 18, 438,
473 (1950), or A. Abragam, The Principles of Nuclear
Magnetism (Clarendon Press, Oxford, 1961).
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and the denominator
Ag= (T2+b2+46%) (I'*+4b%4-45?).

The factor W/T appearing as a multiplier of these
density matrices is a ratio of population regenera-
tion maintained in the sample to relaxation, and
is a measure of the actual excess population dif-
ference from the unpolarized sample represented
by L

We also write below the density matrix (16)
for spin 1 for a fixed t—#y=r which represents
the action of a radio-frequency pulse of duration
7 or the passage of a mono-energetic particle
through an atomic beam machine, where there is
no damping and where m;=1 initial state selec-
tion (20) has been made.

b262 4
p1=1 —-[»—»-}—-—} (1—cospr)
pt 2Pt

b4

———(1—cos2p7),
8pt

b2 bt

poo=—(1—cospr)+—(1—cos2pr),
p4 4p4

b bt

pi,—1=——(1—cospr) ———(1—cos2pr),
2p4 8pt

53

1
P1,0=p0,1*=\/76"""‘{~—|:——-(1——Coqu-)
2L pe
bé* ir &®
+i— sinpr} +~|:z'- sinpr]
PB 4 p3
1r b3 b?
+~[——(1 —cos2pr) +i— sinZ;ber ,
8L p* p?
163
Po,1=p1,o*=\/2—e_i°"{~[——(1~—cosp7)]
4L pt
1rb% b?
—i-—l:—(l —cospr) +i— sin;br:I
4L p* Pt

1ro% b
-»~|:~(1 —cos2pr) +i— sin2pr:|},
8L p* p?

343

- * o 2wt
p—1,1=p1,-1 =€ °°

1 6% 6%
X {‘[———(1 —cospr) +i— sinprJ
2L p* p?

11 5%?* b8
—-—[»(1 —cos2pr) +i— sianT]
4L pt ?

_é[%:(l -cosZPT):|}~ (30)

Especially for the student of magnetic resonance
who has familiarized himself only with the classi-
cal magnetic resonance solutions, a close study
of (30) reveals a number of interesting features
about the quantum mechanical evolution of the
system : in particular, the 2w and 2p components
of frequency in the motion?® should be noted.

IV. MONITORING OPERATORS AND COR-
RESPONDING EXPERIMENTS

By examining these density matrices, the
characteristics and line shapes of several different
magnetic resonance experiments may be seen.
In each of these experiments a measurement is
made which we may represent by some physical
monitoring operator M, and the result is the
expectation value of M which is determined from
the well-known relation®

<M> =Trace (QM) = Z Pm,m’ (t) Mm'.m-

m,m’

(31)

An advantage of this point of view is that the
results may be seen by inspection of (29) or (30)
when the rather simple form of M is known.!?

A. Atomic Beams

The state selector in the atomic beam experi-
ment!? is represented by the simplest monitoring

11 See, for example, Ref. 6 or R. H. Dicke and J. P.
Wittke, Introduction to Quantum Mechanics (Addison-
Wesley, Reading, Mass., 1960).

2 Since (31) may also be written as

2 Pm,m'Mm,m’y
msm’

the process of taking the trace by inspection is equivalent
to mentally superposing M on @, multiplying the superposed
elements and then adding the diagonal, nearest off-diagonal
and farthest off-diagonal element products. In this applica-
tion, these separate sums have different time dependence,
0w, lw, and 2w, respectively.

18 We discuss this type of experiment in a limited way
only for purposes of comparison. See N. F. Ramsey,
Molecular Beams (Clarendon Press, Oxford, 1956).
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operator. In such experiments a beam of particles
is state selected by an inhomogeneous polarizing
magnet whose effect is represented by g° The
beam passes through the static and rotating field
region and develops in a manner described by
p(t), and finally passes through an analyzing
magnet similar to the polarizer whose effect is
represented by M. Since the force on the
particle in the inhomogeneous magnet is

F.=vy(dH./dz2)J., (42)

and since a slit allows a particular deflection path
of the particle, depending on the eigenvalue of
J., to reach the detector, it is obvious that the M
operator is represented by elements lying along
the m ;s diagonal positions of a matrix. A slit so
placed as to allow the particle to reach the de-
tector after being ‘“flipped in'’ to the 0 state from
the ms=1 state, for example, is represented by

0 0 0
M_=K|0 1 O0f. (33)
0 0 0

The line-shape function which would be observed
would be given by the pg,o element of (30), after
suitable averaging over an experimental velocity
distribution of the particles. Similarly a complete
spin flip would be represented by

0 0 0
M__=K|0 0 0. (34)
0 0 1

We do not consider a constant multiplier of M
which determines the absolute amplitude of the
signal, and which depends on such experimental
parameters as the beam intensity, slit widths or
detector sensitivity; it is written as K, and does
not affect the form of M either here or in the
forthcoming examples.

B. Magnetic Induction

In this well-known type of magnetic resonance
experiment,’® the sample is placed within a coil
or cavity tuned to the frequency w; the same coil
or cavity may be used to supply the H; field. The
precessing magnetic moment of the sample in-
duces a signal voltage in the coil which, from
Faraday’s law, is proportional to the rate of
change of magnetization. This in turn is propor-
tional to the operator J. Since J. is diagonal and

T. R. CARVER AND R. B.
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cannot “pick out’ the time varying off-diagonal
elements of p(£), it is well known that the coil
must be oriented perpendicular to the H, or z
axis, and the appropriate monitoring operator
has the form of J, or J,. In the case of J=1

0 1 0
J.=M=K|[1 0 1]. (35)
01 0

Performing the trace operation (31) using (35)
and (29) the signal from the induction experi-
ment is

S=K[(X+X") coswt+ (¥Y+Y7) sing:t], (36)

or from the properties of the functions defined in
(29)

S=K(x' coswt+x" sinwt). (37)

The neglected factor K in this expression con-
tains the Q of the cavity, the vy as defined in (2),
and the density, susceptibility, and damping of
the sample. An identical result holds for J=3.
Carried out in this way the result (37) might be
said to be a ‘“Majorana’ derivation rather than
a ‘“‘classical” derivation of the Bloch!? resonance
signal,

That the Bloch functions describe the reso-
nance no matter what the value of J is well known
through the fact that they are solutions of the
precession equations

.

= —v(J xH)+damping terms,  (38)

which are identical to the classical equations and
are independent of J. We emphasize the point,
for comparison with other monitoring operators,
that it is the special form of J, that produces
this result. This shows that such an operator has
limitations in its ability to ‘“pick out” the ele-
ments of the density matrix.

To avoid confusion it should be pointed out
that the sample polarization in a nuclear reso-
nance experiment is usually brought about by
thermal processes represented in the high-tem-
perature case by an initial density matrix

1 0 0
0%thermal = 0 0 0 <39)
0 0 —1

instead of ¢..°. However, the reader may check at
once by the obvious superposition of (29) implied
by (39) that this does not change the conclusion
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(37). In thermal processes the factors W and T'
are equal, and the actual excess population dif-
ference is determined by the Boltzmann factor.
It may be of some surprise, however, that in the
“saturation” limit of high radio-frequency fields
(b — =) the populationsof them =1, 0, —1 states
are in the ratio of 3/8, 1/4, 3/8 in the case where
o4+0 represents the population regeneration, even
though they are equalized by “‘saturation” when
thermal regeneration (39) is present. Briefly, a
spin system populated in a nonthermal manner is
not saturated to equal random populations,
represented by the unit density matrix I, even
when transitions are allowed between all the
states.

C. Optical Monitoring Operators

In optical double-resonance experiments a bulk
sample of particles, usually a vapor with suitable
spectroscopic properties, is polarized by an opti-
cal pumping cycle (to be explained by example
later) represented by a particular ¢° It is then
magnetically driven by the field ;. The monitor-
ing process consists of observing the intensity of
absorbed or emitted light which connects the
group of m levels we have described with another
spectroscopically accessible level having m
states labeled by p. The light itselfl has a polari-
zation state represented by the vector e, which
describes the direction and relative phase of the
electric field component of the light. The monitor-
ing beam for absorption experiments is usually
derived from a discharge lamp, containing the
same element as the sample, which emits an
adequately strong line in electric dipole transi-
tion. After passing through the sample the par-
tially scattered or absorbed beam is detected by a
photodetector, which may either be sensitive
only to quasistatic variations as the static field
H, is varied through the resonance value §=0,
or may be tuned to the fundamental or harmonics
of w, and followed by a phase sensitive amplifier.
In the latter case the experiment is sensitive to
“light-beat” effects.

It is easy to find the form of the optical moni-
toring operator for experiments of this type from
considerations of the semiclassical correspond-
ence and by the application of the Wigner—
Eckart theorem. The reader should be cautioned
that there are a number of subtle points con-
cerning the lifetime of the excited states and the
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spectral distribution of the light which are dis-
cussed in the original literature.®!:8 These ef-
fects happily do not concern us in these examples
if we consider that the spectral distribution of
the light beam is sufficiently broad to “cover”
or overlap the group of states labeled by m or
u, and this is the usual case because of the fact
that the spectral distribution from the lamp is
always as broad as, and usually broader than,
that of the absorbing sample.

In the semiclassical model of absorption, the
electric field of the incident light induces an
electric dipole moment of the atom which is pro-
portional to the field and is represented by a di-
pole matrix element. The absorption on which
our monitoring operator depends is proportional
to the quantum mechanical transition rate,
which is well known to be dependent on the
square of the field or the square of the dipole
matrix element. The form of the monitoring
operator is

M=K 2 (m|e-PluXule*-P|m'), (40)
n

where the individual brackets are the matrix
elements of the electric dipole operator P or er
appropriate to the polarization e of the incident
light, taken between the states m which are moni-
tored, and a final state or states u. This form for
M is applicable not only to absorption but also
to emission because of the fact that both proc-
esses are proportional to the square of the elec-
tric dipole matrix element even though they
differ in magnitude by the ratio of the Einstein
B and 4 coefficients.

To evaluate M we make use of the matrix
elements!* written below for reference and
illustration.

(n,jm|P|n', j4+1, m21)=FPi(nn',§,7)

3L Em+1) (GEm+-2)J- (#49)
(Gm|P|j+1, my=Py-[(G+1)2—m> -2
(Gm|P|j, m1)y="Po- 5[ (jFm) (j=m~+1)T

(&g (41
<j,m|P|j,m>=P0-m‘2
(Gm|P|j—1, mx1)=3P_,
$LGFm) (GFm—1)T- (&£4if)

(Gm|Pj—1, m)y=P_y[ P—m*} 8.

“E. U. Condon and G. H. Shortley, The Theory of
Atomic Spectra (Cambridge University Press, London,
1951).
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These elements consist of a reduced matrix ele-
ment depending on specific spectroscopic in-
formation involving the principal quantum num-
ber (shown in the first example and omitted from
the notation in the remainder) and the spectro-
scopic configuration. This reduced matrix ele-
ment is multiplied by a Clebsch—Gordon coef-
ficient depending only on the angular momentum.
This separation is an example of the Wigner—
Eckart theorem.'® It is convenient because we
are concerned with transitions between a group
of m levels and another group of u levels, and
can therefore absorb the reduced matrix element
in the K constant and find the form of M from
the angular momentum coefficients alone.'®
To see the physical significance of M, we note
that the diagonal elements (m=m') represent
the sum of the squares of the dipole matrix
elements over all final states u, and physically
represent the sum of all the transitions from each
state labeled by m. The off-
diagonal elements represent in-
terference products of the com-
ponents of optical radiation aris-

@ o ing from a superposition of m
and m’ when these states are
coupled by magnetic resonance.

m m’  Asillustrated in Fig. 2, these off

diagonal elements represent the

e two interfering paths (a) and (b)

Frc. 2. which are taken by the system

as it passes from an initial state

my to u through the intermediate states m and .

The M operator we have written is identical to
the G*-G of Dodd and Series.

D. The Dehmelt Experiment

In this type of optical experiment the polariza-
tion of the sample is produced by absorption of a
circularly polarized beam of resonance radiation
propagating along the z axis.!” The monitoring

15 Reference 6, p. 167 contains a particularly brief discus-
sion, or see Ref. 4 or 9.

16 Tt sometimes happens that transitions are excited to
several groups of levels in which the fine structure or
hyperfine structure is not resolved. If the reduced matrix
elements P and P, for example, are of the same size, the
optical components may nearly or completely cancel
through the fact that the Clebsch—~Gordon coefficients in
(41) differ in sign for the cases AJ=0 and AJ=1, and the
optical monitoring signal may be small or vanish. This
does not affect the form of M, but may mean that K
vanishes.

17 H, G. Dehmelt, Phys. Rev. 105, 1487 and 1924 (1957).
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is carried out by the same beam as it passes
through the sample and is detected. Since we
have chosen a J=1 system as a representative
example, our discussion would apply to the
absorption of D, light by the =1 (and by exten-
sion to the F=2) hyperfine levels of the %S
ground state of Rb%” or Na?, or the absorption of
10 830 A light by the 35; metastable state of
Hes.18

The absorption of ¢, light increases the angular
momentum such that p=m-+1, and in subse-
quent reemission little or none of this is lost.
The system tends to polarization. Figure 3 shows
an ideal case in which the transition is from a
J =1 state to a J=1 state. This type of pumping
can often be achieved
by optical filtering
of hyperfine compo- .
nents. Atoms which ’
absorb will eventually
find themselves in the
state which does not
absorb, so the popu-
lation tends to be
inversely proportional to the absorption rate.
The system tends toward an ideal polarization!®
given by

IS -1 0 1

m= -1

Fic. 3.

1 00
p’={0 0 0.
0 0 0

(42)

The monitoring operator in this case is rather
simple to determine. Figure 3 shows there are no
interfering transitions, and so there are no off
diagonal elements. From the matrix elements
(41) we find the relative absorption rates from
(40) shown on Fig. 3, and find that the absorp-
tion matrix is

0 00
A=K[0 1 0f.
0 0 1
Strictly speaking, we measure the absorption by
means of the residual transmission of the beam,
so that M=I—A or

(43)

S OO
o OO

1
M=XK|0
0

18 F, D. Colegrove and P. A. Franken, Phys. Rev. 119,

680 (1960). See, also, T. R. Carver, Science 141, 599 (1963).
19 \;V Franzen and A. G. Emslie, Phys. Rev. 108, 1453
(1957).
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which is similar to the state selector operator of
the atomic beam. The resulting signal is

S=K(1—A4—F/2). (44)

E. The Brossel-Bitter Experiment

In a typical experiment?® of this type the

6 1S, ground state of mercury vapor (considered

for simplicity to be an isotope with no nuclear

spin) absorbs the o, (e=£-+1§) polarized reso-

nance line at 2537 A and makes a transition to

the 6 3P; m;=1 state. Magnetic resonance oc-

curs in the m levels of

1 this excited state. The

emitted fluorescence

light acts as the moni-

toring light. If a linear

analyzer oriented paral-

lel to the z axis (e=3)

is used, only the 7 com-

ponent will be detected

in the emitted radiation.

An examination of Fig. 4 shows that 7 polarized

radiation is emitted from the m=0 state (to the
=0 state) only, so we find that

m= -1 0

pe 0
Fic. 4.

00 0
M=Ki{0 1 0], (45)
0 0 0
and the resulting signal is
S=KA4. (46)

From the standpoint of this discussion, the
Brossel-Bitter experiment is a version of the
Dehmelt experiment in which ideal polarization
may be achieved, and both experiments have a
monitoring operator similar to those of the atomic
beam experiments. The function 4, or Brossel-
Bitter function, is a double peaked function
when b is large, and is quite different from the
ordinary Lorentz shape.

F. The Bell-Bloom Experiment

The polarization of the sample in this experi-
ment?! is produced in the same manner as in the
Dehmelt experiment. The observation of the
signal is with a cross beam of light perpendicular

2 J, Brossel and F. Bitter, Phys. Rev. 86, 308 (1952).

2 W, E. Bell and A. L. Bloom, Phys. Rev. 107, 1559

(1957). See also, H. G. Dehmelt, Phys. Rev. 105, 1924
(1957).
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to the z axis, propagated. in the y direction, say,
and circularly polarized so that the polarization
vector e is given by £+442. With respect to the
z axis of quantization, this light consists of oy,
o_ and 7 polarizations, and there are diagonal
elements (d) of M. However, in this experiment
the photodetector is tuned
only to the frequency w.
Only the nearest off-diag-
onal elements are impor-
tant in giving an w signal
when taking the trace of
oM. The effect of the far-
thest off-diagonal elements
(f) is discussed later. Using
Fig. 5 and the matrix elements (41) we find the
form of M to be

p=1 (o] 1

Fic. 5.

@ 1 f)
M=K[1 (@ 1| (47)
& 1 @

Drawing attention only to the nearest off-
diagonal terms we can immediately see that the
o frequency Bell-Bloom signal has exactly the
same form as that of the induction experiments
(37), since the relevant part of the M is the
same as (35). Indeed the classical models of the
two experiments are the same; in the Bell-Bloom
experiment the amount of scattered light changes
as the particles precess from a parallel to an
antiparallel direction in the cross beam.

G. Dodd—Series—T aylor Experiments?

For closest analogy to the preceding experi-
ments we consider either a polarized ground state
as in the Dehmelt experiment, or a polarized
excited state as in the Brossel-Bitter experiment.
Observation of the signal is carried out either by
absorption of a transverse y axis beam which is
polarized at 45° to the z axis, or by detection of
emitted light which is examined by a similarly
oriented analyzer. In either case we assume that
the photodetector is sensitive only to the w
frequency. The only difference in the monitoring
operator when compared to the Bell-Bloom type
of experiment is that the light polarization is
e=4-42 instead of e=£+172. Yet the result when

2], N, Dodd, G. W. Series, and M. J. Taylor, Proc.
Roy. Soc. (London) A273, 41 (1963).
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the M matrix is written out from (41) is that

Mi10=Po(+1)(2+8) 2P 2} (E+8)* (£ +4f)
22_%(P0)2:K,

Mo,_lzPOZ‘%@—}»ﬁ) . (i—lg)[)o(— 1) (48)
X (+8)*-8=—27(Py)i= — K,
leading to M of the form
@ 1 ()
M=K|1 (@ -1 (48")
f) -1 (@)

The resulting signal modulated at the frequency
w is

S=K[(X—X') coswt+ (Y —Y"') sinwt ]
or using (29)

S=K (B coswt+C sinwt). (49)

It cannot be emphasized too strongly that al-
though there appear to be rather trivial dif-
ferences between the Bell-Bloom experiment
and the Dodd-Series~Taylor experiment, the
lack of a simple classical model for the latter
type of modulation experiment stimulated a
comprehensive theory of light modulation ef-
fects.’ One can see that either a ‘‘classical”
Bloch resonance signal or a ““Majorana’’ signal
may be observed by altering the type of polar-
izer.?? The reader may easily verify from the cor-
responding M matrix (dimension 2X2) for the
spin % system and (28), that although there is a
Bell-Bloom signal from the spin % system, there
is no Dodd—Series—Taylor signal. The optical
monitoring operator can distinguish between the
two spins. (Of course, there are many other ways
to determine the spin of a particle.)

H. 26 Modulation

There are many aspects to the Dodd—Series—
Taylor experiments. It will by now be obvious
that the effect of the extreme off-diagonal ele-
ments (f) of the M matrix is to select the ele-
ments of the density matrix which have a time
dependence at the frequency 2w. All that is
required is to choose monitoring light which con-

% It has been pointed out to the authors by G. W. Series
that this distinction may also be made in terms of selection

rules on the quantum numbers in the rotating coordinate
system of p. See Appendix.
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nects the two states la- 0
beled by m = 41 only, as
indicated in Fig. 6. This
can be done by using a
linear analyzer or polar-
izer which selects ¢ light,
either linearly polarized
and propagated in the z
direction or polarized perpendicular to the 2
axis in the cross beam, since either is a coherent
mixture of ¢, and o_ light with e=4% or §. Since
the two (f) elements are real and have the same
sign, the resulting signal is

Fic. 6.

S=K (D cos2wt+E sin2wt). (50)

It is worth pointing out here that the use of
unpolarized light propagated along the z axis,
which is described by a random mixture of o,
and o_ or e = ¢ and 7, will not complete a coherent
interference cycle in the sense of Fig. 2, and in
fact, there are no modulation effects because the
random mixture gives zero off-diagonal elements
of M. It is also worth noting that the ability to
see 2w modulation components in the state of the
system is a feature of the optical monitoring
method which is not possible in induction reso-
nance experiments. It is possible to think of the
2w modulation as an effect of degenerate double-
quantum absorption.?

I. Alignment Experiments

The Brossel-Bitter and Dodd-Series-Taylor
experiments were originally carried out with =
polarized light incident on mercury vapor, so
that the sample was initially aligned rather than
polarized. The initial density matrix corre-
sponding to (20) for an aligned spin 1 system is

10 0 0 0 0
=10 0 0 or =0 1 0. (51)
0 0 1 0 0 0

The former may be represented by a superposi-
tion of p,® and p_9 and the latter may then be
formed by subtraction from the unit matrix I
The density matrix g(¢) corresponding to these
forms of ¢ may be found (by inspection) by
applying the same operations to expression (29).
The reader may easily verify that the results are
in agreement with the results of the Dodd-
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Series—Taylor experiments, and also that there is
no Bell-Bloom or induction signal in the case of
alignment. It is well known in the case of induc-
tion experiments that one must have a polarized
sample in order to see resonance signals.

J. Higher Order Experiments

It is beyond both the scope of this discussion
and the power of the formalism developed so far
to describe a large number of “carry-over,”
“indirect,” or ‘‘second-order” phenomena, vari-
eties of which are still being observed.?* In these
experiments, a first cycle of optical pumping
produces initial coherence between the m levels
under consideration, which is represented by off
diagonal elements in % What is required in
order to consider this type of problem in detail
is a more complete picture of the initial excita-
tion process''® than we have given. We can give
one example, however. Excitation of the m =0,
6 LS, state of mercury to the m;= 41 states of
the 63P; state, if carried out with a coherent
superposition of o, and o_ light represented by
the inverse of Fig. 6, produces coherence between
those states represented by extreme off diagonal
elements labeled by mo= =41, m,'=F1. What is
meant by coherence in this case is that the two
states may be excited together by one Fourier
component or mode of the light, if the two states
are in a ‘‘level-crossing” situation?’ in which the
Zeeman splitting between the states is small
compared to the inverse lifetime, or width, of the
states. The two states will not have arbitrary
relative phase, and the products of their wave-
functions will not average to zero. This results in
the off diag onal entries of g°.

Using the initial matrix

o OO

1 1
0"=0 0 (52)
1 1

and (22) to work out the appropriate o(t), it can
be seen that the terms

exp[ —it(m—m'—mo+my)wt]

% 0. Nedelec, M. N. Deschizeaux, and J. C. Pebay-
Peyroula, Compt. Rend., 257, 3730 (1963); K. Rosinski,
Bull, Acad. Polonais Sci. Math., Ast. Phys. 12, 497 (1964);
R. B. Partridge and G. W. Series, to be published; B. P.
Kibble and S. Pancharatnam, to be published.

2 P A. Franken, Phys. Rev. 121, 508 (1961).
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lead to 4w frequency terms in the extreme off
diagonal elements of p(), and these when picked
out by the (f) elements described by Sec. H lead
to 4w light modulation.?¢ It is almost, but not
completely, obvious that the form of the signal
is that of the F function, since this is the function
which in (29) is opposite the initially populated
element of g.°.

V. SUMMARY

By considering a density matrix for magnetic
dipole resonance for the case of initial polariza-
tion alone it is possible to make a simple, unified
and fruitful comparison of a large number of
resonance experiments. Inaddition, the formalism
developed here makes a convenient introduction
to the theory of all the resonance line-shape
functions. Each of the experiments may be de-
scribed in terms of an initial preparation of states
represented by g°, the development of the state
represented by p(f), and the measurement
represented by M, in a familiar quantum me-
chanical manner. A description in this form
makes it easier to see the similarities and dif-
ferences between these experiments. We have not
considered experimental details, or the magni-
tude of the signals involved, since these matters
are simply and well described in the original
literature.

One of the important conclusions to be noted
is that whereas the atomic beam-monitoring
method can measure only the diagonal or single
state elements of the density matrix, and the
induction experiments can measure only the
nearest off diagonal elements in a restricted
“classical’” way, the optical monitoring operator
can measure all of the Am =0, 1, 42 elements
with considerable flexibility of phase and, in
particular, can measure all of the properties of
the J=1 system. This added flexibility has its
origin in the fact that we use a combindtion of
two electric-dipole transitions, the selection rule
for each of which alone is Am =0, &1.

We conclude with an interesting and as yet
incompletely answered question: what kinds of
experiments and what sorts of corresponding
monitoring operators would be capable of ‘meas-
uring”’ the elements of a density matrix of par-

26 B, P. Kibble and G. W. Series, Proc. Roy. Soc.
(London) A274, 213 (1963).
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ticles with J>1? The question is particularly
relevant to determining the off-diagonal elements,
since it is obvious that the atomic beam-monitor-
ing operator can measure the diagonal elements,
no matter how numerous.

Fond P
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Fic. 7.
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APPENDIX

Concerning the question raised at the end of
this discussion, it is useful and important to note
that the optical monitoring operator involving
two electric dipole-matrix elements is limited in
its ability to distinguish between particles with
J>1 or to give new resonance functions. Just
as the trace (gJ.) does not contain resonance
functions with terms in the denominator of form
I'2+ (An)2p? with An>1, no matter what the
value of J, so one would also expect that no such
terms with An>2 would appear in the trace
(eM) where M is the optical monitoring operator.
This is equivalent to the previously mentioned
selection rule, Az<2, which can be proved by
transforming the e vectors corresponding to the
Bell-Bloom or Dodd-Series—Taylor experiments
to the rotating coordinate system aligned along
the p axis and then examining the matrix ele-
ments (n|e’-P’|n’) in that system.

One would therefore suppose that for all
systems with J>1 the optical monitoring oper-
ators corresponding to the Bell-Bloom or Dodd-
Series—Taylor experiments would give the same
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resonance functions as we have already derived
for J=1. This may be shown for J=3%, for ex-
ample, by using the optical monitoring operators

6 vi —Vv3 0
_ V3 4 2 —vV3
M=K 3 9 4 3 (A1)
0 —V3 V3 6
and
6 2V3 V3 0
W3 4 0 V3
M=K v3i 0 4 —2V3 (A2)
0 V3 —2V3 6

for e=%+4% and e=#£-43, respectively, which
describe the transitions from the m levels of a
J =2 state to the u levels of a J=13 state. Since
the evaluation of a complete resonance density
matrix for £ is tedious, it is simpler to show this
by considering the numerators of the I'42(An)p
terms in combinations such as

V3ps,3+203,—3+V3p_5 3

43 by pra—h-1 (A3)

and

using (22) and the rotation operators for J=3.
These three terms represent the relevant parts
of the trace over the M operator for the Bell-
Bloom or induction experiment, the Dodd-
Series—Taylor w modulation experiment or the
Dodd—Series—-Taylor 2w modulation experiment,
respectively. It should again be noted, just as for
the J=1 case, that the nearest off-diagonal
elements of the first of these operators (A1),
which corresponds to the Bell-Bloom operator,
are the same as those for the J, operator for J=3.

In view of these limitations, it would appear
that in order to construct monitoring operators
which pick out elements of the density matrix
with Am or An > 2 it would be necessary to make
use of other than electric dipole transitions (very
difficult in practice), or to use ‘‘carry over’
experiments of the type illustrated by Fig. 7
(limited to ‘level-crossing” situations).
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