
Haverford College Haverford College 

Haverford Scholarship Haverford Scholarship 

Faculty Publications Astronomy 

1998 

Radio wavelength constraints on the sources of the far-infrared Radio wavelength constraints on the sources of the far-infrared 

background background 

D. B. Haarsma 

Bruce Partridge 
Haverford College, bpartrid@haverford.edu 

Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs 

Repository Citation Repository Citation 
(with D. B. Haarsma) Radio Wavelength Constraints on the Sources of the DIRBE Far Infrared Background, 
Ap. J. (Letters), 503, L5, 1998. 

This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has 
been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For 
more information, please contact nmedeiro@haverford.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Haverford College: Haverford Scholarship

https://core.ac.uk/display/229139332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarship.haverford.edu/
https://scholarship.haverford.edu/astronomy_facpubs
https://scholarship.haverford.edu/astronomy
https://scholarship.haverford.edu/astronomy_facpubs?utm_source=scholarship.haverford.edu%2Fastronomy_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu


Haverford College
Haverford Scholarship

Faculty Publications Astronomy

1998

Radio wavelength constraints on the sources of the
far-infrared background
D. B. Haarsma

R. Bruce Partridge
Haverford College

Follow this and additional works at: http://scholarship.haverford.edu/astronomy_facpubs

This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty
Publications by an authorized administrator of Haverford Scholarship. For more information, please contact nmedeiro@haverford.edu.

Repository Citation
(with D. B. Haarsma) Radio Wavelength Constraints on the Sources of the DIRBE Far Infrared Background, Ap. J. (Letters), 503, L5,
1998.

http://scholarship.haverford.edu?utm_source=scholarship.haverford.edu%2Fastronomy_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.haverford.edu/astronomy_facpubs?utm_source=scholarship.haverford.edu%2Fastronomy_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.haverford.edu/astronomy?utm_source=scholarship.haverford.edu%2Fastronomy_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.haverford.edu/astronomy_facpubs?utm_source=scholarship.haverford.edu%2Fastronomy_facpubs%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nmedeiro@haverford.edu


L5

The Astrophysical Journal, 503:L5–L8, 1998 August 10
q 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.
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ABSTRACT

The cosmic far-infrared background detected recently by the COBE-DIRBE team is presumably due, in large
part, to the far-infrared (FIR) emission from all galaxies. We take the well-established correlation between FIR
and radio luminosity for individual galaxies and apply it to the FIR background. We find that these sources make
up about half of the extragalactic radio background, the other half being due to active galactic nuclei (AGNs).
This is in agreement with other radio observations, which leads us to conclude that the FIR-radio correlation
holds well for the very faint sources making up the FIR background and that the FIR background is indeed due
to star formation activity (not AGNs or other possible sources). If these star-forming galaxies have a radio spectral
index between 0.4 and 0.8 and make up 40%–60% of the extragalactic radio background, we find that they have
redshifts between roughly 1 and 2, which is in agreement with recent estimates by Madau et al. of the redshift
of peak star formation activity. We compare the observed extragalactic radio background to the integral over the

curve for star-forming radio sources and find that the slope of the curve must change significantlylog N- log S
below about 1 mJy. At 1 mJy, the faint radio source counts predict about 25 sources per square arcminute, and
these will cause the Space Infrared Telescope Facility to be confusion limited at 160 mm.

Subject headings: cosmology: observations — diffuse radiation — galaxies: evolution — infrared: galaxies —
radio continuum: galaxies — stars: formation

1. INTRODUCTION

The COBE-DIRBE team has recently announced the detec-
tion of the cosmic far-infrared background (Hauser et al. 1998).
The team interprets this flux as the sum of far-infrared (FIR)
emission from all galaxies, presumably mostly reemission from
warm dust (although other interpretations have been made, e.g.,
Bond, Carr, & Hogan 1986, 1991). The DIRBE results thus
provide important constraints on the star formation history. In
this Letter, we use the DIRBE flux measurement, in conjunction
with radio wavelength observations, to explain some of the
radio extragalactic surface brightness, to estimate the redshift
of the sources producing the DIRBE background, and to con-
strain radio source counts.

At 240 and 140 mm, the fluxes measured by the DIRBE team
are and W m22 sr21, respec-29 2914 5 3 # 10 25 5 7 # 10
tively (Hauser et al. 1998). These values are in agreement with
the Far-Infrared Absolute Spectrophotometer (FIRAS) spec-
trum over 125–2000 mm reported by Fixsen et al. (1998). We
have elected to use these more recent results rather than the
tentative detection reported by Puget et al. (1996). The Hauser
et al. measurement and the upper limits at 60 and 100 mm show
that the flux density has a nearly flat spectrum, and thus we
take the flux density to be W m22220S 5 1.15 5 0.20 # 10FIR

sr21 Hz21 between 140 and 240 mm in our subsequent
calculations.

2. PREDICTION OF THE EXTRAGALACTIC RADIO BACKGROUND

We begin with the assumption that the well-established cor-
relation between the FIR and 20 cm radio flux densities of
galaxies,

S80 mm 2.345 10 , (1)
S20 cm

(Helou, Soifer, & Rowan-Robinson 1985; Condon, Anderson,
& Helou 1991) holds for whatever sources produce the bulk

of DIRBE background. The relationship has been observed for
galaxies with a range of 104 in FIR flux density, from normal
spirals to ultraluminous IRAS galaxies (Cox et al. 1988; Craw-
ford et al. 1996). The correlation does not, however, hold for
galaxies in which the radio emission is not associated with star
formation, such as active galactic nuclei (AGNs) or classic
radio galaxies. The physical origin of the correlation, while not
completely understood, is probably due to star formation pro-
cesses, namely dust reemission in the FIR and supernova rem-
nant synchrotron emission or thermal emission in the radio (see
Condon 1992 for a review). Thus, it is reasonable to suppose
that the relationship holds for the higher redshift, faint galaxies
producing the DIRBE background.

A substantial fraction of the DIRBE background, and the
associated radio emission, may be redshifted. Rest-frame emis-
sion at 80 mm from sources in the range would0.75 ! z ! 2.0
be detected by DIRBE between 140 and 240 mm. Since the
luminosity density and star formation rate peak approximately
in this same interval (Madau et al. 1996), we will initially take

as a typical redshift for the sources producing thez 5 1.0
DIRBE background. Thus the radio flux emitted by these
sources at 20 cm (1.4 GHz) will be observed at 40 cm
(750 MHz).

Using the FIR-radio correlation, we calculate that the surface
brightness at 40 cm due to star-forming galaxies is ∗S 540 cm

Jy sr21, or about 0.5 mJy arcmin22. The22.3410 S . 5300FIR

asterisk is used to indicate emission from star-forming galaxies
(i.e., emission from AGNs and the cosmic microwave back-
ground is not included). The corresponding brightness tem-
perature is K.∗T 5 0.3140 cm

To compare this to the observed brightness temperature, we
scale this result to other radio bands using an appropriate spec-
tral index a (where ) for the source population. Win-2aS ∝ nn

dhorst et al. (1993) compiled various surveys of faint radio
sources at 50 cm (600 MHz) and 75 cm (400 MHz) and found
the median spectral index between these bands and 6 cm
(5 GHz) to be for faint sources, a value we will assumea ∼ 0.7
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Fig. 1.—Relationship between the radio spectral index a, the ratio of star
formation flux to the total radio background A, and the typical redshift z for
the sources making up the FIR background. See eq. (3).

unless noted. Thus, the brightness temperature at 170 cm
(178 MHz) due to the DIRBE sources is K.∗T ∼ 15170 cm

We may compare this prediction with the observations of
Bridle (1967), who found K for the entireT 5 30 5 7170 cm

extragalactic brightness temperature, including emission from
AGNs and 2.728 K from the cosmic microwave background
(CMB) (Fixsen et al. 1996). Subtracting the temperature of the
cosmic microwave background, we see that source of the
DIRBE background explains more than half of the observed
radio sky brightness due to all extragalactic sources. If we adopt
a flatter spectral index for the radio sources of , thea 5 0.4
fraction of the observed radio background explained by the
DIRBE sources drops to about one-third. Thus the simple as-
sumption that the FIR-radio correlation holds for the DIRBE
sources allows us to explain a significant fraction of the ob-
served radio brightness of the sky.

Our results are consistent with observations at other radio
bands, which show that about half of the extragalactic radio
background is due to star-forming galaxies. For instance, Con-
don (1989) estimates that at 20 cm, AGNs and star-forming
galaxies contribute almost equally to the total spectral power
density.

An analysis of radio source counts allows us to reinforce
this conclusion. The counts are the sum of the two populations
(star-forming galaxies and AGNs), with the bulk of the AGNs
brighter than the bulk of the star-forming galaxies (see, e.g.,
Windhorst et al. 1993). We can thus take all of the bright
sources as a proxy for AGNs and then estimate the total fraction
of the surface brightness of the radio sky that AGNs would
contribute. At 20 cm, the dividing line between the two pop-
ulations has been estimated as 1 mJy (Condon 1989) and
9 mJy (Kron, Koo, & Windhorst 1985). Ryle (1968) uses a
lower limit of 10 mJy at 75 cm (which corresponds to 4 mJy
at 20 cm for ) and integrates over to finda 5 0.7 dN/dS

K for the contribution to the background fromAGNT ∼ 1.475 cm

AGNs. We can compare this to the total radio background by
scaling Bridle’s (1967) measurement at 170 cm and correcting

for the CMB contribution to find K for theT 5 2.9 5 0.775 cm

total radio brightness. Thus, the AGNs explain about half of
the total radio background, leaving the other half due to star-
forming systems.

Since observations at other radio bands have also found that
about half of the extragalactic radio background is produced
by star-forming galaxies, we conclude that the assumed FIR-
radio correlation holds for the sources responsible for the
DIRBE background. Since the tight FIR-radio correlation seen
in individually observed galaxies at lower redshift is ascribed
to star formation, our results bolster the argument that star
formation is the cause of most of the FIR background at the
presumably higher redshifts of the DIRBE sources.

3. THE REDSHIFT OF SOURCES PRODUCING THE DIRBE
BACKGROUND

We have so far assumed that both the FIR and the radio flux
are produced at . If the bulk of the emission originatesz 5 1
at a different redshift, we will need to make the appropriate
K-corrections. It is convenient that the DIRBE measurements
and limits have found the FIR background to have a flat spec-
trum between 140 and 240 mm (see § 1), so that to first order
we can ignore the FIR K-corrections in the range 0.75 ! z !

for 80 mm emission. At radio wavelengths, the spectral2.0
index must be used to make the K-corrections.

To find the redshift of the DIRBE sources, we once again
assume the FIR-radio correlation. We then scale the radio emis-
sion to an observing wavelength of 170 cm and write A as the
fraction of the observed flux density which we∗S /S170 cm 170 cm

ascribe to star-forming galaxies, giving

a1 170 cm
22.34S 5 S 10 . (2)170 cm FIR [ ]A 20 cm (1 1 z)

Solving this expression for the redshift and substituting in the
measured values of (see § 2) and (see § 1), we findT S170 cm FIR

the dimensionless relationship

a1 1 z
A 5 0.20 5 0.06, (3)( )8.5

which is plotted in Figure 1.
For our nominal values of and , we findA 5 0.5 a 5 0.7

, which is in agreement with our initial as-z 1 1 ∼ 2.3 5 1.0
sumption of . While the uncertainty is large, this valuez 5 1
is in agreement with the redshift of peak star formation of

found by Madau et al. (1996). The measured redshiftsz ∼ 1.5
of individual faint radio galaxies (less than 1 mJy) are typically

(Condon 1989; Windhorst et al. 1993; Richardsz ∼ 0.5–0.75
et al. 1998); our value of z is somewhat higher than this es-
timate, but this is reasonable since the fainter galaxies making
up the DIRBE background should be at higher redshifts than
brighter galaxies detected individually.

Let us now assume reasonable values of z and a and consider
the allowable range of the parameter A. We can assume that
the bulk of star formation is certainly more recent than the
epoch corresponding to . Then Figure 1 shows that thez 5 8
fraction of the radio background from star-forming galaxies,
A, must be greater than 20% for any reasonable spectral index.
Since z must be greater than zero, we can also find upper limits
on A: for , A must be less than about 90%, and fora 5 0.7

, A must be less than 50%. If star formation peaks ina 5 0.4
the interval and , A is tightly constrained to1 ! z ! 2 a ∼ 0.7
the interval 40%–60%.
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4. CONSTRAINTS ON FAINT RADIO SOURCE COUNTS

The brightness temperature of the radio background, cor-
rected for the CMB, is due to combined flux of the faint radio
galaxies and thus is related to the number counts of these
galaxies:

Smax2l dN
T 5 S dS. (4)E2k dSSmin

We can take the number counts to be of the form dN/dS 5
, where g is generally less than 22 for this population atgCS

radio wavelengths (see eq. [5]). For , faint sources dom-g ! 22
inate the contribution to the background temperature. It has
also long been recognized that for , the total sourceg ! 22
counts and the radio sky brightness will (slowly) diverge as

(see, e.g., Windhorst et al. 1993). Therefore, there mustS r 0
be a cutoff or change in slope of the curve at somelog N- log S
minimum value . To estimate , we can use the radioS Smin min

brightness temperature due to the DIRBE star-forming galaxies
in conjunction with the relation for faint radiolog N- log S
sources.

Very deep VLA observations at 3.6 cm (8 GHz) (Windhorst
et al. 1993; Windhorst et al. 1995; Fomalont et al. 1997; Kel-
lermann et al. 1998) have been used to determine the number
count power law:

22.350.2dN S
21 215 24.6 5 0.7 Jy sr , (5)( )dS 1 Jy

which is valid for flux densities in the range 14.5 mJy ! S !

. At these faint flux levels, there is little contamination1000 mJy
from AGNs, i.e., the sources are nearly all star-forming galaxies
(Condon 1989). For , the definite integral is dominatedg ! 22
by and is independent of for large values of ; weS S Smin max max

take to be infinity. Thus, the integral over these numberSmax

counts will yield the radio brightness temperature due to the
DIRBE sources found above. Scaling this temperature to
3.6 cm, integrating, and solving for , we findSmin

1/(21g)
a2 1 g S 3.6 cmFIR 22.34S 5 10 . (6)min ( ) [ ]{ }C Jy 20 cm (1 1 z)

For , , the observed value of , and g anda 5 0.7 z 5 1.0 SFIR

C from equation (5), we find mJy at 3.6 cm.S * 1min

It is useful to compare our estimate of , based on theSmin

FIR background, with other estimates at 3.6 cm, such as those
made by Windhorst et al. (1993). In order for the radio back-
ground due to galaxies to not distort the spectrum of the CMB,
they found nJy at 3.6 cm. They also found that ifS ≥ 20min

fell below 300 nJy, the optical counterparts of these faintSmin

radio sources would exceed the V-band counts of field galaxies.
The limit of mJy that we have found is consistent withS ≥ 1min

these but is more restrictive and has more interesting obser-
vational consequences.

An rms sensitivity of 1.5 mJy has been reached in recent
VLA observations at 3.6 cm (Partridge et al. 1997), and our
value of indicates that there are few radio sources belowSmin

this flux density, that is, the slope of the curvelog N- log S
changes significantly at . The present VLA observationsSmin

have thus detected the bulk of all radio sources in the universe.
The value of (at ) can also be compared to the kneeS z ∼ 1min

in the luminosity function for local faint radio sources. At
20 cm, the slope turns over around W Hz21 (Condon22.410

1989). A source at with a flux density of 1 mJy at 3.6z 5 1
cm would have a 20 cm luminosity of about 1021.7 h22 W Hz21

(assuming and an Einstein–de Sitter universe). Thus,a 5 0.7
the turnover point at is very similar to the local value,z 5 1
especially for a Hubble parameter of .h ∼ 0.6

We can also consider the fluctuations in the radio background
due to these sources. The number counts (eq. [5]) at the 1 mJy
level indicate that there should be about 25 sources armin22,
or about sources sr21. The average separation of 1 mJy83 # 10
sources is thus about 140, and we would expect substantial
fluctuation in the surface brightness of the radio sky on this
angular scale. The rms due to the sources can in principle be
calculated from the number counts, assuming that the sources
are distributed randomly on the sky. When the number counts
follow a power-law distribution, as in equation (5), the rms is
determined by the upper and lower limits on the source flux
densities, and . For a power law with , the rmsS S g 1 23min max

is unfortunately dominated by the value of , which is notSmax

well known for this population (the bright star-forming galaxies
are comparable to the faint AGNs, which makes it difficult to
determine the precise upper bound on the population). Thus,
it goes beyond the scope of this paper to estimate the rms in
the radio background due to this population. We concur, how-
ever, with the conclusion of Partridge et al. (1997) and Mitchell
& Condon (1985) that these faint radio sources do contribute
substantially to the rms fluctuations in the microwave sky. Oth-
ers have noted that at the higher frequencies and lower angular
resolutions planned for satellite- and ground-based searches for
CMB fluctuations, the faint sources that produce the FIR back-
ground should present no problems (Windhorst et al. 1993;
Toffolatti et al. 1995), unless the sources are strongly clustered.

We can also ask how these sources will appear in number
counts and in high-resolution maps in the FIR. For a between
0.4 and 0.7 and , we use the FIR-radio correlation toz 5 1
calculate that 3.6 cm sources with flux density (1 mJy) willSmin

appear as 600–1200 mJy sources at 160 mm. The number density
of these faint FIR sources can be compared to the semianalytic
models of galaxy formation of Guiderdoni et al. (1998), who
predict the FIR background and the faint galaxy counts for
various FIR wavelengths. One of their models finds a number
density of 108 sources sr21 for 1 mJy sources at 175 mm, which
is close to our estimate of sources sr21. At 160 mm,83 # 10
the longest Space Infrared Telescope Facility (SIRTF) wave-
length, SIRTF will have 150 pixels and an angular resolution
of about 300 (Rieke, Young, & Gautier 1996), larger than the
average separation of 140 between the faintest sources. Thus,
SIRTF will not be able to resolve the individual sources re-
sponsible for the DIRBE flux and will be confusion limited.
This is in reasonable agreement with the Monte Carlo simu-
lations of Rieke et al. (1996), who find a confusion limit for
SIRTF of 1500 mJy.

5. CONCLUSIONS

Using the well-established correlation between the FIR and
radio luminosity of individual galaxies, we have extrapolated
the FIR background detected by DIRBE to radio wavelengths.
This has allowed us to derive several properties of the sources
making up the FIR background:

1. The radio emission from the sources makes up about
half of the observed extragalactic radio background (about
0.3 K at wavelengths around 40 cm, excluding the cosmic
microwave background).

2. Since this finding is in agreement with other radio ob-
servations, the FIR-radio correlation holds even for the very



L8 HAARSMA & PARTRIDGE Vol. 503

faint sources making up the DIRBE background. This implies
that the FIR background between about 140 and 240 mm is
dominated by star formation, not AGN activity.

3. The typical redshift and spectral index a of these sources
and the contribution they make to the radio background are
related by equation (3). For reasonable values of the spectral
index (0.4–0.7) and the fraction of the radio background
(40%–60%), we find the redshift of these sources to be roughly
between 1 and 2, in agreement with the Madau et al. (1996)
estimate of the redshift of peak star formation.

4. By extrapolating the radio curve at 3.6 cmlog N- log S
to fainter flux densities, we estimate that most of the DIRBE

flux is produced by sources whose 3.6 cm flux density is
*1 mJy and that the number density of 1 mJy sources is about
25 arcmin22. These sources will cause SIRTF to be confusion
limited around 160 mm.

We thank Steve Boughn, Jim Condon, Alberto Franceschini,
Michael Hauser, Ken Kellermann, Rogier Windhorst, and our
referee for their helpful comments. This work was supported
by NSF grant AST96-16971.
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