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Abstract – Using Fano effect measurements upon polycrystalline Ce, we have observed a phase
reversal between the spectral structure at the Fermi edge and the other 4f derived feature near a
binding energy of 2 eV. The Fano effect is the observation of spin polarized photoelectron emission
from nonmagnetic materials, under chirally selective excitation, such as circularly polarized
photons. The observation of phase reversal between the two peaks is a direct experimental proof of
Kondo shielding in Ce, confirming the predictions of Gunnarsson and Shoenhammer, albeit with
a small modification.

Copyright c© EPLA, 2007

Electron correlation is perhaps the last, great unknown
in the study of the electronic structure of materials. The
conventional experimental approach to the problem is to
test the various predictions of different models by interro-
gating complex systems with photoelectron spectroscopy
of very high energy and angular momentum [1–3]. Here, we
report of a study performed in a different mode, wherein
the central issue of most electron correlation models can
be directly addressed, i.e. shielding of unpaired spins. By
performing photoelectron spectroscopy with a different
type of high resolution, using chiral excitation and true
spin resolution [4,5], it has been possible to probe directly
the phase relationships of the valence band features in Ce.
Below, it will be shown that the shielding of the unpaired
spin (in the lower Hubbard band, LHB, or f0 peak) by
the electrons in the quasiparticle peak (f1 or Kondo peak,
near the Fermi energy) has been observed in the case of
polycrystalline Ce. (See fig. 1.)
For many years, the valence electronic structure and

corresponding electron spectra of cerium have remained
subjects of uncertainty and controversy. (For a fuller
description of this issue, please see ref. [5] and the refer-
ences therein.) Much of the controversy revolves around
the interpretation of the Ce photoemission structure in
terms of a modified Anderson impurity model [6–8]. In

(a)E-mail: Tobin1@LLNL.Gov
(b)Present address: Advanced Light Source, Lawrence Berkeley
National Laboratory - Berkeley, CA, USA.

this correlated and multi-electronic picture, proposed by
Gunnarsson and Schoenhammer [6,7], semi-isolated 4f
states (at a nominal binding energy of 1 eV) are in contact
with the bath of spd valence electrons, generating spectral
features at the Fermi level and at a binding energy corre-
sponding to the depth of the bath electron well, about
2 eV below the Fermi level in the case of Ce. The picture
is a specific case of a more generalized model in which the
crucial element is the competition between the bandwidth
(W ) and correlation strength (U), as discussed by Kotliar
and Vollhardt [9]. We have applied circularly polarized soft
X-rays and true spin detection, in a modified form of the
photoelectron spectroscopy experiment, to the enigmatic
Ce system. The result of this is that we have observed the
first experimental proof of Kondo shielding, the central
tenet of the Gunnarsson-Schoenhammer picture, using
Fano effect measurements [10,11]. (The Fano effect is the
observation of spin specific photoelectron emission from
the valence bands of a nonmagnetic material due to exci-
tation with circularly polarized light. A more complete
description of this issue and appropriate references can be
found in ref [5].)
The experiments were performed at the Advanced Light

Source (ALS) at Lawrence Berkeley National Laboratory,
the Advanced Photon Source (APS) at Argonne National
Laboratory and Lawrence Livermore National Labora-
tory. Ultra-pure Ce samples were grown in situ under
UHV conditions, by evaporation onto W substrates at
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Fig. 1: A) Spin-resolved (blue and red) and spin-integrated spectra (black) of polycrystalline Ce are shown here, along
with corresponding polarizations and asymmetry data [4,5]. Error bars for the spin-resolved spectra are included. Blue (red)
corresponds to spin-down (up). See text for details. B) Top panel: spin-resolved and spin-integrated spectra of polycrystalline Ce
at the 4d to 4f resonance. Middle panel: spin-resolved and spin-integrated spectra of polycrystalline Ce at the 3d5/2 resonance.
Bottom panel: spin-integrated spectra of polycrystalline Ce. Color conventions follow those of A). The energy bandwidth was
0.32 eV at 575 eV, 0.43 eV at 675 eV and 0.56 eV at 775 eV. Thus the resolving power (E/∆E) in each case was near 1500. C)
Spectral simulations for cases A and B, as described in the text. Color conventions follow those of A) and fig. 2. FF stands for
Fermi function.

room temperature. This process gives rise to what is
nominally referred to as polycrystalline γ-Ce, with all of
the attendant issues of multiple phase contributions and
surface vs. bulk effects [4,5]. Details of the instruments,
experimental setups and data analysis are described else-
where [4,5]. However, the general principle of the exper-
iment can be summarized as follows. By using a chiral
probe, such as circularly polarized X-rays, for the excita-
tion in conjunction with true spin detection, one is able
to obtain a spin-sensitivity in nonmagnetic systems. The
circularly polarized radiation establishes an axis of quan-
tization that can be inverted by reversing the helicity
of the circularly polarized radiation. In the same way
that spectra in ferro-magnetic systems are collected for
both directions of macroscopic magnetization, data in the
nonmagnetic systems are collected for both circular polar-
izations, thus allowing for the determination and removal
of instrumental asymmetries. Because of the short-time

structure for the X-ray absorption and photoemission
event (10−15 s–10−18 s), this measurement is potentially
fast enough to probe the dynamic shielding hypothesized
for electron correlated systems. Finally, the success of
this method is predicated upon the presence of a spin-
orbit splitting and the predominance of localized effects
in the electronic structure. Strong itinerancy would wash
out the effects being sought by this measurement. Thus,
observations of strong Fano dichroic effects have been
made in the past for core levels in nonmagnetic systems,
with both circular and linear polarization (fig. 2A and
refs. [5,12–14]). The issue for Ce was simple: could this
work for the valence states?
As can be seen in fig. 1A, we have indeed observed

Fano dichroic effects in the valence states of Ce poly-
crystalline films. In the top panel, data on the 4d to 4f
resonance is shown. The advantage of being on resonance
is the improvement of the counting rates owing to the
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Fig. 2: A) Fano effect results for Au 4f core states with circular polarization and true spin detection. The experimental spin-
resolved results are shown in color. The experimental geometry diagram is in the inset in the upper left and the results of a
simple theory are in the insets in the upper right. See text for details. B) In the lower panel, the results of a photoelectron
dichroic experiment upon Fe50%Ni50%/Cu(001) is shown here. XML(C)DAD is X-ray magnetic linear (circular) dichroism in
angular distributions. The photon energy was 95 eV. The experimental geometry for the XMLDAD experiment is shown in the
top panel.M is the sample magnetization, into and out of the plane of the figure. See the text for details. C) The measurements
of the Fano effect of the Pt 4f states, using unpolarized MgK-alpha radiation is shown here. Please see the text for details. The
phase reversal of the Fe 2p dichroism, from Tjeng et al. [20] is shown in the inset in the upper right. When the Gd in the garnet
orders magnetically, the antiferromagnetically coupled Fe’s reverse their phase.

larger cross-sections. The disadvantage is the somewhat
increased complexity owing to the presence of the indirect
channel of resonant photoemission along with the usual
direct channel of regular photoemission. In this case, the
additional complexity manifests itself in two ways: 1) a
large static polarization associated with the the domi-
nance of singlet coupling in the indirect channel decay
path (figs. 1A, B and ref. [4]) and 2) the presence of an
additional strong sub-feature at a binding energy of
1 eV [15,16]. The solution for the first problem is simple:
by subtracting off a constant polarization from the “raw”
polarization shown in the third panel from the top in
fig. 1A, an adjusted polarization is obtained (shown in the
second panel of fig. 1A) and from the adjusted polariza-
tion and the integrated spectrum, it is then possible to
generate the spin-resolved spectra shown in the top panel

of fig. 1A. Here it is clear that there is an underlying spin
structure in the valence states of Ce. The second issue, the
presence of the fairly strong sub-feature at 1 eV binding
energy will be addressed in more detail below.
Furthermore, it is possible to observe similar effects in

an off resonance experiment. In the lower half of fig. 1A,
results are shown for data collected in a chiral configu-
ration, using unpolarized HeI radiation at an energy of
21.22 eV. Although conceptually more convolved than the
case using circular polarization, the data collected in this
mode is essentially equivalent with that collected using
circularly polarized X-rays, as will be described next.
First, it has been established that under many condi-

tions X-ray magnetic linear dichroism in photoelectron
spectroscopy provides essentially the same information
as provided by X-ray magnetic circular dichroism in
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photoelectron spectroscopy [17,18]. An example of this is
shown in fig. 2B. Here a dichroic photoemission experi-
ment upon a ferromagnetic sample is done in two differ-
ent ways, giving rise to essentially identical results [17].
The samples were Fe50%Ni50%/Cu(001). One data set was
collected using circular polarization, in a configuration
similar to that diagrammed in fig. 2A. The other data set
was collected using a chiral configuration of linear vectors,
as illustrated in fig. 2B. Here, almost all of the important
linear vectors (the direction of propagation and polariza-
tion of the photons, the emission direction of the collected
electrons, and some of the crystallographic axes of the
sample) are in the horizontal plane. Only the magneti-
zation vector (M) breaks the symmetry. As can be seen
in fig. 2B, the XMCDAD and XMLDAD from magnetiza-
tion reversal are essentially identical. Theoretically, they
are each dependent upon the imaginary and real parts
of the same matrix elements, respectively. In this case,
symmetry reversal is achieved by inverting the magnetic
field. Reversing the XMLDAD configuration would require
a new experimental geometry, that would be the mirror
image of the configuration shown in fig. 2B.
Second, because of the vectorially chiral selection rules

for these processes, unpolarized radiation can produce
the same effect, albeit with about twice the background
(and thus about 1/2 of the percentage dichroism) relative
to properly linearized polarization [19]. An example of
this is shown in fig. 2C. Here, a configuration of vectors,
similar to that in fig. 2B, is utilized. However, in this case,
the electromagnetic radiation (photons) is completely
unpolarized and spin is substituted for the magnetization
(M) as the symmetry breaking vector, analogous to to
the experiment in fig. 2A. In terms of cross-sectional
dependences, it is possible to divide the contributions into
a set derived from the in-plane component (as in fig. 2B)
and a set derived from the out-of-plane component. The
in-plane component can generate a dichroic response but
the out-of-plane component will not. The out-of-plane
component can contribute to the overall intensity, but not
the dichroism. The relative magnitude of the dichroism is
reduced, as is evident from a comparison of figs. 2A and
C. Thus, here is the observation of a Fano effect in a core
level of a nonmagnetic material, with unpolarized photons
and true spin detection, driven by the vectorial chirality
of the experimental vectors.
Now, return to a consideration of Ce and fig. 1. Unfortu-

nately, because the chirality of this experiment is induced
by the orientation of the Poynting vector of the incoming
X-rays and the emission direction of the electrons rela-
tive to the perpendicularly aligned spin, chirality rever-
sal is very difficult and requires a physical reconfiguration
of the experimental apparatus. Thus, we chose to instead
perform the experiment in one configuration and remove
the instrumental asymmetry mathematically. The static
offset in the asymmetry (shown in the bottommost panel
of fig. 1A) has been subtracted from the “raw” polariza-
tion, to provide an adjusted polarization, shown in the

second panel from the bottom. From this adjusted polar-
ization and the integrated photoemission spectra, the spin-
resolved spectra in the third panel from the bottom have
been generated. (Alternate forms of asymmetry removal
were also pursued, each producing essentially the same
result shown in fig. 1A.) Again a significant spin polariza-
tion of the Ce valence bands is observed, similar to but
not quite identical with that of the data in the topmost
panel of fig. 1A.
Additional information regarding the nature of these

states can be gleaned from spin-integrated photoelectron
spectroscopy. The data in fig. 1B demonstrates the strong
f -character and bulk nature of both features. In the Ce
4f resonant photoemission, the increase in cross-section is
driven by the addition of an auxiliary channel involving
either a 3d or 4d core level. Because of the strong dipole
selection rules, the amplification is f -state specific. Thus,
the observation of enhancement of both the Fermi level
feature and the higher binding energy feature in the
4d resonance and the 3d resonance indicates that both
states have a strong and roughly equivalent degree of
f -character. In the bottommost panel of fig. 1B, a series
of spectra at higher photon energies but below the 3d
threshold are shown. Except for smearing of the features
due to increasing energy bandwidth as the photon energy
increases, the relative magnitudes of the two features
remain fairly constant and consistent with that of the spin-
integrated spectra in fig. 1A. Following the lead of Mo
et al. [3], this leads to the conclusion that both features
are bulk derived. The importance of these two observations
will become clear in the discussion, which follows below.
From the utilization of simple spectral simulations, it is

possible to gain significant insight into the nature of what
is driving these observed spin polarizations. The success
of these spectral simulations is illustrated in fig. 2A. Here,
a simple model based upon electric dipole transitions with
circularly polarized excitation can simulate the observed
experimental results for the Au 4f states. This model
includes the proper treatment of state specific transitions,
intensities and Doniach-Sunjic lineshapes, analogous to
that derived earlier for the Fe 3p case [17].
Now consider the situation for the Ce 4f states, as

shown in fig. 1C. Here we have a fairly broad individual
peak width with only a small spin-orbit splitting. In
case A, corresponding to the resonant PES data at
hν = 127 eV, three sets of spin orbit split peaks are
used. The pair near the Fermi energy, with spin-down
leading spin-up, is truncated by the Fermi function. The
effect of this is to produce two peaks with essentially
the same Fermi edge but different widths. The other
two peaks, corresponding to the symmetric and anti-
symmetric states observed by Vyalikh et al. [15], each have
spin-up leading spin-down. This closely-spaced pair of
sub-features combines to produce a broadened integrated
peak and spin structure, with polarity reversed relative to
the Fermi energy peak. In case B, corresponding to the
off-resonance PES data at hν = 21.22 eV, three sets of
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peaks are again used, but this time one of them is reduced
in intensity relative to the other two. The same structure is
observed near the Fermi energy as in case A, but the higher
binding energy feature is now more skewed and exhibits
a more narrowly spaced polarization. Nevertheless, this
polarization retains the reversed phase relative to the
Fermi level peak. Thus, the central observation here is
that there is a phase reversal between the spectral feature
at the Fermi level and that at higher binding energies.
The phase reversal, coupled with the previously demon-

strated bulk-nature and f -character of both features,
is a direct proof of dynamical spin shielding in Ce.
Phase reversals in dichroic studies have been observed
before [20,21] and an example is reproduced in fig. 4 from
Tjeng et al. [20], where anti-ferromagnetic coupling in a
garnet reverses the dichroism in the Fe 2p states. However,
in these previous studies some sort of net magnetization
was present and the direction of the phase can be
affected by the site symmetry and the orbital momentum
parentage of the states. In the case of Ce, the situation
is different. The similar parentage of both features, with
a strong f -character contribution, means that there
should be no phase reversal unless there is a spin counter-
alignment. Moreover, these Fano effect measurements are
dynamic. There is no net magnetic vector in Ce. Thus the
spin counter-alignment is exactly that hypothesized by
Gunnarsson and Schoenhammer in 1983 [6,7]. However,
there is one inconsistency relative to the picture of
Gunnarsson and Schoenhammer, which assigned the 2 eV
peak (f0 or LHB) as being f derived and the peak at the
Fermi energy (f1 or Kondo) as being of valence band (spd)
character. Nevertheless, a recent work by Georges [22]
suggests that the same species can screen itself, in some-
thing like a Hubbard picture with only one type of electron
species, within a dynamical mean-field theory (DMFT)
computational scheme. In his DMFT modeling of a Mott
transition, he finds that “Electrons are itinerant in the
metallic phase, and the moments are quenched. Within
DMFT this quenching is akin to a (self-consistent) local
Kondo effect.” It may not be unreasonable to expect that
a DMFT extension of the GS model would ultimately mix
the states to the degree that they would seem to be of the
same species, with both possessing significant f -character.
In summary, it has been demonstrated that 1) both

spectral features in the valence bands of Ce are bulk
derived and possessing significant f -character and 2) there
is a dynamic spin counter alignment between the two
features. These facts, taken together, confirm the original
picture of Gunnarsson and Shoenhammer, with the minor
modification of state mixing between the two features.
This study also illustrates the efficacy and potential of
using the Fano effect to probe spin correlation in nonmag-
netic systems. Our future plans include the extension
of these measurements to single crystals of Ce and Ce
alloys, to more properly address the predicted phase
specific properties of Ce [23–27].
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