近畿地方におけるアカマツ林の遷移

I. 遷移的指標軸の設定とスタンドの位置付けについて

竹中 則夫

Summary

SUCCESSION OF PINE FORESTS IN THE KINKI DISTRICT

I. Establishing A Successive Index Axis and Positioning Stands on It

Norio Takenaka

In this paper a method by which to establish a successive index axis for pine forests and position pine forest stands on the axis as Stand Indices is proposed. This method was tested with pine forests in the Kinki district. Using the DCA method, the author first analyzed the reported data of 696 stands of pine forest and laurel forest in the climatic zone of WI (Kira's Warmth Index: 1949) 100 to 130°C month, mainly in the southwest of Japan (Takenaka, 1983). Four axes were obtained and the species indices on the first axis most highly corresponded to the ordination of A to E species distribution types based on the species occurrence patterns through 3 forest types (Takenaka, 1983). The stand indices on the first axis also correlated to the percentage occurrences of evergreen plants (excluding conifer). Therefore, the first axis obtained by the DCA method may be said to indicate the successive direction of pine forest from shrubby pine forest to laurel forest. As the data used for DCA calculation involved various types of pine forest and laurel forest in Japan, almost all such forests in Japan would be positioned between the minimum and maximum values of the stand indices on this first axis. Then, to permit a simple reading of stand indices on a scale of 0-10, the species indices were proportionally allocated, rescaled to limit the minimum value of stand index to 0 and the maximum to 10, and fixed as they were.

The author then applied the fixed species index and weighted-average method to the calculation of the stand indices of 282 stands separately sampled from pine forests and laurel forests in the Kinki district. The stand indices obtained were 0.51 to 8.89, showing a high correlation to the percentage occurrence of evergreen plants and to the percentage cover and height of the tree layer. They were thus considered to be positional indices on the successive index axis (0 to 10). Stand-index calculation by means of the fixed species index and the weighted-average method was also applied to the study of Toyohara (1984), where Toyohara's six vegetation units were positioned on the successive index axis, according to the ordination presented by Toyohara.

The stand indices obtained by using the fixed species index and the weighted-average method are positioned on the successive index axis for pine forests.

はじめに

我が国に存在するアカマツ林は土地的極相として成立している樹林と二次植生として成立している樹林に大別される。土地的極相として成立しているアカマツ林は山地の痩悪な岩塊上や湿原周辺部に発達している。一方、都市や集落近郊に発達したアカマツ林の大半は二次植生で、近年まで燃料や建築資材の供給地としての役割を果してきた。現在ではこれらの多くのアカマツ林がマツ枯れの被害を被り、アカマツの枯損状態の程度により、かつてアカマツ林であったことすらも推定できない状態になっている林から後継アカマツが成長し、回復状態にあるアカマツ林まで様々な様相を呈している。二次植生として成立しているアカマツ林に植生的な変化を促す要因としては、マツ枯れの影響に限らず、山火の影響や古くから行なわれている皆伐、下刈り等人為的影響も大きい。ただし、マツ枯れの場合は短期間に広範囲のアカマツ林の植生に影響を及ぼした点で他者とは異なっている。

種々の要因によるアカマツ林の植生的変化を遷移論的に見ると、遷移が進行している場合と退行している場合とに大別されるが、遷移の方向が進行的であれ、退行的であれ、アカマツ林の植生遷移を論じるには、遷移の始点と終点、つまり遷移軸の設定と対象とされるアカマツ林の遷移軸上での位置付けが明確にされなければならない。このようなアカマツ林の位置付けがなされることによって、アカマツ林への人為的、自然的影響がより明確に把握できると思われる。従って、本研究では現存するアカマツ林・照葉樹林の植生調査結果から間接環境傾度分析を行なうことにより、アカマツ低木林(遷移の初期または初期に近い状態にある樹林)から照葉樹林(極相または極相に近い状態にある樹林)までを遷移軸とし、調査されたアカマツ林を軸上にスタンド Index(位置指数)として位置付ける方法を試みた。

本研究を行なうにあたり調査等で御協力を頂いた姫路工業大学自然・環境科学研究所教授服部保博士に深謝すると共に、本論文をまとめるにあたり、有意義な御助言を賜わった神戸女学院大学名誉教授矢野悟道博士、東京農工大学名誉教授奥富清博士に謝意を表する。

遷移的指標軸の設定方法

1. アカマツ低木林から照葉樹林に至る軸上における主要構成種の序列

アカマツ低木林から照葉樹林への方向性を示す軸と軸上でのアカマツ林・照葉樹林主要構成種の序列は、樹林タイプ別分布型として明らかにされている(竹中:1983)。日本の照葉樹林成立域の暖かさの指数(吉良:1949):WI 100~130℃・month の温度気候域に存在するアカマッ林及び照葉樹林642スタンドの植生調査資料を用いて、種の分布型の分析が行なわれた結果、アカマツ林・照葉樹林主要構成種はアカマツ低木林(8m 以下のアカマツ林)、アカマツ高木林(13m 以上のアカマツ林)及び照葉樹林での出現パターンから、Fig. 1 に示す5つの分布型に大別された。分布型はA. アカマツ低木林分布型、B. アカマツ低木林・アカマツ高木林分布型、C. アカマツ高木林分布型、D. アカマツ高木林・照葉樹林分布型、E. 照葉樹林分布型と

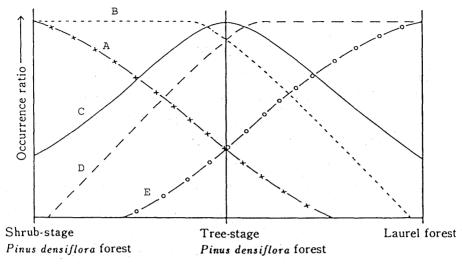


Fig. 1 Five species distribution types based on the species occurrence patterns through 3 forest types (Takenaka, 1983). A: Shrub-stage Pinus densiflora forest type B: Shrub-to-treestage Pinus densiflora forest type C: Tree-stage Pinus densiflora forest type D: Tree-stage Pinus densiflora forest type Laurel forest type.

して表され、A~E はアカマツ低木林から照葉樹林に至る方向性を示すものと考えられる。

a. 分布型の序列と種の位置付け

分布型の分析(竹中:1983)に用いられた642スタンドに友成他(1981),森本他(1982)の 資料54スタンドを追加した696スタンド,及びその主要構成種117種のアカマツ低木林から照葉 樹林に至る軸上での位置は,それぞれスタンドの位置を表す "スタンド Index" と種の位置を 表す "種 Index" として,DCA(Detrended Correspondence Analysis)法(Hill: 1979, Hill & Gauch, 1980)を用いて求めた。DCA 法は Hill(1973)が反復平均法(Reciprocal averaging)の欠陥を改良して提唱したもので,多次元空間に配列している種やスタンドの位置を単

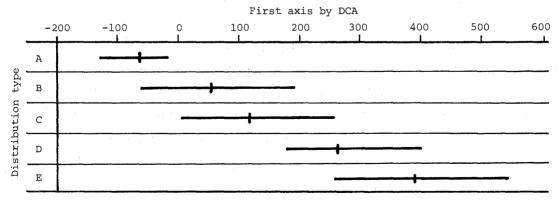


Fig. 2 Ordination and positioning of A to E species distribution types (species indices) on the first axis obtained by the DCA method. Each type shows the distribution range of the species included with a horizontal bold line, and the vertical bar across the line indicates the average point of their species indices.

一または複数の軸上に導きだし、それぞれの軸上に序列化する方法である。DCA 法による計算は696スタンドでの主要構成種117種の出現の有無を資料として行なった。計算の結果、4つの軸が得られ、これら4軸の固有値は第1軸から順に0.551、0.174、0.105、0.084であった。第1軸から第4軸のうち、種の分布型の序列と最も良く対応していたのは第1軸であった(Fig. 2)。以上の結果から第1軸の種 Index はアカマツ低木林から照葉樹林に至る軸上での種の位置付けと見なすことができ、同時にスタンド Index も求められた。

b. スタンド Index と常緑植物出現率

日本の暖温帯域に成立する二次性アカマツ林の進行的遷移とは、換言すればアカマツ優占樹林から常緑広葉樹優占樹林方向への直接的または間接的移行であるとも言える。従って、上記で求められた第1軸がアカマツ林から照葉樹林への直接的移行を示す軸であると考えるならば、第1軸のスタンド Index と各スタンドでの常緑植物(針葉樹を除く)出現率との間に正の相関がなければならない。そこで、これら両者の関係について見るために、696スタンドでの上記117種のうち針葉樹を除く常緑植物の出現率とスタンド Index との関係について見たのがFig. 3で、相関係数0.928と極めて高い相関が認められた。

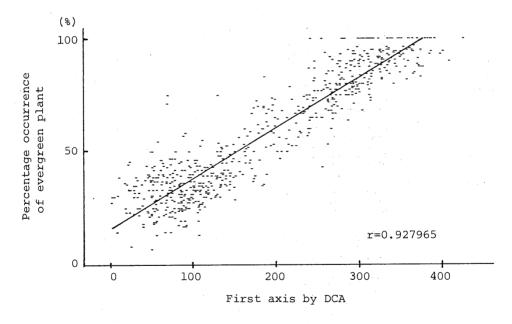


Fig. 3 Correlation between the first axis obtained by the DCA method and the percentage occurrences of evergreen plants (excluding conifer).

以上のように DCA 法により求められた第1軸の種 Index は、アカマツ低木林分布型植物から照葉樹林分布型植物へとほぼ順に序列していること、またスタンド Index と常緑植物出現率との間に極めて高い対応関係が認められたことから、DCA 法によって求められた第1軸はアカマツ林の遷移を示す軸であると考えられる。

Table. 1 Species indices of 117 major species on the first axis obtained by the DCA method and their rescaled values after proportional allocation for simple reading of stand indices on a scale of 0-10.

	Species	=	Species index On 1st axis Rescaled	
	2 b e c 1 e 2	On 1st axis of DCA	Rescaled value	
ノギ・ラン	Aletris luteoviridis	-129	-3.04	
ガ ンピ	Wikstroemia sikokiana	-113	-2.67	
テリハノイバ ラ	Rosa wichuraiana	-104	-2.45	
ネス"	Juniperus rigida	-96	-2.26	
ススキ	Miscanthus sinensis	-67	-1.58	
エゾ゛ヤマハギ゛	Lespedeza bicolor and f. acutifolia	-63	-1.49	
マルバ・ハギ	Lespedeza cyrtobotrya	-60	-1.42	
コツクバ ネウツキ	Abelia serrata	-58	-1.37	
イソノキ	Rhamnus crenata	-43	-1.01	
ナツハゼ モチツツシ	Vaccinium oldhamii	-38	-0.90	
コバ ノミツバ ツツシ	Rhododendron macrosepalum Rhododendron reticulatum	-14 -11	-0.33 -0.26	
ワラビ	Pteridium aquilinum var. latiusculum	-3	-0.28	
アクシバ	Vaccinium japonicum	-3 -2	-0.05	
スノキ・	Vaccinium smallii var. glabrum	. 3	0.07	
アキノキリンソウ	Solidago virga-aurea var. asiatica	5	0.12	
シハイスミレ	Viola violacea	19	0.45	
クリ	Castanea crenata	31	0.73	
ヤマツツシ	Rhododendron kaempferi	39	0.92	
コナラ	Quercus serrata	50	1.18	
ザ イフリボ ク	Amelanchier asiatica	50	1.18	
ウメモト キ	Ilex serrata	55	1.30	
アカマツ	Pinus densiflora	57	1.34	
ツクバ [゛] ネウツ ギ ゛	Abelia spathulata	58	1.37	
マルバ アオダ モ	Fraxinus sieboldiana	62	1.46	
リョウブ	Clethra barbinervis	71	1.67	
タムシバ	Magnolia salicifolia	72	1.70	
ネシ゛キ	Lyonia ovalifolia var. elliptica	72	1.70	
イヌツケ	Ilex crenata	74	1.75	
ソヨゴ	Ilex pedunculosa	74	1.75	
ミヤマガ マス ミ	Viburnum wrightii	74	1.75	
タンナサヴフタギ゛・サワフタギ゛	Symplocos coreana & S.chinensis var.		2.05	
タカノツメ ハネミイヌエンシ゛ュ	Evodiopanax innovans	f. pilosa 88	2.08	
カマツカ	Maackia floribunda Pourthiaea villosa var. laevis	88 94	2.08 2.22	
ウリカエデ ウリカエデ	Acer crataegifolium	96	2.26	
アズ キナシ	Sorbus alnifolia	98	2.31	
アベマキ	Quercus variabilis	114	2.69	
コウヤボ ウキ	Pertya scandens	115	2.71	
コバ ノガ マス゛ミ	Viburnum erosum	128	3.02	
ウラシ゛ロノキ	Sorbus japonica	132	3.11	
コシダ	Dicranopteris pedata	132	3.11	
クロモジ	Lindera umbellata	133	3.14	
ヤマウルシ	Rhus trichocarpa	133	3.14	
コシアブ ラ	Acanthopanax sciadophylloides	148	3.49	
アセビ	Pieris japonica	150	3.54	
ヤマコウバシ	Lindera glauca	153	3.61	
サルトリイバ ラ	Smilax china	158	3.73	
ヤマザークラ	Prunus jamasakura	171	4.03	
チゴ ユリ	Disporum smilacinum	177	4.17	
エゴ ノキ ウラジ ロ	Styrax japonica	180	4.25	
シャシャンボ	Gleichenia japonica Vaccinium bracteatum	181	4.27	
シュンラン		183	4.32	
ヒイラギ	Cymbidium goeringii Osmanthus heterophyllus	185 191	4.36 4.50	
ヒサカキ	Eurya japonica	191	4.58	
ミツバ アケビ	Akebia trifoliata	194	4.58	
ヤマハゼ	Rhus sylvestris	195	4.60	
シラカシ	Quercus myrsinaefolia	210	4.95	
がマス゛ミ	Viburnum dilatatum	210	4.95	
ヤマモモ	Myrica rubra	213	5.02	
コマユミ	Euonymus alatus f. ciliatodentatus	215	5.07	
ヤブ コウジ	Ardisia japonica	223	5.26	
ナガ バ ジ ャノヒゲ	Ophiopogon ohwii	234	5.52	
アラカシ	Quercus glauca	236	5.57	
ツタ	Parthenocissus tricuspidata	238	5.61	
シキミ	Illicium religiosum	259	6.11	
シリブ カが シ	Pasania glabra	259	6.11	
ナワシログ ミ	Elaeagnus pungens	260	6.13	
サカキ	Cleyera japonica	263	6.20	
ウラシ ロガ シ	Quercus salicina	271	6.39	
アカカ シ	Quercus acuta	276	6.51	
ムラサキシキブ	Callicarpa japonica	278	6.56	
ヤブッバキ	Camellia japonica	288	6.79	
ネズ゛ミモチ	Ligustrum japonicum	293	6.91	
クチナシ	Gardenia jasminoides f. grandiflora	297	7.00	
カナメモチ	Photinia glabra	302	7.12	
シイノキ	Castanopsis cuspidata and var. siebol		7.19	
シロダ モ	Neolitsea sericea	316	7.45	

97 /\(\frac{1}{2}\) Persea thunbergii \(\frac{1}{2}\) Ilex integra	323 325 327	7.67
アオキ Aucuba japonica		7.71
マンリョウ Ardisia crenata	330	7.78
2□≒ Symplocos lucida	340	8.02
	341	8.04
באבע אות Daphniphyllum teijsmannii	343	8.09
ナナミノキ Ilex Chinensis	352	8.30
キヅタ Hedera rhombea	353	8.33
カクレミノ Dendropanax trifidus	357	8.42
ジャノヒゲ Ophiopogon japonicus	358	8.44
72477 Rubus buergeri	361	8.51
クロバイ Symplocos prunifolia	362	8.54
チョウセンテイカカズ ラ Trachelospermum asiaticum and var. intermedium	366	8.63
ヤブ ラン Liriope platyphylla	371	8.75
ヤブニッケイ Cinnamomum japonicum	383	9.03
サネカズ ラ Kadsura japonica	397	9.36
ポルトノキ Elaeocarpus sylvestris var. ellipticus	402	9.48
カゴ ノキ Actinodaphne lancifolia	410	9.67
リンボ ク Prunus spinulosa	420	9.91
クロກ ネモチ Ilex rotunda	420	9.91
イタビ カス ラ Ficus sarmentosa var. nipponica	430	10.14
マメツ タ Lemmaphyllum microphyllum	439	10.35
イヌピ ワ Ficus erecta	460	10.85
センリョウ Chloranthus glaber	462	10.90
コバンモチ Elaeocarpus japonicus	464	10.94
タイミンタチバ ナ Myrsine seguinii	465	10.97
イヌマキ Podocarpus macrophyllus	469	11.06
ミミズ バイ Symplocos glauca	480	11.32
イチイガ シ Quercus gilva	492	11.60
ジュズネノキ Damnacanthus major	495	11.67
アリド オシ Damnacanthus indicus	499	11.77
イズ センリョウ Maesa japonica	509	12.00
ハナミョウガ Alpinia japonica	530	12.50
ヤマビ ワ Meliosma rigida	537	12.67
ホソバ カナワラビ Arachniodes aristata	543	12.81
イスノキ Distylium racemosum	545	12.85
オガ タマノキ Michelia compressa	552	13.02

2. 種 Index の固定化と新スタンドの位置付けの簡略化

調査スタンドを座標軸上に位置付ける方法は、Curtis & McIntosh (1951)、Brown & Curtis (1952)、Bray & Curtis (1957)、Hill (1973) ら多くの研究者によって考案されてきた。これらの方法は我が国においても奥富 (1958)、Okutomi (1967)、Itow (1963) らによって用いられ、多くの成果をあげている。しかし、このような手法を用いて行なわれたアカマツ林の遷移に関する研究は極めて少なく、僅か奥富 (1958) に見られるにすぎない。

今回 DCA 法を用いて求められた第 1 軸のスタンド Index は、アカマツ林及び照葉樹林の遷移的位置付けを示していると考えられるので、ここでは696樹林の DCA 法を用いて求められた第 1 軸の種 Index を固定化し、固定化された種 Index を用いて加重平均法による計算で、アカマツ林・照葉樹林の新スタンドの遷移的位置付けとしてスタンド Index を求める方法を提案したい。この方法では DCA 法によって求められた第 1 軸の696樹林のスタンド Index が示す最小値(0)と最大値(424)の間隔がアカマツ林の遷移に関する目安のスケールとなり、その同じスケール上に696樹林以外のアカマツ林・照葉樹林の位置付けをスタンド Index として求めることができる。

今回種 Index を DCA 法によって求めるために用いられた資料は、日本の暖温帯全域からできうる限り地域的片寄りを少なくするように配慮して得られた資料であり、資料数も696樹林と多く、この資料中には日本の暖温帯域の主なアカマツ林、照葉樹林が含まれている。従って696樹林とは別の新スタンドのスタンド Index を固定化された種 Index を用いて加重平均法で

求めても、この新スタンドのスタンド Index は696樹林について DCA 法によって求められた軸と同一軸上に位置付けられることになる。この加重平均法でスタンド Index を求める方法は Curtis & McIntosh(1951)の連続体指数(Continuum index)を求める方法に似ており、加重平均法で用いられた種 Index は彼等の極相度指数(Climax adaptation number)に、各スタンドのスタンド Index は連続体指数(Continuum index)に相当する。しかし、彼等の極相度指数の値は種の序列を示したにすぎず、今回 DCA 法を用いて求められた種 Index に比べて数値的根拠に乏しい。

一方,種 Index を固定化するに当り,DCA 法で求めた696樹林のスタンド Index の値は $0\sim424$ の間にあり,個々のスタンドの軸上での位置が感覚的に把握しにくい,そこで,696樹林のスタンド Index の値 $0\sim424$ を $0\sim10$ の間に位置付けられるように,種 Index の読み換えを比例配分的に行ない,これを固定化し,加重平均法によってスタンド Index を求めることにした。これら両者の種 Index については Table 1 に示している。

なお、当資料(696樹林)中の出現種で、同定上誤認の可能性が想定されるヤマハギとエゾヤマハギ、テイカカズラとチョウセンテイカカズラ、コジイとスダジイ、タンナサワフタギとサワフタギはそれぞれ、同一種として取り扱った。また、本研究で用いられた種子植物の学名は大井(1983)に、シダ植物の学名は中池(1982)に従った。

近畿地方のアカマツ林・照葉樹林への応用

上記固定化された種 Index を用いて加重平均法によりスタンド Index を求める方法を、新たに近畿地方を中心に調査したアカマッ林・照葉樹林に応用し、その方法の整合性について以下に検討する。

1. 調査地の概況と調査方法

新たに調査されたアカマツ林・照葉樹林の大半は兵庫県を中心とする近畿地方で行なわれた (Fig. 4)。植生調査はブロン・ブロンケ法 (Braun-Blanquet:1964) によって行なわれ、第 1 層をアカマツが優占するアカマツ林及び第 1 層を常緑広葉樹が優占する照葉樹林が対象とされた。なお、当地域で調査対象とされたアカマツ林の多くは若齢 (30~40齢) 樹林で、アカマツ林から照葉樹林への移行段階にあたると思われるようなスタンドが比較的に少なかった。そこでこのようなスタンドに限り、広島県、山口県及び三重県での調査資料26スタンドを加え、合計282スタンドのアカマツ林・照葉樹林で検討を行なった。調査対象地の気候は、気象庁観測技術資料第36号 (気象庁:1972) から各調査地の最寄の観測所を選定し観測所の資料から気温については海抜更正 (-0.6℃/100m) を行ない、年降水量については最寄の観測所の資料を調査地の年降水量とみなすことにより求めた。以上の結果、これらのスタンドは WI で約 93.8~132.5℃・month、年降水量約1400~2050mm の範囲にあり、一部のスタンドを除き多くは WI:100~130℃・month の範囲に成立していた。近畿地方での調査地の地質は中世代白亜紀の貫入生成による花崗岩地帯、先第三紀の中生界白亜系に属する流紋岩地帯、新生界に属し礫岩、砂岩、頁岩から成る神戸層群地帯のいずれかに属していた。

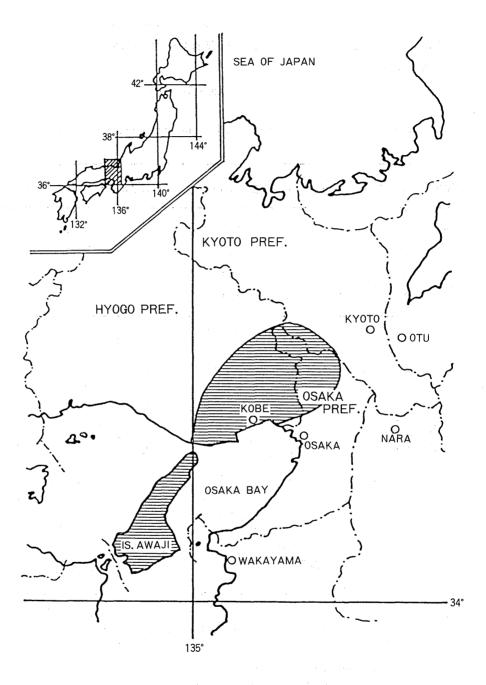


Fig. 4 Map showing the area studied in the Kinki district. Out of the 282 stands studied, 256 stands were in the shaded regions, mainly in Hyogo Prefecture, and 26 stands were separately investigated in Yamaguchi, Hiroshima and Mie Prefectures.

2. 近畿地方のアカマツ林及び照葉樹林の位置付けと遷移的指標軸

近畿地方を中心に調査された 282 スタンドのスタンド Index は,696スタンドの主要構成種である上記117種の固定化された種 Index (Ri) と,植生調査によって得られた被度を植被率に換算し,Table2 に示すとおり 25%間隔で 4 段階に量的重み付けを行なった値(ai)を用いて,次式によって求められた。

スタンド Index = (
$$\Sigma$$
ai・Ri) / Σ ai(1)

Table. 2 Conversion of cover degrees derived by the Braun-Blanquet method into percentage covers

Cover degree	Percentage cover	Weighting class(ai)
r, +, 1, 2	- 25%	1
3	25 - 50%	2
4	50 - 75%	3
5	75 - 100%	4

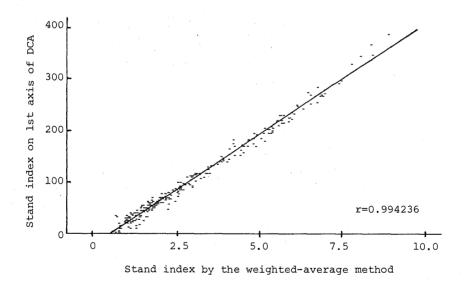
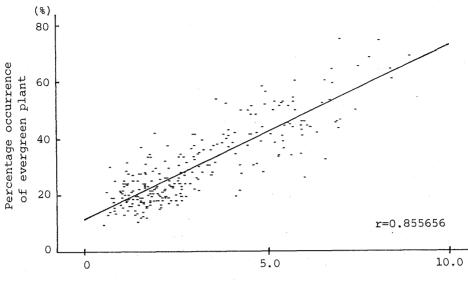



Fig. 5 Correlation between the stand indices of 282 stands obtained by use of the fixed species index and the weighted-average method, and the stand indices of the same stands on the first axis newly obtained by use of the DCA method and 122 species of 282 stands.

上記①式(加重平均法)で求められたスタンド Index による位置付けについて検証するために、新たに282スタンドで 5%以上の出現率を示す122種を用いて、DCA 法により282スタンド

Stand index by the weighted-average method

Fig. 6 Correlation between the stand indices of 282 stands obtained by use of the fixed species index and the weighted-average method, and the percentage occurrences of evergreen plants (excluding conifer).

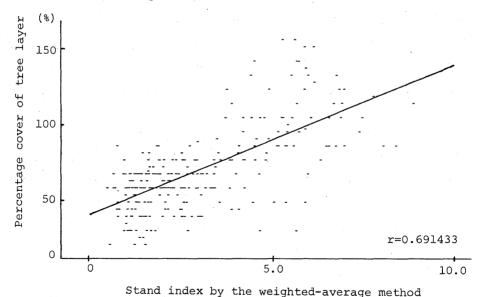
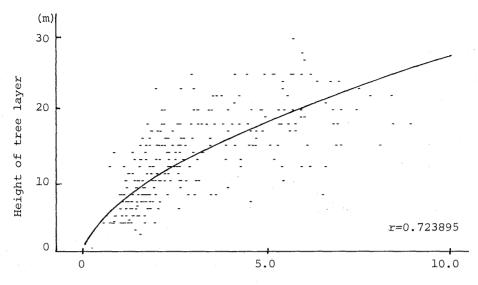



Fig. 7 Correlation between the stand indices of 282 stands obtained by use of the fixed species index and the weighted-average method, and the percentage cover of the 1st and 2nd tree layers.

のスタンド Index (第1軸) を求めた。これら両者の関係については Fig. 5 に示され、相関係数0.995と極めて高い値が得られた。また、282スタンドについて DCA 法によって求められた第1軸(固有値0.457)のスタンド Index の値は $0\sim387$ を示し、加重平均法で求められた同ス

Stand index by the weighted-average method

Fig. 8 Correlation between the stand indices of 282 stands obtained by use of the fixed species index and the weighted-average method, and the height of the tree layer.

タンドのスタンド Index の値は0.51~8.89であった。これらのスタンドはすべてアカマツ林の遷移的位置付けを表すと思われる目安のスケール0~10の範囲にあった。

従って、得られたスタンド Index はアカマツ林の遷移的位置付けを表していると考えられるので、遷移と対応関係にあると推定される常緑植物(針葉樹は除く)出現率、高木層植被率、高木層の樹高とスタンド Index との関係について検討した。その結果、スタンド Index と常緑植物出現率との関係については相関係数0.856 (Fig. 6)、スタンド Index と高木層植被率については相関係数0.691 (Fig. 7)、スタンド Index と高木層の樹高については指数回帰で相関係数0.670 (Fig. 8) といずれも高い相関を示した。以上の結果から282スタンドのスタンド Index はアカマツ林の遷移を示す軸上での位置付けを表していると考えられる。また、固定化された種 Index を用いて加重平均法によりアカマツ林及び照葉樹林のスタンド Index を求める方法は、アカマツ林の遷移を示すと思われる軸(以降"遷移的指標軸"と呼ぶ)上にアカマツ林及び照葉樹林を位置付ける方法として極めて有効であると考えられる。

遷移的指標軸上での種の分布

本研究に用いられた竹中 (1983) のアカマッ林・照葉樹林主要構成種の分布型の分析では、アカマツ低木林・アカマツ高木林・照葉樹林の3タイプの樹林での各種の出現パターンからアカマッ林・照葉樹林主要構成種がアカマツ低木林分布型から照葉樹林分布型に至る5タイプに分類され序列化されたにすぎず、遷移を表す軸上での位置付けがなされていない。ここでは696スタンドの位置付けを遷移的指標軸上で連続的にスタンド Index として求めることが可能になったので、アカマツ林・照葉樹林主要構成種の分布をより詳細にこの軸上に求めることがで

Table. 3 Absolute distribution (constancy: I, II, III, IV, V grades by 20%) and relative distribution (main distribution range demarcated by a 40% boundary line of the max. percentage occurrence) of 117 major species through 1-10 successive stages.

	S p e c i e s
	1 2 3 4 5 6 7 8 9 1
りルノイバラ	Rosa wichuraiana III I I I I
パギ・ラン	Aletris luteoviridis III II I I I · · · ·
r >t.	Wikstroemia sikokiana III I I I
k z	
1 24	Miscanthus sinensis V IV III II I I
(ソ" ヤマハキ"	Lespedeza bicolor and f. acutifolia II II II I I
チッツジ	Rhododendron macrosepalum III II I I I I I I I I I I I I I I I
パバッキ	Lespedeza cyrtobotrya I I I I I I
IYクバ ネウツギ	Abelia serrata II II II I
イソノキ	Rhamnus crenata I II II I
けいせ	Vaccinium oldhamii IV IV III II I I
コバ ノミサバ ササジ	Rhododendron reticulatum IV IV III III I I I
ア キノキリンソウ	Solidago virga-aurea var. asiatica II II II II II I
ひキ	Vaccinium smallii var. glabrum II II II II II I I I
ウメモド キ	Ilex serrata I I I I I I I I I I I I I I I I I I
ひい アオダモ	Fraxinus sieboldiana II II II II I I I
リョウブ	Clethra barbinervis II II III III I I I
79t*	Pteridium aquilinum var. latiusculum II III III II II I
1) ว ี	Quercus serrata IV IV V V III II I I
<i>የ</i> カマツ	Pinus densiflora V V V IV II I I I
)33°	Ilex pedunculosa III IV V IV III II I I
ジ キ	Lyonia ovalifolia var. elliptica II IV IV IV III II I I
1シダ	Dicranopteris pedata II III I I I I I I
(ヌッケ	Ilex crenata IV III IV IV II II I I
マウルシ	
	•
カルトリイパラ	Smilax china IV V V IV III III I
17 11	Myrica rubra I I I I I I I I I I I I I I I I I I I
ニサカキ	Eurya japonica IV V V IV V IV III I
アクシバ	Vaccinium japonicum I II II II I
ハイスミレ	Viola violacea I I I I I I I I
ゲ イフリボ ク	Amelanchier asiatica
ソクバ ネウツギ	
はミイヌエンジュ	Maackia floribunda I I I I I
コウヤボ ウキ	Pertya scandens I II III IV I II I I
コバ ノガ マズ ミ	Viburnum erosum I I II IV IV II II I I I
71)	Castanea crenata I III IV III II
ヤマツツジ	Rhododendron kaempferi II III IV IV II I I
ミヤマガマズミ	Viburnum wrightii I II III II I I I I
タカノツメ	· ·
?tt	Pieris japonica I II III IV III I I I I
りマツカ	Pourthiaea villosa var. laevis I II III III II I I I
タンナサワフタギ・サワフタギ	Symplocos coreana & S.chinensis var. leucocarpa I I II I I I I I
ヤマザクラ	Prunus jamasakura f.pilosa I I II I I I I I
P^ 7 ‡	Quercus variabilis I I I I I I I I I I I I I I I I I I I
ンナシャンボ	Vaccinium bracteatum I II II II II II II II II
タムシハ	
	Magnolia salicifolia I I I I I I
シアブラ	Acanthopanax sciadophylloides I III III II I I I
カラジ ロノキ	Sorbus japonica I I II II I I I
ヤマコウバシ	Lindera glauca I I I I I I
うりカエデ	Acer crataegifolium I I III II I I
アズキナシ	COLDUS ATMITUTES
クロモジ	Lindera umbellata I III II I I I I I I I I I I I I I I
ロブ /キ	Styrax japonica I II II I I I I I
f1 1)	Disporum smilacinum I II II I I I I I
カラジ ロ	Gleichenia japonica I I II I I I I I
シュンラン	Cymbidium goeringii II III II II II II II II II II I
Łイラギ	Osmanthus heterophyllus I I I I I I I I I I I I I I I I I I I
ミツバ アケヒ	Akebia trifoliata I II II II II II I I I

シラカシ	Quercus myrsinaefolia	· I II II II II II I I I
ヤブ コウジ	Ardisia japonica	· I IN IN IN A IN IN II II
アラカシ	Quercus glauca	I II III III III III III II
ナガ バ ジャノヒゲ	Ophiopogon ohwii	I I II II I I II I
79	Parthenocissus tricuspidata	I I II III II II I
シリブ カカーシ	Pasania glabra	
ナワシログ・ミ	Elaeagnus pungens	
カラジ ロガ シ	Quercus salicina	I I II I II II II II II
ムラサキシキブ	Callicarpa japonica	I I II II II II I
纬	Illicium religiosum	. 1 1 1 1 1 1 1 1
サカキ	Cleyera japonica	1 1 111 111 111 111 111 111 11
ヤブッパキ	Camellia japonica	I I II III III IV V V IV
*X" \$ T f	Ligustrum japonicum	· I I II II III III IV V III
タブノキ	Persea thunbergii	· i i ii ii ii iii iv iv iv
ヒメユズ リハ	Daphniphyllum teijsmannii	· I · I I I I I II II
J713	Euonymus alatus f. ciliatodentatus	· I I I I I I I I ·
がマズミ	Viburnum dilatatum	I I I I I I I
クチナシ	Gardenia jasminoides f. grandiflora	
ベニシダ	Dryopteris erythrosora	· · I I II IV IV V IV I
*y" 9	Hedera rhombea	I I II II III III II I
カナメモチ	Photinia glabra	IIIIIIIII
シイノキ	Castanopsis cuspidata and var. sieboldii	· I I II II III IV IV IV IV
シログモ	Neolitsea sericea	· · I II II III IV III III III
₹ <i>†</i> /‡	Ilex integra	
マンリョウ	Ardisia crenata	
ナナミノキ	Ilex chinensis	
ジャノヒゲ	Ophiopogon japonicus	
フエイチゴ クロバ イ	Rubus buergeri	1 1 1 11 11 11 11
• • •	Symplocos prunifolia	
アカカ・シ	Quercus acuta	· I I I I I I I I
ヤブラン	Liriope platyphylla	
アオキ カクレミノ	Aucuba Japonica	I
ガッレミン チョウセンテイカカズ ラ	Dendropanax trifidus	
サネカズラ	Trachelospermum asiaticum and var.intermedium Kadsura japonica	· I · I I II II III III II II II II II I
リンボク	Prunus spinulosa	
724 7	Lemmaphyllum microphyllum	
ヤブニッケイ・	Cinnamomum japonicum	1 11 11 11 11 11 11 11 17 17 17
クロカ・ネモチ	Ilex rotunda	
イタピカズラ	Ficus sarmentosa var. nipponica	
カゴノキ	Actinodaphne lancifolia	
7u+	Symplocos lucida	
13t° 7	Ficus erecta	
センリョウ	Chloranthus glaber	
1374	Podocarpus macrophyllus	
イチイカーシ	Quercus gilva	
ミミズバイ	Symplocos glauca	
ジュズネノキ	Damnacanthus major	
シュス・インヤ ホルトノキ	Elaeocarpus sylvestris var. ellipticus	
コバンモチ	Elaeocarpus japonicus	
タイミンタチバ ナ	Myrsine seguinii	
アリト・オシ	Damnacanthus indicus	
イズ・センリョウ	Maesa japonica	I I III IV
ハナミョウガ	Maesa japonica Alpinia japonica	
t7t'7	Meliosma rigida	1
ポソバ カナワラヒ	Arachniodes aristata	
ポンハ ガフシンE イスノキ	Distylium racemosum	\
オがタマノキ	Michelia compressa	
*** / */ 1	MICHGILA COMPLESSA	· · · · · · I I II IIII

きた。遷移的指標軸上での種の分布は,遷移的指標軸上の目安のスケール 0~10を 1 間隔毎に 10段階に区分し,各遷移的段階にある全調査地点数に対する各種の出現頻度として求める方法と,各遷移的段階における種の出現頻度を各遷移的段階での種の出現頻度の最も高い値に対する比率として求める方法で示した。前者が絶対的な分布を表すのに対して,後者は相対的な分

布を表し、各遷移的段階にあるスタンドでの個々の種の適応度を示すと考えられる。これら両者の分布については Table 3 に示されている。

1. 絶対的分布

Table 3 の $I \sim V$ はアカマッ林・照葉樹林主要構成種117種の出現頻度を各遷移的段階別に求め、20%間隔で5 段階($I \sim V$)に示したものである。Table 3 から、60%以上($IV \cdot V$)の高い出現頻度を示して分布している種について見ると以下のとうりである。

遷移的段階1:

ネズ, ススキ, ナツハゼ, コバノミツバツツジ, コナラ, アカマツ, イヌツゲ, ヤマウルシ、サルトリイバラ、ヒサカキ

遷移的段階 2:

ネズ, ススキ, ナツハゼ, コバノミツバツツジ, コナラ, アカマツ, ネジキ, ソヨゴ, ヤマウルシ, サルトリイバラ, ヒサカキ

遷移的段階3:

クリ, ヤマツツジ, コナラ, アカマツ, ネジキ, イヌツゲ, ソヨゴ, コバノガマズミ, ヤマウルシ, サルトリイバラ, ヒサカキ, ヤブコウジ

遷移的段階 4:

ヤマツツジ, コナラ, アカマツ, ネジキ, イヌツゲ, ソヨゴ, コウヤボウキ, コバノガマズミ, ヤマウルシ, サルトリイバラ, シュンラン, ヒサカキ, ヤブコウジ

遷移的段階 5:

アカマツ, ヤマウルシ, サルトリイバラ, ヒサカキ, ヤブコウジ

遷移的段階 6:

ヒサカキ, ヤブコウジ, ベニシダ, チョウセンテイカカズラ

遷移的段階7:

ヒサカキ, ヤブコウジ, ヤブツバキ, シイノキ, シロダモ, ベニシダ, チョウセンテイ カカズラ

遷移的段階8:

ヒサカキ, ヤブコウジ, ヤブツバキ, ネズミモチ, シイノキ, タブノキ, ベニシダ, チョウセンテイカカズラ, ヤブニッケイ

遷移的段階9:

ヤブツバキ, ネズミモチ, シイノキ, タブノキ, アオキ, ベニシダ, チョウセンテイカカズラ, ヤブニッケイ, イヌビワ

遷移的段階 10:

ヤブツバキ,シイノキ,タブノキ,チョウセンテイカカズラ,ヤブニッケイ,イズセン リョウ,イスノキ

2. 相対的分布

アカマツ林・照葉樹林主要構成種117種の遷移的段階における主分布域については以下の方

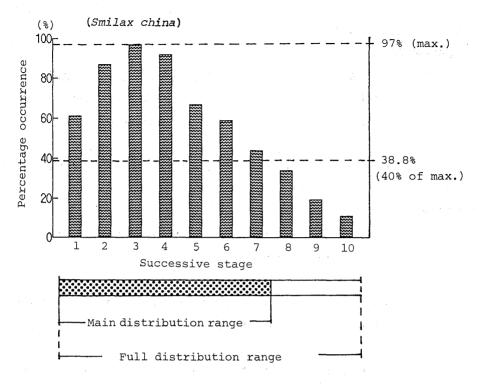
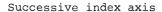


Fig. 9 Relative distribution of Smilax china after quantitative weighting and its main distribution range. Each bar shows the percentage occurrence and the main distribution range is demarcated by a 40% boundary line of the max percentage occurrence.

法で求められた。Fig. 9に示されているように、それぞれの種(ここではサルトリイバラ)の各遷移的段階における出現率のうち最多出現率(サルトリイバラで 97%)の 40%以上の出現率(サルトリイバラで38.8%)を示す遷移的段階をその種の主分布域として、相対的に求めた。117種の主分布域については、Table 3 に枠で囲って示されている。以上の結果、遷移的段階 1のスタンドにはノギラン、ガンピ、テリハノイバラ、ネズ、ススキ、エゾヤマハギ、モチツツジ、コバノミツバツツジ等117種のうち28種が主分布域として出現している。遷移的段階 2 になるとテリハノイバラが主分布域から欠落し、アクシバ、シハイスミレ、クリ、ヤマツツジ、ツクバネウツギ、ミヤマガマズミ、タカノツメ等が新たに主分布域として現れる。遷移的段階 3 になるとノギラン、ガンピが欠落し、新たにタムシバ、ウリカエデ、ウラジロノキ、クロモジ、コシアブラ、ヤブコウジ、アラカシ等が主分布域として現れる。遷移的段階 4 になるとネズ、ススキ、モチツツジ、エゾヤマハギ、マルバハギ等が欠落し、ツタ、シキミ、サカキ、ウラジロガシ、ヤブツバキ、ネズミモチ、タブノキ等が主分布域として現れる。遷移的段階 5 になるとコックバネウツギ、イソノキ、ナツハゼ、コバノミツバツツジ、スノキ、ツクバネウツギ、コバノガマズミ等が欠落し、クチナシ、カナメモチ、シイノキ、シロダモ、モチノキ、マンリ


ョウ、ベニシダ、キヅタ、ジャノヒゲ、クロバイ等が主分布域として現れる。遷移的段階6に なるとワラビ、クリ、ヤマツツジ、コナラ、アカマツ、ネジキ、ソヨゴ、ミヤマガマズミ、タ カノツメ、コシダ等が主分布域から欠落し、チョウセンテイカカズラ、ヤブラン、サネカズラ 等が主分布域として現れる。遷移的段階 4~6 の段階で多くのアカマツ林構成種群が主分布域 から欠落する一方で、多数の照葉樹林構成種群がその主分布域として現れる。遷移的段階 7 に なるとイヌツゲ, タンナサワフタギ(サワフタギも含む), ウリカエデ, アベマキ, クロモジ等 が主分布域から欠落し、ヤブニッケイ、リンボク、クロガネモチ、イタビカズラ、マメヅタ等 が主分布域として現れる。遷移的段階8になるとヤマウルシ,サルトリイバラ,チゴユリ,ウ ラジロ,ミツバアケビ,ガマズミ等が主分布域から欠落し,カゴノキ,イヌビワ,センリョウ, イヌマキ, ミミズバイ, イチイガシ, ジュズネノキ等が主分布域として現れる。 遷移的段階 9 に なるとシャシャンボ、ヤマハゼ、シラカシ、ヤマモモ、ツタ等が主分布域から欠落し、ホルト ノキ, コバンモチ, タイミンタチバナ, アリドオシ, イズセンリョウ, ハナミョウガ, ヤマビ ワ, ホソバカナワラビ等が主分布域として現れる。遷移的段階10になると, ヤブコウジ, アラ カシ、ナワシログミ、ムラサキシキブ、クチナシ、キヅタ、マメヅタ等が主分布域から欠落し、 ヒサカキ,ナガバジャノヒゲ,サカキ,アカガシ,ヤブツバキ,シイノキ,タブノキ,クロバ イ、イスノキ、オガタマノキ等42種が主分布域として残っている。

遷移的指標軸の検証と考察

日本のアカマツ林に関する研究は豊原 (1981),武田 (1981) らにより数多く報告されている。しかし、これらの多くの報告は植物社会学的研究である。アカマツ林の遷移について言及した最近の論文として豊原 (1984) の研究があげられる。豊原 (1984) は広島県のアカマツ林を沿岸型のアカマツーアラカシ群集と内陸型のアカマツーシラカシ群集に大別し、アカマツーアラカシ群集内で植生単位を基に遷移系列と種の分布について報告している。一方、筆者はアカマツ林の遷移を示すと考えられる軸を DCA 法を用いて求め、その軸上に得られた種 Index を固定化し、固定化された種 Index を基に加重平均法を用いて遷移段階を示すと思われるスタンド Index を求める方法を提案した。前者は、アカマツ林の遷移系列について、後者はアカマツ林の遷移的段階についてそれぞれ言及している。従って、ここではすでに豊原によって報告されている沿岸型アカマツ林のアカマツーアラカシ群集内で見られる進行遷移の順に示された植生単位の位置付けを、筆者のアカマツ林の遷移に関する目安のスケール0~10を基準とする軸(遷移的指標軸)上に求め、各植生単位の遷移的位置について検討する。

豊原の進行遷移方向における植生単位の序列として、(1) I. アカマツーアラカシ群集: A. コシダ亜群集; 1. 典型変群集, a. 典型亜変群集, (2) I-A-1-b. クロキ亜変群集, (3) I-A-2. ヤブコウジ変群集, a. 典型亜変群集, (4) I-A-2-b. マンリョウ亜変群集, (5) II. シリブカガシーコジイ群落: A. アカマツ下位単位,(6) II-B. 典型下位単位の順にあげている。

これらの植生単位の位置付けを筆者の方法によって求めるために、豊原(1984)に示されている常在度表(主要種のみで示されている Structural summary)の各植生単位の列をスタン

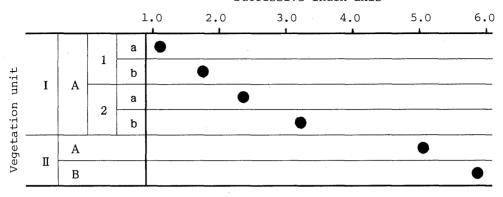


Fig. 10 Positioning of Toyohara's (1) to (6) vegetation units as stand indices on the successive index axis by use of the fixed species index and the weighted-average method. (1) I. Querco glaucae – Pinetum densiflorae : A. Dicranopteridetosum linearis ; 1. Typical variant, a. Typical subvariant (I -A-1-a) (2) I -A-1, b. Symplocos lucida subvariant (I -A-1-b) (3) I -A, 2. Ardisia japonica variant, a. Typical subvariant (I -A-2-a) (4) I -a-2, b. Ardisia crenata subvariant (I -A-2-b) (5) II. Castanopsis cuspidata – Pasania glabra community ; A. Pinus densiflora group (II -A) (6) II, B. Typical group (II -B).

ド列と、常在度を植被率と見なし、固定化された種 Index を基に、加重平均法を用いてスタンド(植生単位)Index を求めてみた(Fig. 10)。

以上の結果,各植生単位の位置付けは,植生単位(1)で1.11,(2)で1.77,(3)で2.38,(4)で3.24,(5)で5.07,(6)で5.91の値を示し,これらの値は豊原の序列と極めてよく一致した。これらの値には常在度を植被率と見なして量的数値データとしたことや,常在度表は主要種のみで表されており固定化されている117種の内除外されている種が存在している可能性もあること等,若干の誤差が内包していると考えられるにも係わらず,進行遷移方向での序列を示す値が(1)から(6)の順に得られた。このことは固定化された種 Index の信頼性の高さを示しているとともに,一方では植物社会学的手法を用いて求められた豊原の序列の妥当性も確認された。

現存する二次性アカマツ林の多くは過去の人為的植生管理(伐採や下刈り)や山火の影響下に成立しており、その遷移を論じる場合、植生変化を単なる時間軸だけで捕らえることはできない。また、遷移系列や遷移スピードも過去の影響や土壌の違いを反映し、立地によりまちまちであり、それぞれ異なった立地に成立しているアカマツ林の遷移を事実として把握するには、人間の寿命を超えた時間と観察が必要となる。今までに報告されているアカマツ林のような長時間を要して変化する森林の植生遷移に関する研究の多くは、過去の記録を基に植生変化を解析したものと、間接的ではあるが、現存植生の種構成の違いから、植生の遷移を示すと考えられる方向へのスタンドの序列を求め、その整合性を検討しているものとに大別される。本

研究も基本的には後者の域を脱しえないが、多様な立地に成立している多数の二次性アカマッ林・照葉樹林を対象として、DCA 法という数理的手法を用いて遷移を示すと考えられる軸を求め、軸上に位置付けられた117種の種 Index を固定的な指標とし、アカマッ林・照葉樹林の新たなスタンドの位置付けを同一スケール上に求めることを試みたものである。検討の結果、求められた個々のスタンドの位置付けは、比較的高精度で遷移的位置付けを示していると考えられる。しかし、遷移論の一環として、本研究を見ると、遷移系列、時間的分析など言及されていない重要な問題を残している。今後本研究を基に残されている諸問題について研究を進めて行きたい。

摘要

- 1. アカマツ林の遷移的指標軸を設定し、調査されたアカマツ林を軸上にスタンド Index として位置付ける方法を提案し、近畿地方に成立しているアカマツ林で試みた。
- 2. 西南日本を中心とする WI: 100~130℃・month の気候域に成立するアカマツ林・照葉樹林696スタンドの調査データをもとに DCA 法を用いて解析した結果、4 軸が求められた。
- 3. DCA 法によって求められた第1軸の種 Index は3タイプの樹林での出現パターンから求められた分布型(竹中:1983)の序列との間に対応相関が認められたことや,第1軸のスタンド Index は常緑植物の出現率とも相関を示したことから, DCA 法によって求められた第1軸はアカマツ 低木林から照葉樹林への方向を示す軸であることが確認された。
- 4. DCA 法で用いられたデータには日本の主なアカマツ林・照葉樹林を包含していることから、DCA 法によって求められた第1軸のスタンド Index の最小値と最大値の間には日本の大部分のアカマツ林・照葉樹林が位置付けられると考え、スタンド Index の読取りを単純化するために、その最小値が0、最大値が10となるように種 Index の読み換えを比例配分的に行ない、固定化した。
- 5. 近畿地方に成立するアカマツ林・照葉樹林282樹林について、固定化された種 Index を用いて加重平均法でスタンド Index を求めた。スタンド Index は0.51~8.89で、常緑植物の出現率、高木層の植被率及び高木層の樹高と高い相関を示し、遷移的指標軸 (0~10) 上での位置を示す指数であると推定された。
- 6. 遷移的指標軸を1間隔に10段階に区分して遷移的段階とし、各遷移的段階にあるスタンドでの種の出現状態から、種の絶対的、相対的分布について検討した。
- 7. 固定化された種 Index を用いて加重平均法でスタンド Index を求める方法で、豊原(1984)のアカマツ林の進行遷移方向における植生単位毎の位置指数を求め検討した結果、豊原の序列とよく一致した。

引用文献

Braun-Blanquet, J. (1964) Pflanzensoziolgie. 3. Aufl. 865pp., Wien.

Bray, J. R. & Curtis, J. T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol. Monog., 27: 325-349.

Brown, R. T. & Curtis, J. T. (1952) The upland conifer—hardwood forests of northern Wisconsin. Ecol. Monog., 22: 217-234.

Curtis, J. T. & McIntosh, R. P. (1951) An upland forest continuum in the prairie forest border region of Wisconsin. Ecol., 32: 476-496.

Hill, M. O. (1973) Reciprocal averaging: An eigenvector method of ordination. J. Ecol., 61: 237 – 249.

- ———. (1979) DECORANA-A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. 90pp. Cornell Univ. Press, Ithaca, N. Y.
- ——. & Gauch, H. G. (1980) Detrended correspondence analysis: An improved ordination technique. Vegetatio, **42**: 47-58.
- Irow, S. (1963) Grassland vegetation in uplands of western Honshu, Japan. Part. II. Succession and grazing indicators. Jap. Jour. Bot., 18 (2): 133-167.
- 吉良竜夫 (1949) 日本の森林帯、林業解説シリーズ17. 日本林業技術協会、
- 気象庁(1972)全国気温·降水量月別平年値表、気象庁観測技術資料第36号、209pp,
- 森本康滋・友成孟宏・石井恒義. (1982) 貞光町の植生. 郷土研究発表会紀要28:15-24.
- 中池敏之. (1982) 新日本植物誌, シダ篇. 808pp. 至文堂, 東京.
- 大井次三郎, 北川政夫, (1983)新日本植物誌, 顕花篇, 1716pp, 至文堂, 東京,
- 奥富 清.(1958) 向宇品における森林植生の連続構造. 福岡学芸大学紀要. 8:75-83.
- Окитомі, К. (1967) Warm temperate forest vegetation of western Honshu, Japan. Part 1. Analysis of vegetational composition by stand ordination and species association extraction. Bull. Fukuoka Univ. Educ., 17:77-102.
- 武田義明(1981) アカマツーサイゴクミツバツツジ群集について、神戸大学教育学部研究集録66: 109-123
- 竹中則夫.(1983) 照葉樹林構成種群の分布要因の解析 IVアカマツ低木林から照葉樹林. 神戸女学院 大学論集**30**(1):63-88.
- 友成孟宏・森本康滋・石井恒義(1981)上板町の植生、郷土研究発表会紀要27:31-46.
- 豊原源太郎. (1981) 広島県における沿岸型と内陸型アカマツ林の境界について. ヒコビア別巻1:497-505.
- TOYOHARA, G. (1984) A phytosociological study and a tentative draft on vegetation mapping of the secondary forests in Hiroshima Prefecture with special reference to pine forests. Jour. Sci. Hiroshima Univ., Series B, Div. 2(Botany), 19 (1): 131-170.

(原稿受理 1992年9月10日)