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This paper presents an architecture which utilizes two
artificial neural systems for planning and control of a robotic
arm. The first neural network system participates in the
trajectory planning and the motion decision making process.
The second neural network system provides the correct
sequence of control actions with a high accuracy due to the
utilization of an unsupervised/supervised neural network
scheme. The utilization of a hybrid hierarchical/distributed
organization, supervised/unsupervised learning models, and
JSforward modelling yielded an architecture with capabilities of
high level functionality.

INTRODUCTION

The work presented here develops an architecture which
can yield a strategy for dynamic decision-making that allows
the robot end-effector to reach it's goal using apriori and on-
line contextual information. The neural network systems
cooperate with the entire architecture to achieve the necessary
flexibility to adapt to unforeseen changes in the robot
workspace and interactions with other systems.

This architecture utilized an emulator to enhance the
supes.ised learning strategy. This idea has been proposed by
Werbos [24,25], Jordan (7,8), Jordan and Rumelhart [91,
Kawato [10] and Nguyen and Widrow [12,13]. As opposed to
inverse modelling, forward modelling emphasizes on the
utilization of a robot model, and after using that model to train
the controller, With this mechanism, forward modelling
overcomes the many-to-one mapping from actions to sensations
problems and provides an effective sensitivity analysis
capability [9]. In addition, forward modelling could be easily
modified using the emulator/controller structure as a backbone
for more complex control structures [21].

SYSTEM MODEL

. The computer simulated robotic manipulator model
consists of a two dimension version of an arm with two jointed
links of equal length (Fig.1). The workspace is constrained by
the vuwbined lengths of the two members (200 cm) in the
simulation and by a maximum rotational displacement limit of
170 degrees at the elbow joint. The robotic manipulator's
dimensions can also change due to the effects of temperature
induced link expansion or contraction (e.g., deformations up to
15% with an increment of temperature of 100°C are possible).
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Figure 1. Arm Configurations

NEURAL NETWORKS

Two different neural network systems are presented
associated with the prototype of a scheme which uses the
integration of neural networks and knowledge-based systems
for robotics motion control. These neural network systems
participate in the tasks of the motion analysis process at the
higher hierarchical level and the process of control-emulation
at the lower level.

The neural network system at the higher hierarchical
level supports the decision making by providing the motion
analysis process with an initial hypothesis. This initiative does
not preciude adaptive changes during the course of motion due
to unexpected changes. The simplicity of the model utilized
permits decomposition of the initial stage into two distinct
tasks, each with its own associated neural network
arrangement. The first part, consisting of the preliminary
motion feasibility analysis, uses a restrictive coulomb energy



(RCE) network to delineate the robot-arm workspace and
evaluate whether the end-effector could reach the proposed
location. If the goal is feasible, a second system of neural
networks is employed to analyzes and select a configuration in
accordance with the initial position. This second network
makes an initial proposition to the motion decision making
mechanism which could use the cooperation of other
knowledge sources (e.g., knowledge bases, algorithms,
procedures) with more contextual information leading to the
final decision.

The process of control-emulation is implemented at the
lower part of the hierarchy. The problem to be solved is to
provide the correct sequence of control actions to incite the
robot arm to go from an initial position to a target position.
This "correct sequence” of control actions is decided by a plan
generated by the high-level planner which manages and
coordinates information concerning the task to be performed,
and updates the system knowledge. The forward model is
:aught by the high-level planner using simulated sensor
‘eedback and implemented in a backpropagation network.
Then, the emulator network-of the robot arm dynamics is
leveloped and the controller implementation is started. The
sontroller is implemented using a backpropagation network
~hich is driven by the high-level planner which takes the
lecision on the kind of trajectory to be followed (i.e., linear,
sircular, linear/circular). The frequency of these trajectory
*hanges is totally handled by the high-level planner according
0 sensory information, goals, and optimization factors. In
wddition, the controller receives input from the emulator at a
rgher frequency.

RCE Mapping of a Two Dimensional Robotic Arm
Workspace

In the present study, an RCE network was used to
accomplish this workspace filter. In an RCE network [20], all
examples of a pattern category (e.g., IN, OUT) define a set of
points in the feature space that can be characterized as a region
(or a set of regions) having some arbitrary shape. This feature
of RCE networks make them appropriate to define and learn
complex workspaces (i.e., several degrees of freedom and links
of arbitrary geometric shapes). In addition, RCE networks are
appropriate for real-time learning of complicated non-linear
class regions, and capable of probability estimations to handle
uncertainty (Fig.2).

The RCE network used in this study was of the most
liberal type sihce it was desired to prompt it to decide the
categorization of the X-Y pair (it is also possible to use polar
coordinates if required) even at relatively high uncertainty
levels due to the fact that a response was needed. The nearest
neighbor approximation was used whenever an input vector fell
outside the influence region of any hidden layer cell. A
training data file consisting of 4500 points and a testing file of
499 points were utilized. The final network had 426 units.

This approach has been utilized for more complex
robotic configuration . Figures 3 and 4 show a robotic arm of 4
degrees of freedom with a 3D workspace. An RCE network
«was capable to describe it with a high accuracy after being
trained with 10000 points with a reasonable computational cost.
However, the architecture consisted of 1141 hidden units!.

Mapping with Backpropagation

The neural networks for configuration selection, arm
emulator, and neurocontroller were developed using the
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Figure 2. Artificial Neural System I

standard backpropagation paradigm. The training process using
backpropagation is a difficult problem [1,6,11,23]. It is needed
to find an appropriate architecture (¢.g. number of hidden units,
number of hidden layers, etc.), adequate size and quality of
training data, satisfactory initialization (e.g., initial weights),
learning parameter values (e.g., learning rates), and to avoid
over-training effects (performance degradation due to
prolonged training).

In this research the following approaches were utilized:

1. To help to find an appropriate, architecture (i.e.,
number of hidden units) an interactive addition of nodes was
performed as proposed by the Dynamic Node Creation (DNC)

1. .
t 2. To speed up the convergence behavior, the
selection of parameters such as learning rates and the
utilization of first and second order momentum factors are
emphasized [15]. The learning rule utilized consisted of a
weight update using momentum (Bx) factors with the exception
that each weight had its own "adaptive” leamning rate parameter




Figure 3. Initial and Final Configurations of a
Robotic Arm with Four Degrees of
Freedom

Figure 4.

3D View of a Robotic Arm with Four
Degrees of Freedom

(1) [6]. The "adaptive” learning rate strategy increments the
H(s) by a small constant if the current partial derivative of the
objective function (E = 1/2Z(Target - Output)2) with respect
to the weight (w) and the exponential average of the previous
derivatives have the same sign, otherwise p will be
decremented by a proportion to its value. The updating
equation of the weights is defined by using wij as the weight
value located between nodes i and j, t is the present iteration,
Aw is the weight increment which is equal to the uct of the
B and the partial derivative of the objective tunction with
respect to the weight (GE/Qwij),

wij (t) = wij (t-1) + Awij (t) + B1 Awij (t-1) + B2 Awij (t-2).
3. To reinforce learning, Combined Subset Training

(CST) was utilized [22]. CST combines old and new training
sets. First, a random subset to train the network is selected.
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When the network has learned it fairly well, a new subset (of
the same size as the previous one) is added to the first training
set, and the network 1s trained with the combined set.

4. In this research, three different types of data sets
were utilized: a training set, a validation set, and a testing set.
The training set was utilized for determining the values of the
weights. The validation set (a set with unseen data to make on-
line tests about network performance) was utilized to avoid
over-training effects [11,23]. The testing set (as expressed tgy
Weigend et al. [23] "It is strictly set apart and never used in
training.") was utilized to estimate the expected performance of
the network.

Robot Arm Coordinates Transformation and Configuration
Selection )

The coordinates transformation for the robot used in
this research is not a one-to-one mapping. Two configurations,
with a positive and a negative elbow rotation, are valid if no
arbitrary constraints are placed on the solution space.
Consequently, it is important to develop a methodology for
choosing one which satisfies the motion and contextual
constraints. The system used to produce this transformation is
based on a neural network (Fig. 2). The mapping assigns a
three dimensional input vector consisting on the X and Y
location of the end-effector as well as the temperature, T, (X,
Y, T) to a two dimensional vector contairing the required
shoulder and elbow angular position (q1,92;.

The final architecture for the neural network had 18
hidden units. When the final architecture of 18 hidden units
was achieved CST was applied vp to 1600 data samples. It is
interesting to note, that the next set of data to be added to the
training file was based on the minimum output errors achieved
before. Therefore, each data set added as defined by CST
concentrated in those points where the network has had some
lower performance.

Several neural networks have been developed for the
robotic configuration depicted in Figures 3 and 4 for different
optimization criteria (e.g., minimization of total displacement,
minimization of the maximum displacement of the angles).
The neural networks have been able to produce reasonable
solutions. However, the number of training samples required
and the final error (e.g., around 19) required the utilization of
other optimization procedures as a second stage (e.g,., modified
Newton Raphson, Genetic Algorithms). Table I shows the
precision of a genetic algorithm [14] using "real” strings, a
population of 16, and a reduced number of generations (around
20) as a second stage of a neural networks for the optimized
inverted kinematics problem. It is possible to see the high
accuracy of 0.0008 inches achieved in a reduced
computational time !.

Arm Emulator

- The arm emulator is needed in order to identify the arm
dynamic behavior. The procedures, in order to develop the
emulator, should be encoded in the high-level planner. The
high-level planner could examine the arm responses in the
cartesian plane with different motor actions. This process will
be implemented repetitively until an effi~i=at emulator is
developed.

To develop a high accuraccy emulator, several neural
networks are developed using the techniques previously



Table 1. Genetic Algorithm Trial

Training Table (Press ESC to DOS in processing !)
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mentioned. The utilization of several neural networks for
different points (5] increased the accuracy of previous
developments [16,17,18,19]. These neural networks have 5
inputs (Fig. 5) identifying the current X, Y cartesian positions,
the elbow and shoulder angle increments (which could define
the width of the motors drive pulses in our discrete-time
model), and the temperature. The neural networks have two
outputs which correspond to the X, Y positions (i.c., next state)
after the movement has been performed. To cluster the space
in several groups, a Fuzzy ART [4] (unsupervised) neural
network was utilized. These clusters gave us the division of the
workspace that was mapped on to backpropagation networks.
The division of the workspace was done using vigilance factor
in the interval [0.6,0.8] (Fig. 6).

The Neurocontroller

The neurocontroller has the functions to provide
a sequence of orders in order to drive the arm from an initial
position to a target position. The trajectory could be defined as
linear or circular. The high-level planner decides according to
sensory feedback or emulator responses to modify the plans
given to the neurocontroller. To define the type of trajectory
the coefficients of a line (Bx + C) or circle (AxZ + Bx + C) are
provided to the neurocontroller. The neurocontroller taking
into consideration the present state vector (X, Y, T) and the
plan (A, B, C) gencrates the discrete increments for the elbow
and shoulder angles. Then the "new" present state vector is
used repeatedly till the targeted position is achieved (Fig.5).

Several neural networks are developed using
backpropagation and the techiques mentioned above to
implement the neurocontroller. The Fuzzy ART network
utilized for the emulator is utilized to select the respective
backpropagation neural network. These neural networks have
6 inputs corresponding to X, Y, T, A, B, and C. The outputs
correspond to the increments of the shoulder and elbow angles.
The neurocontroller networks showed a better accuracy and a
more continuous path definition than previous developments
[16,17,18,19].
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Figure 5. Artificial Neural System II

ON-GOING RESEARCH

Neural networks have capabilities to learn, to perform
massively parallel processing, and to adapt to complex
environmental changes. The hierarchical structure introduced
here significantly enhances the system capabilities because it
takes into consideration not only the knowledge about the
manipulator but also about the controller. On-going
developments are concentrating using arm models with more
than two degrees of freedom and three dimensional work
envelopes.
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Figure 6.
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