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Generalized contact process with two symmetric absorbing states in two dimensions

Man Young Lee and Thomas Vojta
Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
(Received 27 October 2010; published 18 January 2011)

We explore the two-dimensional generalized contact process with two absorbing states by means of large-scale
Monte-Carlo simulations. In part of the phase diagram, an infinitesimal creation rate of active sites between
inactive domains is sufficient to take the system from the inactive phase to the active phase. The system,
therefore, displays two different nonequilibrium phase transitions. The critical behavior of the generic transition
is compatible with the generalized voter universality class, implying that the symmetry-breaking and absorbing
transitions coincide. In contrast, the transition at zero domain-boundary activation rate is not critical.

DOI: 10.1103/PhysRevE.83.011114

I. INTRODUCTION

Phase transitions between different nonequilibrium steady
states are a topic of great current interest in statistical
physics. These transitions display large-scale fluctuations and
collective behavior over large distances and long times just
as equilibrium phase transitions. They occur, for example, in
surface growth, granular flow, chemical reactions, population
dynamics, and even in traffic jams [1-7].

The so-called absorbing state transitions are a particularly
well-studied type of nonequilibrium phase transitions. They
separate fluctuating (active) steady states from absorbing (in-
active) states where fluctuations stop completely. Generically,
absorbing state transitions are in the directed percolation (DP)
[8] universality class; Janssen and Grassberger [9,10] conjec-
tured that all absorbing state transitions with a scalar order
parameter and short-range interactions belong to this class as
long as there are no extra symmetries or conservation laws.
This conjecture has been confirmed in countless theoretical
and computer simulation studies. Experimental verifications
were found in ferrofluidic spikes [11] and in the transition
between two turbulent states in a liquid crystal [12].

In recent years, significant attention has focused on absorb-
ing state transitions in universality classes different from DP
that can occur if the system features additional symmetries
or conservation laws. In 1997, Hinrichsen [13] suggested
several nonequilibrium stochastic lattice models with n > 2
absorbing states. In the case of two symmetric absorbing states
(n = 2), he found the critical exponents to be different from
the DP values. The corresponding universality class has been
given several different names in the literature, such as the
Z,-symmetric directed percolation class (DP2) or the directed
Ising (DI) class. If the symmetry between the two absorbing
states is broken, the critical behavior reverts back to DP.

Recently, we revisited [14] one of the stochastic lattice
models introduced in Ref. [13], viz., the generalized contact
process with two absorbing states in one space dimension.
By employing large-scale Monte-Carlo simulations, we found
a rich phase diagram featuring two different nonequilibrium
phase transitions separated by a special point that shares
some characteristics with a multicritical point. The generic
transition occurs at nonzero values of the infection, healing,
and domain-boundary activation rates. It belongs to the
previously mentioned DP2 or DI universality class, which
in one dimension coincides [4] with the parity-conserving
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(PC) class [15] [occurring, e.g., in the branching-annihilating
random walk with an even number of offspring (BARWE)
[16]]. In addition, we found an unusual line of phase transitions
at zero domain-boundary activation rate that turned out to be
noncritical.

Here, we consider the generalized contact process with
two symmetric absorbing states in two space dimensions. The
purpose of this paper is twofold. First, we wish to investigate
whether the two-dimensional generalized contact process also
displays the previously mentioned rich phase diagram having
two nonequilibrium phase transitions. Second, we wish to
study the critical behavior of these transitions and their
universality. According to a conjecture by Dornic et al. [17],
transitions with Z, symmetry and no bulk fluctuations (i.e.,
transitions with two symmetric absorbing states) should be
in the generalized voter (GV) universality class for which
the upper critical dimension is exactly 2. Alternatively, the
transition could split into a symmetry-breaking Ising transition
and a DP transition [18,19]. To address these questions, we
perform large-scale Monte-Carlo simulations.

Our paper is organized as follows. We introduce the
generalized contact process with several absorbing states in
Sec. II. Section III is devoted to the results and interpretation
of our Monte-Carlo simulations. We conclude in Sec. I'V.

II. GENERALIZED CONTACT PROCESS WITH
SEVERAL ABSORBING STATES

We first define the simple contact process [20], one of the
prototypical models in the DP universality class. Each site r of
a d-dimensional hypercubic lattice can be in one of two states:
either A, the active (infected) state, or I, the inactive (healthy)
state. During the time evolution of the contact process, active
sites infect their nearest neighbors, or they heal (become
inactive) spontaneously. More rigorously, the contact process
is a continuous-time Markov process during which active
sites become inactive at a rate w, while inactive sites turn
active at a rate Am/(2d), where m is the number of active
nearest-neighbor sites. The healing rate p and the infection
rate A are external parameters.

The long-time state of the contact process is determined
by the ratio of these two rates. If u > A, healing occurs
much more often than infection. Thus, all infected sites will
eventually become inactive, and the absorbing state without

©2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevE.83.011114

MAN YOUNG LEE AND THOMAS VOITA

any active sites is the only steady state. Consequently, the
system is in the inactive phase for p >> A. In the opposite
limit, A > u, the infection survives for infinite times, that is,
there is a steady state with a nonzero density of active sites.
This is the active phase. These two phases are separated by
a nonequilibrium phase transition in the DP universality class
occurring at some critical value of the ratio A /.

Following Hinrichsen [13], we now generalize the contact
process to n absorbing states. Each lattice site can now be in
one of n + 1 states, the active state A or one of the n different
inactive states I, (k = 1, ..., n). k is sometimes referred to as
the “color” index. The Markov dynamics of the generalized
contact process is defined via the following transition rates for
pairs of nearest-neighbor sites:

w(AA - Al) = w(AA — [A) = ii/n, (D

w(Al — Il) = wi A — L 1) = ux, ()

w(Al, > AA) = w([fA - AA) = A, 3)

w(lyl; = [A) = w(lil; - Al) = o, 4)

withk,l =1, ..., nandk # [. All other transition rates vanish.

We are mostly interested in the fully symmetric case, puy = u
for all k. For n =1 and i = u, the so-defined generalized
contact process coincides with the simple contact process
discussed earlier. One of the rates fi, u, A, and o can be set
to unity without loss of generality, thereby fixing the unit of
time. We choose A = 1 in the following. Moreover, to keep the
parameter space manageable, we focus on the case i = u.!

The rate (4) is responsible for the new physics in the
generalized contact process. It prevents inactive domains of
different color (different k) from sticking together indefinitely.
By creating active sites at the domain wall, the two domains
can separate. Thus, the rate (4) allows the domain walls to
move through space. We emphasize that without the process
(4), that is, for o = 0, the color of the inactive sites becomes
unimportant, and all I; can be identified. Consequently,
for o = 0, the dynamics of the generalized contact process
reduces to that of the simple contact process for all values of
n. In the main part of this paper, we shall focus on the case of
n = 2 inactive states.

Before we turn to our Monte-Carlo simulations of the
two-dimensional generalized contact process, let us briefly
summarize the simulation results in one dimension [14] for
comparison. For o = 0, that is, in the absence of the boundary
activation process (4), the system undergoes an absorbing
state transition at a healing rate pu = u¢ =~ 0.303, which
agrees with the critical healing rate of the simple contact
process. In agreement with the general arguments presented
earlier, this transition is in the DP universality class. For

"We studied the phase diagram for ji # j in one space dimension in
Ref. [14]. We found that the qualitative behavior is the same as in the
L = u case. We expect the same to be true in two space dimensions.
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healing rates between ¢ and u* &~ 0.552, the system is
inactive if o = 0 but an infinitesimal nonzero o takes it to
the active phase. Finally, for © > p*, the transition occurs at
a finite nonzero value of o. The one-dimensional generalized
contact process with two inactive states thus has two lines
of phase transitions: (i) the generic transition occurring at
u > u* and o = o.(u) > 0, and (ii) the transition occurring
for ud’ < u < w* as o approaches zero.

III. MONTE-CARLO SIMULATIONS

A. Method and phase diagram

To address the two main problems raised in the introduction,
viz., the phase diagram of the two-dimensional generalized
contact process with two inactive states and the critical
behavior of its phase transitions, we performed two types of
large-scale Monte-Carlo simulations: (i) decay runs and (ii)
spreading runs. Decay runs start from a completely active
lattice; we measure the time evolution of the density p(t) of
active sites as well as the densities p;(¢) and p,(¢) of sites in
inactive states I; and I, respectively. Spreading simulations
start from a single active (seed) site embedded in a system
of sites in state /,. Here we monitor the survival probability
P;(1), the number of sites in the active cloud, N,(¢), and the
mean-square radius of this cloud, R2(z).

In both types of runs, the simulation is a sequence of
individual events. In each event, a pair of nearest-neighbor
sites is randomly selected from the active region. For the
spreading simulations, the active region initially consists of
the seed site and its neighbors; it is updated in the course of the
simulation according to the actual size of the active cluster. For
the decay runs, the active region comprises the entire sample.
The selected pair then undergoes one of the possible transitions
according to Eqgs. (1)—(4) with probability tw. Here the time
step T is a constant that we fix at 1/2. The time increment
associated with the event is T/ Npyir, Where Ny, is the number
of nearest-neighbor pairs in the active region.

Using this procedure, we investigated the parameter region
05< u<12and 0 <o < 1. We simulated samples with
sizes up to 20000 x 20000 sites for times up to fp.x =
3 x 10°. The o-u phase diagram that emerged from these
calculations is shown in Fig. 1.

In many respects, it is similar to the phase diagram of
the one-dimensional generalized contact process [14]. In the
absence of the domain-boundary activation process (i.e., for
o = 0), the transition from the active phase to the inactive
phase occurs at a healing rate of u = .’ = 0.6066(2), which
agrees well with the critical point of the simple contact
process (see, e.g., Refs. [21,22]). For healing rates in the
interval e < pu < u* = 1.0000(2), the generalized contact
process is inactive at o = 0, but an infinitesimal nonzero o
takes it to the active phase. Thus, we find a line of phase
transitions at ¢’ < u < u* and o = 0. In addition to this line
of 0 = 0 absorbing state transitions, we also find a line of
generic (nonzero o and p) transitions. In contrast to one space
dimension, this line is exactly “vertical” within our accuracy,
thatis, the critical healing rate . = 1.0000(2) does not depend
on o for all 0 > 0. We note in passing that our critical healing
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FIG. 1. (Color online) Phase diagram of the two-dimensional
generalized contact process with two inactive states as a function
of the healing rate w and the domain-boundary activation rate o.
For u < w? = 0.6066, the system is in the active phase for any o.
For u? < u < p* = 1.0000, the system is inactive at o = 0 (thick
solid red line), but an infinitesimal o takes it to the active phase. For
> u*, the system is inactive for any o.

rate is in agreement with the estimate p,. ~ 0.99(1) obtained
in Ref. [13] foro = 1.

In the following subsections, we shall discuss in detail the
properties of both phase transition lines as well as a special
point (*,0) that separates them.

B. Generic transition

In order to identify the generic transition and to study
its critical behavior, we performed sets of spreading sim-
ulations at constant domain-boundary activation rate o =
0.01, 0.05,0.1, 0.5, and 1. For each o, we have varied the
healing rate p from 0.8 to 1.1. Figure 2 shows the resulting
time evolution of the survival probability P, and the number of
sites in the active cloud N,(¢) for 0 = 0.1 and several u. The
data indicate a critical healing rate of ©, = 1.0000(2) for this
o value. Analogous simulations for o = 0.01, 0.05, 0.5, and
1 yielded, somewhat surprisingly, exactly the same critical
healing rate. We thus conclude that in the two-dimensional
generalized contact process, the critical healing rate . is
independent of ¢ for all o > 0.

Figure 3 shows the survival probability P; and number Ny
of active sites as functions of time for all the respective critical
points. In log-log representation, the long-time parts of the
Ny and P curves for different o are perfectly parallel within
their statistical errors, that is, they differ only by constant
factors, confirming that the critical behavior of the generic
transition is universal. Fits of the long-time behavior to the
pure power laws Py = B,t~% and Ny, = C,t® give estimates
of § =0.900(15) and ® = —0.100(25). These values are
very close to the mean-field values dyp = 1 and Opp = 0.
According to the conjecture by Dornic et al. [17], the generic
transition should be in the GV universality class. Because the
upper critical dimension of this universality class is exactly
2, this conjecture corresponds to mean-field behavior with
logarithmic corrections.
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FIG. 2. (Color online) Spreading simulations at ¢ = 0.1 for
several p close to the phase boundary. Main panel: Survival
probability P as a function of time ¢. Inset: Number N, of active
sites as a function of time ¢. The data close to criticality are averages
over 10° runs on a 4000 x 4000 system; smaller numbers of runs
were used away from criticality.

To test this prediction, we compare in Fig. 4 plots of
In(z Py) versus In(¢) (straight lines correspond to power laws)
and ¢ P, versus In(¢) (straight lines correspond to logarithmic
behavior). Although both functional forms describe the long-
time data reasonably well, the curves in the In(f Py) versus
In(?) plot show a systematic downward curvature. Moreover,
the semilogarithmic plot, ¢ P; versus In(z), leads to straight
lines over a longer time interval, which we take as evidence
for GV critical behavior. We performed an analogous analysis

45
0r ~
_ o 2
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FIG. 3. (Color online) Survival probability P; and number of
active sites N; as functions of ¢ for several points located on the
generic phase boundary i = 1.0000 (2 x 10 to 107 runs used). Inset:
prefactor B, vs o. The straight line is a fit to a power law B, ~ o %,
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FIG. 4. (Color online) Survival probability P,(¢) for several
points located on the generic phase boundary plotted as 7 Py vs In(z).
Straight lines correspond to mean-field behavior with logarithmic
corrections. Inset: Same data plotted as In(z Py) vs In(¢). Straight lines
represent pure power laws.

for a number of active sites N,. Again, both a simple power
law and mean-field behavior with logarithmic corrections
describe the data reasonably well, with the quality of fits being
somewhat higher for the latter case. We also measured (not
shown) the mean-square radius R?(¢) of the active cloud as a
function of time. A pure power-law fit of its long-time behavior,
R2(t) ~ t%/7, gives 2/z = 0.97(4) [z = 2.06(8)]. The data can
be described equally well by mean-field behavior R?(t) ~ ¢
with logarithmic corrections.

In addition to the spreading runs, we also performed density
decay runs at the generic phase boundary. The resulting density
of active sites p as a function of time can be fitted with a
pure power law p(f) ~ t~* giving a very small value of @ =
0.080(4). A better fit is achieved with the simple logarithmic
time dependence p(t) ~ 1/ In(z/ty) (with tp a microscopic time
scale) expected for the GV universality class. This type of
behavior is demonstrated in Fig. 5.

In summary, although all our results for the generic
transition can be fitted both by pure power laws and by
mean-field behavior with logarithmic corrections, the latter
functional forms yield fits of somewhat higher quality. We
also note that the critical exponents resulting from the pure
power-law fits approximately fulfill the hyperscaling relation
® — d/z = —a — §. However, the agreement is not very good
(in particular, it is significantly worse than in one dimension
[14]), indicating that the measured pure power laws are not
the true asymptotic behavior. Our results thus support the
conjecture that the generic transition of the two-dimensional
generalized contact process with two inactive states is in the
GV universality class.

C. Transitionato =0

After addressing the generic transition, we now discuss in
more detail the line of phase transitions occurring at o = 0
and pud < < w*. To study these transitions, we carried out
several sets of simulations for fixed healing rate  and several
o values approaching o = 0.

PHYSICAL REVIEW E 83, 011114 (2011)
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FIG. 5. (Color online) Density of active sites plotted as p~!(¢) vs
In(?) for several points located on the generic phase boundary. The
data are averages over 100 runs with system size 500 x 500. The
curve for o = 0.01 is shown in the inset because its density values
are much smaller than those of the other curves.

We start by discussing the density decay runs. Figure 6
shows the stationary density pg of active sites (reached at long
times) as a function of o for several values of the healing
rate w. The figure shows that the stationary density depends
linearly on o for all healing rates in the interval e’ < p < u*,
that is, pgy = B,,0®”, with w = 1 and B,, being a p-dependent
constant. We also analyzed how the prefactor B,, of this mean-
field-like behavior depends on the distances from the simple
contact process critical point and from the special point at
u = pu* and o = 0. As inset (a) of Fig. 6 shows, B, diverges
as (u — ud)™ with k = 1.56(5). According to inset (b), it
vanishes as (u* — )< with «* &~ 0.23 when approaching y*.

At the critical healing rate y;” of the simple contact process,
the stationary density displays a weaker o dependence. A fit
to a power law pg ~ o®» gives an exponent value of wp, =
0.274(5).

Let us now compare these results with the behavior of
spreading simulations in the same parameter region. Figure
7 shows the survival probability Pg(#) and the number of
active sites N,(¢) for a fixed healing rate of u = 0.8 and
several values of the boundary rate o. After an initial decay,
the number of active sites grows with time for all o values,
establishing that the system is in the active phase forall o > 0.
In agreement with this, the survival probability approaches
a nonzero constant in the long-time limit. Remarkably, this
stationary survival probability does not approach zero with
vanishing o . Instead, it approaches a o -independent constant.
We performed similar sets of simulations at other values of u
in the range u” < u < w*, with analogous results.

We thus conclude that the behavior at the o = 0 transition
of the two-dimensional generalized contact process is very
similar to the one-dimensional case. It can be understood in
terms of the domain-wall motion as follows [14]. The relevant
long-time degrees of freedom at u > ue” and o < 1 are the
domain walls between [; and I, domains. These walls can hop,
branch, and annihilate. The crucial observation is that the rates
that control the domain-wall dynamics are all proportional to
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FIG. 6. (Color online) Density decay simulations. Main panel:
stationary density py as a function of the boundary rate o for various
healing rates . For P < u < p*, the solid lines are fits of the low-o
behavior to oy = B,0. At the simple contact process critical point,
n = uP = 0.6066, we fit to the power law py ~ o>, which gives
an exponent of wc, = 0.274(5). The data are averages over 300 to
600 runs with system sizes 100 x 100. Inset (a): prefactor B,, of the
linear o dependence as a function of u — uP. A fit to a power law
gives B, ~ (u — puP)™* with k = 1.56(5). Inset (b): prefactor B, as
a function of pu* — p. A fit to a power law gives B, ~ (u* — W
with «* &~ 0.23.

o for 0 <« 1, implying that their ratios are o-independent.
Consequently, the stationary state of the domain walls does
not depend on o for o <« 1. This explains why the survival
probability Py saturates at a nonzero, o -independent value in
Fig. 7. It also explains the o dependence of the stationary
density py, because active sites are created mostly at the
domain walls at rate o. Therefore, their stationary density
is proportional to both ¢ and the stationary domain-wall
density pgy, that is, pg ~ opgw, in agreement with Fig. 6.
Based on this argument, the exponent «* in inset (b) of
Fig. 6 should be identical to the exponent 8 of the generic
transition line [14], which vanishes in mean-field theory. Our
value * = 0.23 is thus somewhat too high, which we attribute
to it not representing the asymptotic behavior, in agreement
with the significant curvature of the data in inset (b) of
Fig. 6.

Just as in one dimension, the phase-transition line at o =
0 and u’ < < p* is thus not a true critical line. It only
appears critical because the stationary density pg (trivially)
vanishes with o. Correspondingly, the time evolution right
on the transition line o = 0 does not display critical power
laws. This also implies that the point (1,0) = (1*,0) is not
a multicritical point, but a simple critical point in the same
universality class as the generic transition.

PHYSICAL REVIEW E 83, 011114 (2011)
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FIG. 7. (Color online) Spreading simulations: Survival probabil-
ity P, and number of active sites N as functions of time ¢ for a fixed
healing rate of u = 0.8 and several o. The data are averages over
2000 to 10 000 runs on a 4000 x 4000 system.

D. Scaling of p at the contact process critical point (i’ ,0)

The behavior of the stationary density of active sites pg
close to the simple contact process critical point at = e’
and o = 0 can be understood in terms of a phenomenological
scaling theory. We assume the homogeneity relation

psi(Ap,0) = bFol"s po (A b~ o b)), )

where Ap = —u, and b is an arbitrary scale factor.
Bep = 0.584 and vclp = 0.734 are the usual order parameter and
correlation length exponents of the two-dimensional contact
process [21,22], and y., denotes the scale dimension of o at
this critical point. Setting b = o'/?» gives rise to the scaling
form

pst(Ap,o) = Uﬂcp/(V$pr)X(AM O_*l/(Vél;pr))’ (6)

where X is a scaling function. At criticality, A = 0, this leads
to ps(0,0) ~ o Per/ g 3ien) [using X(0) = const]. Thus, @, =
ﬁcp/(vé,ycp). For 0 — 0 at nonzero Au, we need the large-
argument limit of the scaling function X. On the active side
of the critical point, Au < 0, the scaling function behaves as
X(x) ~ |x|P» to reproduce the correct critical behavior of the
density, py ~ |1 — ).

On the inactive side of the critical point, that is, for
Ap > 0and o — 0, we assume the scaling function to behave
as X(x) ~x7*. We thus obtain pg ~ (Au) ™ c® (just as
observed in Fig. 6) with w = (8¢, + K)/(vj;,ycp). As a result
of our scaling theory, the exponents w, w,, and k are not
independent, they need to fulfill the relation we,(Bep + k) =
Bepw. Our numerical values w = 1, wep, = 0.274,and x = 1.56
fulfill this relation in very good approximation, indicating
that they represent asymptotic exponents and validating the
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homogeneity relation (5). The resulting value for the scale
dimension y., of o at the simple contact process critical point
is yep = 2.9(1).

IV. CONCLUSIONS

To summarize, we investigated the two-dimensional gen-
eralized contact process with two inactive states by means of
large-scale Monte-Carlo simulations. Its global phase diagram
is very similar to that of the corresponding one-dimensional
model. In particular, the generic (¢ > 0) phase boundary
between the active and inactive phases does not continuously
connect to the critical point of the ¢ = 0 problem, that is, the
critical point (c”,0) of the simple contact process. Instead,
it terminates at a separate end point (©«*,0) on the p axis.
As a result, the two-dimensional generalized contact process
has two nonequilibrium phase transitions. In addition to the
generic transition occurring for ¢ > 0, there is a line of
transitions at ¢ = 0 and pg’ < u < w*. We note that there is
one interesting difference between the phase diagrams in one
and two dimensions. In one dimension, the critical healing
rate (. increases with increasing boundary rate o. In contrast,
the results of this paper show that the critical healing rate in
two dimensions is completely independent of . Moreover,
its value seems to be equal to unity (i.e., equal to that of
the infection rate A). The reason for this peculiar behavior is
presently an open question.

To determine the critical behavior of the generic transition,
we performed simulations at and close to several points on
the generic (0 > 0) phase boundary. We found the same
critical behavior for all of these points, that is, it is universal.
Our data can be fitted reasonably well with pure power
laws, giving the exponents ® = —0.100(25), § = 0.900(15),
o = 0.080(4), and z = 2.06(8). However, fits of equal and
sometimes even better quality over longer ranges of time
can be obtained by fitting to mean-field critical behavior,
® =0, =1,a =0, and z = 2, with logarithmic corrections.
Our results thus support the conjecture [17] that the critical
behavior of the two-dimensional generalized contact process
is right at its upper critical dimensions. (This implies that the
DP2 class in two dimensions coincides with the GV class.)
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We also note that our simulations showed no indications of
the transition being split into a symmetry-breaking transition
and a separate DP transition, as found in some absorbing-state
Potts models [18].

As in one space dimension, the line of transitions at
o =0and u < p < w* is not a critical line. The survival
probability P remains finite when approaching this line. The
density p of active sites vanishes, but simply because the
domain-boundary activation rate o vanishes. The behavior
in the vicinity of the transition line is controlled by the
dynamics of the ;-1 domain walls, which is not critical for
ne < po< pt.

Crossovers between various universality classes of absorb-
ing state transitions in one dimension have been investigated
by several authors [23-26]. Some of the scenarios lead to con-
ventional crossover scaling [of the type o, ~ (i — uHle.
Park and Park [24] found a discontinuous jump in the phase
boundary along the so-called excitatory route from infinitely
many absorbing states to a single absorbing state. There also
is some similarity between our mechanism and the so-called
channel route [25] from the PC universality class to the DP
class, which involves an infinite number of absorbing states
characterized by an auxiliary density (which is the density
of I;-I, domain walls in the one-dimensional generalized
contact process [14]). To the best of our knowledge, a similarly
systematic investigation of crossovers between absorbing state
universality classes in two space dimensions has not yet been
performed.

As our results suggest that the two-dimensional generalized
contact process is right at the upper critical dimensions, the
critical behavior of its (generic) phase transition in dimensions
d > 2 should be governed by mean-field theory.
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