Two-Loop Bethe-Logarithm Correction in Hydrogenlike Atoms

Krzysztof Pachucki

Ulrich D. Jentschura
Missouri University of Science and Technology, ulj@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/phys_facwork
Part of the Physics Commons

Recommended Citation

K. Pachucki and U. D. Jentschura, "Two-Loop Bethe-Logarithm Correction in Hydrogenlike Atoms," Physical Review Letters, vol. 91, no. 11, pp. 1130051-1130054, American Physical Society (APS), Sep 2003.

The definitive version is available at https://doi.org/10.1103/PhysRevLett.91.113005

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Physics Faculty Research \& Creative Works by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Two-Loop Bethe-Logarithm Correction in Hydrogenlike Atoms

Krzysztof Pachucki ${ }^{1}$ and Ulrich D. Jentschura ${ }^{2}$
${ }^{1}$ Institute of Theoretical Physics, Warsaw University, ul. Hoża 69, 00-681 Warsaw, Poland
${ }^{2}$ National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8401, USA

(Received 26 June 2003; published 11 September 2003)

Abstract

We calculate the two-loop Bethe logarithm correction to atomic energy levels in hydrogenlike systems. The two-loop Bethe logarithm is a low-energy quantum electrodynamic (QED) effect involving multiple summations over virtual excited atomic states. Although much smaller in absolute magnitude than the well-known one-loop Bethe logarithm, the two-loop analog is quite significant when compared to the current experimental accuracy of the $1 S-2 S$ transition: It contributes -8.19 and -0.84 kHz for the $1 S$ and the $2 S$ state, respectively. The two-loop Bethe logarithm has been the largest unknown correction to the hydrogen Lamb shift to date. Together with the ongoing measurement of the proton charge radius at the Paul Scherrer Institute, its calculation will bring theoretical and experimental accuracy for the Lamb shift in atomic hydrogen to the level of 10^{-7}.

DOI: 10.1103/PhysRevLett.91.113005
PACS numbers: $31.30 . J v, ~ 06.20 . J r, 12.20 . D s, 31.15 .-\mathrm{p}$

In 1947, Hans Bethe explained the splitting of $2 S_{1 / 2}$ and $2 P_{1 / 2}$ levels in hydrogen by the presence of the electron self-interaction [1], and expressed it in terms of the "Bethe" logarithm. For S states, this quantity may be represented as a matrix element involving the logarithm of the nonrelativistic Hamiltonian of the hydrogen atom. In natural units with $\hbar=c=\epsilon_{0}=1$ and m denoting the electron mass, it reads

$$
\begin{equation*}
\ln k_{0}(n S)=\frac{\left\langle\vec{p}(H-E) \ln \left[\frac{2(H-E)}{(Z \alpha)^{2} m}\right] \vec{p}\right\rangle}{\langle\vec{p}(H-E) \vec{p}\rangle} \tag{1}
\end{equation*}
$$

This Bethe logarithm is due to the emission and subsequent absorption of a single soft virtual photon (it is independent of the nuclear charge number Z and depends only on the principal quantum number n and the orbital angular momentum which is zero for S states). Over the years, QED theory has been developed and refined [2], and various additional radiative, relativistic, and combined corrections have been obtained to face the increasing precision of the measurements of the hydrogen spectrum $[3,4]$. These include higher-order relativistic one-, two-, and three-loop corrections, nuclear recoil, finite-size corrections, and even the nuclear polarizability. The modern all-order calculation of the leading oneloop self-energy was developed by Mohr in [5] and significantly improved recently using convergence acceleration techniques which led to a highly accurate evaluation of the fully relativistic Green function [6]. One of the conceptually most difficult as well as interesting corrections involve nuclear recoil effects. The finite nuclear mass, although large as compared to the electron mass, prohibits the use of the one-body Dirac equation, and alternative approaches such as the Bethe-Salpeter equation or nonrelativistic QED [7] have been introduced. Although these methods are quite general, no compact formulas have been derived for relativistic recoil effects.

A few years ago, Shabaev tackled the problem of recoil corrections to hydrogenic energy levels of first order in the mass ratio, deriving expressions which are nonperturbative in the nuclear charge (see a recent review in [8]), and this has led to the current highly accurate calculations of relativistic recoil corrections.

Another class of effects, namely, binding two-loop corrections, are quite difficult from a numerical point of view. A detailed investigation of these effects has been performed only in the past few years. The nonperturbative treatment (no $Z \alpha$ expansion) of the twoloop bound-state corrections has been pursued by various groups in Refs. [9-12]. However, these calculations were mostly performed for high- Z hydrogenlike atoms. As yet, complete results have not been obtained for $Z=1$ (see, for example, the most recent work in [12]). In the perturbative treatment of the bound-state two-loop self-energy correction, one calculates terms in a semianalytic expansion in $Z \alpha$ and $\ln \left[(Z \alpha)^{-2}\right]$. For S states, the first nonvanishing terms read

$$
\begin{gather*}
\Delta E=\left(\frac{\alpha}{\pi}\right)^{2} \frac{(Z \alpha)^{4}}{n^{3}} H(Z \alpha) m \tag{2}\\
H(Z \alpha)= \\
B_{40}+(Z \alpha) B_{50} \\
+(Z \alpha)^{2}\left\{B_{63} \ln ^{3}(Z \alpha)^{-2}+B_{62} \ln ^{2}(Z \alpha)^{-2}\right. \tag{3}\\
\\
\left.\quad+B_{61} \ln (Z \alpha)^{-2}+B_{60}\right\}+\ldots
\end{gather*}
$$

It was a perhaps surprising result, found only a few years ago [13], that this expansion has a very slow convergence: Because of the large absolute magnitude of higher-order coefficients, many terms have to be included for reliable theoretical predictions in order to match the current experimental precision. One of the remaining unknown but relevant contributions is the two-loop Bethe logarithm, which forms the dominant part of the problematic nonlogarithmic coefficient B_{60} (note that theoretical
effort in evaluating the one-loop analog of this coefficient, A_{60}, has extended over more than three decades [14-17]). The two-loop Bethe logarithm originates from the emission and absorption of two virtual soft photons. Using nonrelativistic QED, one derives the following expression for this two-loop correction [18]. For convenience, we set $Z=1$, pull out a common prefactor, and
express the remaining integrand in terms of dimensionless quantities:

$$
\begin{equation*}
\Delta E=\left(\frac{2 \alpha}{3 \pi}\right)^{2} \alpha^{6} m \int_{0}^{\epsilon_{1}} d \omega_{1} \int_{0}^{\epsilon_{2}} d \omega_{2} f\left(\omega_{1}, \omega_{2}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
f\left(\omega_{1}, \omega_{2}\right)=\omega_{1} \omega_{2}\{ & \left\langle p^{i} G\left(\omega_{1}\right) p^{j} G\left(\omega_{1}+\omega_{2}\right) p^{i} G\left(\omega_{2}\right) p^{j}\right\rangle+\left\langle p^{i} G\left(\omega_{1}\right) p^{j} G\left(\omega_{1}+\omega_{2}\right) p^{j} G\left(\omega_{1}\right) p^{i}\right\rangle / 2 \\
& +\left\langle p^{i} G\left(\omega_{2}\right) p^{j} G\left(\omega_{1}+\omega_{2}\right) p^{j} G\left(\omega_{2}\right) p^{i}\right\rangle / 2+\left\langle p^{i} G\left(\omega_{1}\right) p^{i} G^{\prime}(0) p^{j} G\left(\omega_{2}\right) p^{i}\right\rangle \\
& -\left\langle p^{i} G\left(\omega_{1}\right) p^{i}\right\rangle\left\langle p^{j} G^{2}\left(\omega_{2}\right) p^{i}\right\rangle / 2-\left\langle p^{i} G\left(\omega_{2}\right) p^{i}\right\rangle\left\langle p^{j} G^{2}\left(\omega_{1}\right) p^{i}\right\rangle / 2-\left\langle p^{i} G\left(\omega_{1}\right) G\left(\omega_{2}\right) p^{i}\right\rangle \\
& \left.-\left\langle p^{i}\left[G\left(\omega_{1}\right)+G\left(\omega_{2}\right)\right] p^{i}\right\rangle /\left(\omega_{1}+\omega_{2}\right)\right\} . \tag{5}
\end{align*}
$$

Here, $p^{k}=-i \partial^{k}, G(\omega)=1 /[E-(H+\omega)]$ is the nonrelativistic Green function, $E=-1 /\left(2 n^{2}\right)$ is the Schrödinger energy of the reference state with $H=$ $\vec{p}^{2} / 2-1 / r$, and $G^{\prime}(0)=1 /(E-H)^{\prime}$ is the reduced Green function with the reference state excluded. The ω integrals in Eq. (4) depend on ϵ_{1} and ϵ_{2}. We are free to choose the relation between the parameters ϵ_{1} and ϵ_{2}. Following [18], we perform the expansion in large ϵ_{2} first, and next in large ϵ_{1}. All the terms involving $1 / \epsilon_{1}$ or $1 / \epsilon_{2}$ are neglected. The linear and logarithmic terms, using the same relations, have already been considered in [18]. The dependence on the ϵ parameters cancels when the contributions from the high- and the low-energy photons are added. The constant term, which by definition we call the two-loop Bethe logarithm, is calculated numerically here.

There are two ways to calculate the integrand in Eq. (5). The first one relies on the use of known analytic expressions for the Schrödinger-Coulomb Green function, which involve the product of Whittaker functions. The precise calculation of the ω integrals requires the use of large ω_{1} and ω_{2}. This leads to a number of problems, including a numerical overflow in the calculation of these functions which persists even in quadruple precision, and this approach has therefore not been pursued here. In the second way, which is chosen here, the Schrödinger Hamiltonian is represented on a numerical grid, as a large symmetric band matrix [19]. Each inversion in Eq. (5) corresponds to a solution of a linear equation with a known right-hand side. This process is quite fast since it scales linearly with the number of grid points and is numerically stable. For the final evaluation, we used 10^{5} grid points, and we have checked the numerical accuracy of the results against those obtained with 2×10^{5} grid points.

Having calculated the matrix elements, we proceed to the evaluation of the ω_{1} and ω_{2} integrals. In accordance with the definition of the two-loop Bethe logarithm, we first fix ω_{1}, integrate over ω_{2}, and expand in large ϵ_{2} :

$$
\begin{align*}
f\left(\omega_{1}\right) & =\int_{0}^{\epsilon_{2}} d \omega_{2} f\left(\omega_{1}, \omega_{2}\right) \\
& =\epsilon_{2} a\left(\omega_{1}\right)+\ln \left(\epsilon_{2}\right) b\left(\omega_{1}\right)+g\left(\omega_{1}\right) \tag{6}
\end{align*}
$$

As in the case of the one-loop Bethe logarithm, the g function finds a representation that is suited for a numerical computation,

$$
\begin{equation*}
g\left(\omega_{1}\right)=I_{1}+I_{2}+I_{3} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
I_{1} & =\int_{0}^{M} d \omega_{2} f\left(\omega_{1}, \omega_{2}\right) \tag{8a}\\
I_{2} & =\int_{M}^{\infty} d \omega_{2}\left[f\left(\omega_{1}, \omega_{2}\right)-a\left(\omega_{1}\right)-\frac{b\left(\omega_{1}\right)}{\omega_{2}}\right] \tag{8b}\\
I_{3} & =a\left(\omega_{1}\right) M+b\left(\omega_{1}\right) \ln M \tag{8c}
\end{align*}
$$

with arbitrary M. The a and b coefficients are the first terms of the expansion of $f\left(\omega_{1}, \omega_{2}\right)$ for large ω_{2} at fixed ω_{1},

$$
\begin{align*}
f\left(\omega_{1}, \omega_{2}\right)= & a\left(\omega_{1}\right)+\frac{b\left(\omega_{1}\right)}{\omega_{2}}+\frac{2 \sqrt{2} b\left(\omega_{1}\right)}{\omega_{2}^{3 / 2}} \\
& +c\left(\omega_{1}\right) \frac{\ln \left(\omega_{2}\right)}{\omega_{2}^{2}}+\frac{d\left(\omega_{1}\right)}{\omega_{2}^{2}}+\ldots \tag{9}
\end{align*}
$$

The first coefficient is

$$
\begin{equation*}
a\left(\omega_{1}\right)=\omega_{1}\left\langle p^{i} \frac{H-E}{\left(H-E+\omega_{1}\right)^{2}} p^{i}\right\rangle \tag{10}
\end{equation*}
$$

and the second reads

$$
\begin{equation*}
b\left(\omega_{1}\right)=\omega_{1} \delta_{\pi \delta^{3}(r)}\left\{\left\langle p^{i} \frac{1}{E-\left(H+\omega_{1}\right)} p^{i}\right\rangle\right\}, \tag{11}
\end{equation*}
$$

where by δ_{V} we denote the first-order correction to the specified matrix elements. Namely, ϕ, E, and H receive corrections according to

$$
\begin{align*}
H & \rightarrow H+V \tag{12a}\\
|\phi\rangle & \rightarrow|\phi\rangle+\frac{1}{(E-H)^{\prime}} V|\phi\rangle \tag{12b}\\
E & \rightarrow E+\langle V\rangle . \tag{12c}
\end{align*}
$$

The higher-order coefficients c, d, \ldots in Eq. (9) are obtained from the fit to the numerical data and are subsequently used for the analytic integration at large ω_{2}. The
numerical integration over ω_{2} is performed with a welladapted set of 400 grid points, and the accuracy is checked by comparison with a calculation involving 200 grid points. Results of this integration for few chosen values of ω_{1} is shown in Table I. The next step is the numerical integration over ω_{1} :

$$
\begin{equation*}
\Delta E=\left(\frac{2 \alpha}{3 \pi}\right)^{2} \alpha^{6} m \int_{0}^{\epsilon_{1}} d \omega_{1} g\left(\omega_{1}\right) \tag{13}
\end{equation*}
$$

In order to perform this integration, one needs to know the large- ω_{1} asymptotics of g, which for an $n S$ state reads

$$
\begin{align*}
g\left(\omega_{1}\right)=\{ & -4 \ln \omega_{1}+2\left[\ln 2-1-\ln k_{0}(n S)\right]+\frac{4 \sqrt{2}}{\sqrt{\omega_{1}}}\left[\ln \left(\omega_{1}\right)+2(\ln 2-1)-\pi\right]+\frac{1}{\omega_{1}}\left[\ln ^{2}\left(\omega_{1}\right)+8+\frac{3}{2} N(n S)+5 \pi^{2}\right] \\
& \left.+\mathcal{A} \frac{\ln ^{2}\left(\omega_{1}\right)}{\omega_{1}^{3 / 2}}+\mathcal{B} \frac{\ln \left(\omega_{1}\right)}{\omega_{1}^{3 / 2}}+C \frac{1}{\omega_{1}^{3 / 2}}+\mathcal{O}\left(\frac{1}{\omega_{1}^{2}}\right)\right\} \frac{1}{n^{3}} \tag{14}
\end{align*}
$$

Here, N denotes a nonlogarithmic in α correction to the Bethe logarithm induced by a Dirac δ. It has been calculated in [[20], Eq. (12)], and the results for the $1 S$ and $2 S$ states read

$$
\begin{align*}
& N(1 S)=17.855672(1), \tag{15a}\\
& N(2 S)=12.032209(1) . \tag{15b}
\end{align*}
$$

The terms proportional to the $\mathcal{A}, \mathcal{B}, C$ coefficients in Eq. (14), and the omitted higher-order terms are obtained from the fit to the calculated data. The numerical stability of the parameters obtained from the fit, in various ranges of ω_{1}, indicates consistency of the numerically determined values for $g\left(\omega_{1}\right)$ with the analytically derived logarithmic terms in Eq. (14). This constitutes a check for the large value for the coefficient B_{61} derived in [18] on the basis of the logarithmic asymptotics.

The integral in Eq. (13) is performed in analogy to the algorithm presented in Eq. (6), by choosing an arbitrary value for the parameter M (e.g., $M=1$), and dropping all linear and logarithmic terms in ϵ_{1}. For ω_{1} larger than 720, the extrapolated values from the fit are employed. However, this part of the integral depends significantly on the unknown analytic behavior of $g(\omega)$ at large ω, and this is the main source of the integration uncertainty. The overall result of the numerical integration leads to the following nonlogarithmic terms of the order of $(\alpha / \pi)^{2}(Z \alpha)^{6} / n^{3}$ relative to the electron rest mass, whose numerical coefficients we choose to denote by b_{L} :

TABLE I. Sample values of the g function, defined in Eq. (6), for the $1 S$ and $2 S$ states.

ω	$g_{1 S}$	$8 g_{2 S}$
0	0.00000	0.00000
5	-10.28160	-10.36794
20	-16.56034	-16.41597
80	-22.71402	-22.43966
180	-26.23235	-25.92309
320	-28.69964	-28.37626
500	-30.59922	-30.26875
720	-32.14295	-31.80843

$$
\begin{align*}
& b_{L}(1 S)=-81.4(3) \tag{16a}\\
& b_{L}(2 S)=-66.6(3) \tag{16b}
\end{align*}
$$

These terms are much larger than the corresponding oneloop Bethe logarithms for typical hydrogenic states, but suppressed in absolute magnitude by an additional factor $\alpha(Z \alpha)^{2} / \pi$. For hydrogen $(Z=1)$, the above results contribute -8.19 and -0.84 kHz to the $1 S$ and $2 S$ states, respectively. The other contributions to B_{60} are considered below; the notation is consistent with that of Ref. [18]. The coefficient B_{60} can be represented as the sum

$$
\begin{equation*}
B_{60}=b_{L}+b_{M}+b_{F}+b_{H}+b_{\mathrm{VP}} \tag{17}
\end{equation*}
$$

The two-loop Bethe logarithm b_{L} comes from the region where both photon momenta are small and has been the subject of this work. b_{M} stems from an integration region where one momentum is large $\sim m$, and the second momentum is small. This contribution is given by a Dirac δ correction to the Bethe logarithm. It has already been derived in [18] but not included in the theoretical predictions for the Lamb shift:

$$
\begin{equation*}
b_{M}=\frac{10}{9} N(n S), \tag{18}
\end{equation*}
$$

b_{F} and b_{H} originate from a region where both photon momenta are large $\sim m$, and the electron momentum is small and large, respectively. Finally, b_{VP} is a contribution from diagrams that involve a closed fermion loop. None of these effects have been calculated as yet. On the basis of our experience with the one- and two-loop calculations [21], we estimate the magnitude of these uncalculated terms to be of the order of 15%. This leads to the following overall result for the B_{60} coefficients:

$$
\begin{align*}
& B_{60}(1 S)=-61.6(3) \pm 15 \%, \tag{19a}\\
& B_{60}(2 S)=-53.2(3) \pm 15 \%, \tag{19b}
\end{align*}
$$

and to the following corrections to transition frequencies

$$
\begin{align*}
& \delta \nu(1 S)=-6.20(93) \mathrm{kHz} \tag{20a}\\
& \delta \nu(2 S)=-0.67(10) \mathrm{kHz} \tag{20b}
\end{align*}
$$

In the foreseeable future, we may expect to have results from a direct numerical calculation of the two-loop
self-energy at low Z. In addition to improving our knowledge of the Lamb shift at low Z, the obtained result will then serve as a consistency check between two different approaches to bound-state QED.

With the results obtained in Eqs. (19a) and (19b), we are in a position to present theoretical predictions for the Lamb shifts of $1 S$ and $2 S$ states. Based on the former result obtained in [18] and the corrections calculated in this work, we obtain

$$
\begin{align*}
& \nu_{L}(1 S)=8172811(32)(2) \mathrm{kHz} \tag{21a}\\
& \nu_{L}(2 S)=1045005(4) \mathrm{kHz} \tag{21b}
\end{align*}
$$

where the first error comes from the current uncertainty in the proton charge radius r_{p}, and the second one is a rough estimate of uncalculated terms: b_{H}, b_{VP}, as well as higher-order two-loop corrections denoted by dots in Eq. (3), and the three-loop binding correction C_{50} (for a recent evaluation of C_{40}, see Ref. [22]). Theoretical predictions for the $1 S$ state agree well with the experimental value of the combined result from the Garching and the Paris groups [3,4,23]:

$$
\begin{equation*}
\nu_{L}(1 S)_{\exp }=8172840(22) \mathrm{kHz} \tag{22}
\end{equation*}
$$

Since the uncertainty coming from the proton structure dominates theoretical uncertainties for the Lamb shift in hydrogen, an experiment at the Paul Scherrer Institute (PSI) is currently being pursued to make a precise measurement of r_{p} from the Lamb shift in muonic hydrogen [24]. This system is much more sensitive to the proton charge radius. Once it is measured, the combined hydrogen and muonic Lamb shift will test QED at a precision level of 10^{-7}.

This work was supported in part by the research grant from European Commission under Contract No. HPRI-CT-2001-50034. U. D. J. wishes to acknowledge helpful conversations with P. J. Mohr and J. Sims.
[1] H. A. Bethe, Phys. Rev. 72, 339 (1947).
[2] M. I. Eides, H. Grotch, and V. A. Shelyuto, Phys. Rep. 342, 63 (2001).
[3] Th. Udem et al., Phys. Rev. Lett. 79, 2646 (1997).
[4] C. Schwob et al., Phys. Rev. Lett. 82, 4960 (1999).
[5] P. J. Mohr, Ann. Phys. (N.Y.) 88, 26 (1974); 88, 52 (1974).
[6] U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. Lett. 82, 53 (1999).
[7] W. E. Caswell and G. P. Lepage, Phys. Lett. 167B, 437 (1986).
[8] V. M. Shabaev, Phys. Rev. A 57, 59 (1998).
[9] H. Person et al., Phys. Rev. A 54, 2805 (1996).
[10] S. Mallampalli and J. Sapirstein, Phys. Rev. Lett. 80, 5297 (1998); Phys. Rev. A 57, 1548 (1998).
[11] I. Goidenko et al., Phys. Rev. Lett. 83, 2312 (1999).
[12] V. A. Yerokhin, P. Indelicato, and V. M. Shabaev, Phys. Rev. Lett. 91, 073001 (2003).
[13] K. Pachucki, Phys. Rev. Lett. 72, 3154 (1994).
[14] G.W. Erickson and D. R. Yennie, Ann. Phys. (N.Y.) 35, 271 (1965); 35, 447 (1965).
[15] G.W. Erickson, Phys. Rev. Lett. 27, 780 (1971).
[16] J. Sapirstein, Phys. Rev. Lett. 47, 1723 (1981).
[17] K. Pachucki, Ann. Phys. (N.Y.) 226, 1 (1993).
[18] K. Pachucki, Phys. Rev. A 63, 042503 (2001).
[19] S. Salomonson and P. Öster, Phys. Rev. A 40, 5559 (1989).
[20] U. D. Jentschura, J. Phys. A 36, L229 (2003).
[21] Concerning logarithmic two-loop vacuum-polarization effects [18]: The contribution of the two-loop self-energy diagrams to B_{61} for the $1 S$ state reads 49.7, and the diagrams that involve a closed fermion loop amount to 0.6 . Concerning the one-loop higher-order binding correction $A_{60}(1 S)$ (analog of B_{60}) as an example: The result for $1 S$ is $-30.92415(1)$ (see Refs. [6,17]). This is the sum of a contribution due to low-energy virtual photons of -27.3 [[17], Eq. (5.116)], and a high-energy term of about -3.7 [[17], Eq. (6.102)].
[22] K. Melnikov and T. v. Ritbergen, Phys. Rev. Lett. 84, 1673 (2000).
[23] B. de Beauvoir et al., Eur. Phys. J. D 12, 61 (2000).
[24] F. Kottmann et al., Hyperfine Interact. 138, 55 (2001).

