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Current experiments do not exclude the possibility that one ormore neutrinos are very slightly superluminal or that they have a very
small tachyonic mass. Important bounds on the size of a hypothetical tachyonic neutrinomass term are set by lepton pair Čerenkov
radiation (LPCR), that is, by the decay channel ] → 𝑒

+

𝑒
−], which proceeds via a virtual𝑍0 boson. Here, we use a Lorentz-invariant

dispersion relation which leads to very tight constraints on the tachyonic mass of neutrinos; we also calculate decay and energy loss
rates. A possible cutoff seen in the IceCube neutrino spectrum for 𝐸] > 2PeV, due to the potential onset of LPCR, is discussed.

1. Introduction

The early arrival of a neutrino burst from the 1987A super-
nova [1] still motivates speculations about a possible superlu-
minal nature of neutrinos, even if it is generally assumed that
the delay in the arrival of electromagnetic radiation (light)
is caused by the time the shock wave from the core collapse
needs in order to reach the surface of the exploding star. If
neutrinos are ever so slightly superluminal, then they may
emit Čerenkov radiation in the form of light lepton pairs.
In this paper, we attempt to answer three questions: (i) How
would the energy threshold for the decay channel ] → 𝑒

+
𝑒
−]

(lepton pair Čerenkov radiation, LPCR) have to be calculated
if we assume a strictly Lorentz-covariant, space-like disper-
sion relation for the relevant neutrino flavor eigenstate? (ii)
How would the decay rate and the energy loss rate have to be
calculated under this assumption? Can the tachyonic Dirac
equation [2–5] and its bispinor solutions [6, 7] be used in that
context? (iii) What implications could be derived for astro-
physics under the assumption that a possible cutoff seen by
IceCube for neutrinos with energies 𝐸] > 2PeV is confirmed
by future experiments?

Theoretical arguments can be useful in restricting
the possible degree of superluminality of neutrinos and

maximum attainable neutrino velocities [8–10]. In [8, 9], a
Lorentz-noncovariant dispersion relation 𝐸] = |�⃗�|V] was
used, where V] > 𝑐 is a constant parameter. This assumption
leads to an energy-dependent effective “mass” square 𝐸

2

] −

�⃗�

2

≈ 𝐸
2

](V
2

] − 1)V−2] ≡ 𝑚
2

eff . The effective mass 𝑚eff =

𝐸]√V2] − 1V−1] then grows linearly with the neutrino energy.
(Natural units with ℏ = 𝑐 = 𝜖

0
= 1 are used in this paper,

yet we shall include explicit factors of 𝑐when indicated by the
context.) Indeed, at the time, a best fit to the available exper-
imental neutrino mass data including the initial OPERA
claim [11] suggested the conceivable existence of an “energy-
dependent mass” of the neutrino, as evidenced in Figure 1

of [12]. The choice of the relation 𝐸] = |�⃗�|V] made in [8]
was consistent with the need to model the initial OPERA
claim [11] and is perfectly compatible with the concept
of perturbative Lorentz breaking terms in the neutrino
sector [9]. A Dirac-type equation leading to the Lorentz-
noncovariant dispersion relation used byCohen andGlashow
[8] can be obtained [9] from the current operator given in
Eq. (2) of [13] upon a particular choice of 𝑐𝜇] parameters in
the generalized fermionic current operator (in the notation
adopted in [13]). Then, assuming a constant neutrino speed
V] > 𝑐, one can effectively describe the apparent absence of
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energy dependence of the deviation of the neutrino speed
from the speed of light V] ≈ const. ≳ 𝑐 (in the range 5GeV <

𝐸] < 50GeV), according to the (falsified) initial claim made
by OPERA [11], while remaining compatible with the frame-
work of perturbative Lorentz breaking [13].

However, while there are advantages to assuming a
Lorentz-noninvariant dispersion relation for superluminal
neutrinos (such as the preservation of the timelike positive
quantity 𝐸

2

] − �⃗�

2

> 0), there are also a number of disadvan-
tages. For example, if the dispersion relation 𝐸] = |�⃗�|V] holds
in one particular Lorentz frame, then, under a Lorentz boost,
in general, one has 𝐸



] ̸= |�⃗�



|V] in the moving frame [8, 9].
In order to illustrate the consequences of Lorentz noncovari-
ance, let us consider a boost along positive 𝑧-axis into a frame
which moves with velocity 𝑢 = 𝑐

2
/V] < 𝑐. A particle moving

along positive 𝑧-axis of the lab frame with four-momentum
𝑝
𝜇

= (|�⃗�|V], |�⃗�|�̂�
𝑧
) is mapped onto 𝑝

𝜇
= (|�⃗�|√V2] − 1,

⃗
0) and

thus is “at rest” in the moving frame. However, the general
dispersion relation in the moving frame,

𝐸



] = −

𝑝


𝑧

2V]
−

(𝑝
2

𝑥
+ 𝑝
2

𝑦
+ 𝑝
2

𝑧
) V]

2𝑝


𝑧

(𝑝



𝑧
̸= 0) , (1)

is much more complicated. (Throughout this paper, we
denote the spatial components of the four-vector𝑝𝜇 = (𝐸], �⃗�)

by �⃗� and keep |�⃗�| explicitly in order to avoid confusion
between 𝑝

2
= 𝑝
𝜇
𝑝
𝜇
and 𝑝

2
̸= �⃗�

2.)
An alternative, commonly accepted dispersion relation

for so-called tachyons (these are space-like, faster-than-light
particles described by a Lorentz-invariant wave equation)
reads as 𝐸

2

] = �⃗�

2

− 𝑚
2

] ; that is, it is the “normal” dispersion
relation with the negative sign of the mass square term (see
[2–7, 14–23]). Here, we calculate the threshold energy and
the decay rate under the assumption of a Lorentz-invariant
dispersion relation for the neutrino.We find that the alternate
dispersion relation imposes tight restrictions on superlumi-
nality and has important phenomenological implications for
neutrino masses.

2. Dispersion Relations and Thresholds

For tachyonic particles, starting from the pioneering work
of Sudarshan et al. [14–16], continuing with the works of
Feinberg [17, 18], and including the tachyonic neutrino
hypothesis [2–6, 19–23], the following dispersion relation has
been assumed for the tachyonic (space-like) solutions:

𝐸] = 𝛾]𝑚],





�⃗�]





= 𝛾]𝑚]V],

(2a)





�⃗�]





= 𝐸]V],

𝑝

𝜇

𝑝
𝜇
= 𝐸

2

] − �⃗�

2

] = −𝑚

2

] ,
(2b)

where we use the suggestive subscript ] for “neutrino.”These
relations imply that |�⃗�| = 𝐸]V] instead of 𝐸] = |�⃗�|V].
Here, the tachyonic Lorentz factor appears, which is 𝛾] =

ee

p2 p4p3

p1

�

�

Z0

Figure 1: Conventions for tachyonic neutrino decay.

1/√V2] − 1. Tachyonic and tardyonic dispersion relations are
unified upon assuming an imaginary value for 𝑚 in the
tachyonic case (starting from the tardyonic case, one has 𝐸 =

𝑚/√1 − V2 → i𝑚/√1 − V2 = 𝑚/√V2 − 1, where the latter
equation holds for tachyons).With the standard definitions of
�⃗� and 𝐸], one has |�⃗�]| = 𝛾]𝑚V] = 𝐸]V] for both tardyons and
tachyons.

In order to obtain the threshold energy for the LPCR
decay ] → 𝑒

+
𝑒
−], we use the following conventions (see

Figure 1), inspired by Chap. 10 of [24], and define 𝐸
1

=

√�⃗�

2

1
− 𝑚
2

] and 𝐸
3
= √�⃗�

2

3
− 𝑚
2

] as the oncoming and outgoing
neutrino energies, with 𝑞 = (𝐸

1
, �⃗�
1
)− (𝐸
3
, �⃗�
3
) being the four-

momentum of 𝑍0. Pair production threshold is reached for
𝑞
2
= 4𝑚
2

𝑒
and cos 𝜃 =

→

𝑝
1
⋅

→

𝑝
3
/(|�⃗�
1
||�⃗�
3
|) = 1. For collinear geo-

metry, with all momenta pointing along 𝑧-axis, we have

𝑞

2

= (√𝑝
2

1𝑧
− 𝑚
2

] − √𝑝
2

3𝑧
− 𝑚
2

])
2

− (𝑝
1𝑧

− 𝑝
3𝑧
)

2

= 4𝑚

2

𝑒
.

(3)

Furthermore, threshold obviously requires 𝐸
3

= 0. (This is
possible for tachyonic particles, when |�⃗�

3
| = 𝑝
3𝑧

= 𝑚]. In this
limit, the tachyonic particle becomes infinitely fast and loses
all of its energy, which implies that it is impossible to detect it
[25]. The counterintuitive loss of energy for tachyons under
acceleration is a consequence of standard tachyonic kinemat-
ics [2, 6, 7, 14–18, 26–28].) When the relations 𝐸

3
= 0 and

|�⃗�
3
| = 𝑝
3𝑧

= 𝑚] are substituted into (3), this yields

𝑝

2

1𝑧
− 𝑚

2

] − (𝑝
1𝑧

− 𝑚])
2

= 4𝑚

2

𝑒
. (4)

Identifying 𝑝
1𝑧

= |�⃗�|th with the threshold momentum, one
easily finds





�⃗�




th =

2𝑚
2

𝑒

𝑚]
+ 𝑚]. (5)

The threshold energy is then easily found as

𝐸th =
√

�⃗�

2

th − 𝑚
2

] = 2

𝑚
𝑒

𝑚]
√𝑚
2

𝑒
+ 𝑚
2

] ≈ 2

𝑚
2

𝑒

𝑚]
. (6)
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Because we are using a tachyonic dispersion relation, the
threshold energy can be expressed as a function of only
the mass parameters. Larger tachyonic masses 𝑚] lead to
lower threshold energies. In view of the tachyonic dispersion
relation 𝑚] = 𝐸th√V2th − 1, where Vth is the neutrino velocity
at threshold, wemay convert the threshold energy into a func-
tion of the electron mass and the neutrino threshold velocity.
For given 𝐸], the limit 𝑚] ≪ 𝑚

𝑒
is equivalent to the limit

V2th −1 = 𝛿th → 0 because𝑚] = 𝐸]√𝛿th. In this limit, we have

𝐸th ≈ 2

𝑚
2

𝑒

𝑚]
= 2

𝑚
2

𝑒

𝐸th√V2th − 1

⇒ 𝐸th ≈

√2𝑚
𝑒

(V2th − 1)

1/4
. (7)

Substituting the exact dispersion relation into the threshold
condition𝐸th = 2(𝑚

𝑒
/𝑚])√𝑚

2

𝑒
+ 𝑚
2

] , and solving for𝐸th, one
obtains

𝐸th = √2𝑚
𝑒
(1 +

Vth
√V2th − 1

)

1/2

=

{
{
{

{
{
{

{

√2𝑚
𝑒

𝛿
1/4

th

𝛿th ≪ 1

2𝑚
𝑒
+

𝑚
𝑒

4𝛿th
𝛿th ≫ 1.

(8)

The exact expression (8) confirms (7) in the limit 𝛿] ≪

1, which corresponds to the phenomenologically impor-
tant limit of high-energy neutrinos. Smaller values of 𝛿th
(approaching zero) correspond to smaller tachyonic neu-
trino masses and therefore to larger threshold energies. For
given neutrino speed Vth, neutrinos with energy 𝐸th (or
larger), under the hypothetical assumption of the tachyonic
dispersion relation, have a tachyonic neutrino mass term
large enough to make the decay via LPCR kinematically
possible. Expressed differently, the tachyonic mass term𝑚] =

𝐸th√V2th − 1 in this case is large enough to lead to LPCR decay
at energy 𝐸th, according to (6).

3. Decay Rate and Timelike Noncovariant
Dispersion Relation

Given the complexities of calculating the decay rate due to
LPCR using a tachyonic dispersion relation, it is extremely
useful to first discuss the case of a Lorentz-noncovariant form
𝐸] = |�⃗�|V], using lab frame variables. For collinear incoming
and outgoing neutrinos, threshold for pair production is
reached at 𝑞2 = (𝐸

1
−𝐸
3
)
2

−(𝑝
1𝑧

−𝑝
3𝑧
)
2

= (𝑝
1𝑧

−𝑝
3𝑧
)
2

(V2]−1) =

4𝑚
2

𝑒
, from which one derives (setting �⃗�

3
=

⃗
0) the following

threshold values (in agreement with [8]):





�⃗�
1




th =

2𝑚
𝑒

√V2] − 1

,

(𝐸
1
)th =

2𝑚
𝑒
V]

√V2] − 1

.

(9)

Here, 𝐺
𝐹
is Fermi’s coupling constant and 𝑢 and V are the

standard fundamental positive-energy and negative-energy
bispinor solutions of the Dirac equation [29]. The invariant
matrix element is

M =

𝐺
𝐹

√2

[𝑢 (𝑝
3
) 𝛾
𝜆
(1 − 𝛾

5

) 𝑢 (𝑝
1
)]

× [𝑢 (𝑝
4
) (𝑐
𝑉
𝛾
𝜆
− 𝑐
𝐴
𝛾
𝜆
𝛾

5

) V (𝑝
2
)] .

(10)

Here, 𝑐
𝑉

≈ 0, and 𝑐
𝐴

≈ −1/2 [see Eq. (5.57) on p. 153 of
[30]]. Following [9], we nowmake the additional assumption
that the functional form of the projector sum over the spin
orientations remains the same as for the ordinary Dirac
equation even if the underlying dispersion relation is Lorentz-
noncovariant (for a general discussion on such models, see
[31, 32]). In this case, the sum over final state and the
averaging over the initial spins leads to (1/2)∑spins |M|

2
=

64𝐺
2

𝐹
(𝑝
1
⋅ 𝑝
2
)(𝑝
3
⋅ 𝑝
4
). This enters the lab frame expression

for the decay rate [33]:

Γ =

1

2𝐸
1

∫

d3𝑝
3

(2𝜋)
3

2𝐸
3

(∫

d3𝑝
2

(2𝜋)
3

2𝐸
2

∫

d3𝑝
4

(2𝜋)
3

2𝐸
4

× (2𝜋)

4

𝛿

(4)

(𝑝
1
− 𝑝
3
− 𝑝
2
− 𝑝
4
) [

1

2

∑

spins
|M|

2

])

=

𝐺
2

𝐹

12𝜋
4
(2𝐸
1
)

∫

d3𝑝
3

2𝐸
3

(𝑝
1
⋅ 𝑝
3
𝑞

2

+ 2 (𝑝
1
⋅ 𝑞) (𝑝

3
⋅ 𝑞)) ,

(11)

where 𝑞 = 𝑝
1
− 𝑝
3
. The azimuthal symmetry suggests the

use of cylindrical coordinates. The domain of integration
contains, for given 𝑝

1
= (𝑝
1𝑧
V], 0, 0, 𝑝1𝑧), all permissible �⃗�

3
=

𝑝
3𝜌

�̂�
𝜌
+ 𝑝
3𝑧
�̂�
𝑧
, where 𝑝

𝜇

3
= (|�⃗�
3
|V], �⃗�3). With 𝐸] = |�⃗�|V], the

momentum transfer is

𝑞

2

= − (𝑝
1𝑧

− 𝑝
3𝑧
)

2

− 𝑝

2

3𝜌
+ (𝑝
1𝑧

− √𝑝
2

3𝜌
+ 𝑝
2

3𝑧
)

2

V2] , (12)

where we require 𝑞
2

> 4𝑚
2

𝑒
≈ 0. Solving (12) for 𝑝

3𝜌
, one

obtains the boundary of the region of permissible �⃗�
3
vectors.

An example is given in Figure 2(a) in the formof a “sharpened
ellipsoid” with “sharp” top near 𝑝

3𝜌
→ 0, 𝑝

3𝑧
→ 𝑝
1𝑧
, and a

“rounded” bottom with 𝑝
3𝜌

→ 0, and 𝑝
3𝑧

→ −[(V] − 1)/(V] +
1)]𝑝
1𝑧
. After somewhat tedious integration over the allowed

�⃗�
3
vectors, one obtains

Γ =

𝐺
2

𝐹

2688𝜋
3

𝑝
5

1𝑧
𝛿
3

]

V]
≈

1

14

𝐺
2

𝐹
𝐸
5

]𝛿
3

]

192𝜋
3

d𝐸]

d𝑥
≈ −

𝐺
2

𝐹

96𝜋
4
(2𝐸])

∫

𝑞
2
>0

d3𝑝
3

2𝐸
3

(𝐸] − 𝐸
3
)

× [(𝑝
1
⋅ 𝑝
3
) 𝑞

2

+ 2 (𝑝
1
⋅ 𝑞) (𝑝

3
⋅ 𝑞)]

= −

𝐺
2

𝐹

86016𝜋
3

𝑝
6

1𝑧
𝛿
3

]

V]
≈ −

25

448

𝐺
2

𝐹
𝐸
6

]𝛿
3

]

192𝜋
3

,

(13)
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Figure 2: (a) Region of allowed outgoing momenta �⃗�
3
for the decay of an incoming superluminal neutrino with 𝐸] = |�⃗�|V]. The neutrino

is incoming along positive 𝑧-axis (𝑝
1𝑧

= 15). The boundary of allowed �⃗�
3
vectors constitutes a distorted ellipsoid with a “sharpened tip,”

obtained as a solution of setting 𝑞
2

= 0 in (12). (b) Region of allowed �⃗�
3
vectors for an incoming tachyonic neutrino with 𝑝

1𝑧
= 62 and

−𝑚
2

] = −(0.2)

2, producing an electron-positron pair of mass 𝑚
𝑒

= 1 (dispersion relation 𝐸] = √�⃗�

2

] − 𝑚
2

]). Final wave vectors |�⃗�
3
| < 𝑚]

correspond to evanescent waves and are thus to be excluded [6].

for the energy loss per unit length, confirming the results
given in Eq. (2) andEq. (3) of [8] and in [9].This confirmation
of the results given in [8] (under the assumptions made in
the cited paper, namely, the dispersion relation 𝐸] = |�⃗�|V]),
but using a differentmethod, namely, phase-space integration
directly in the laboratory frame, encourages us to apply the
same method to the calculation of the tachyonic neutrino
decay rate, where the use of the laboratory frame is indis-
pensable.The confirmation also underlines the consistency of
the theoretical formalism under a change of the assumptions
made in the calculation.

4. Decay Rate and Space-Like Covariant
Dispersion Relation

For an incoming tachyon, the particle state (space-like
neutrino) may transform into an antiparticle state upon
Lorentz transformation, and its trajectory may reverse the
time ordering (see Figure 3). Thus, the interpretation of a
tachyonic neutrino state as a particle or antiparticle may
depend on the frame of reference, andwe should calculate the
process directly in the lab frame. The necessity to transform
certain tachyonic particle field operators into antiparticle
operators under Lorentz boosts has been stressed in [6, 17,
18]. Incoming and outgoing states are required to be above-
threshold positive-energy states in the lab frame (causality
and tachyonic trajectories are discussed in [2, 14–18] and
Appendix A.2 of [34]).

t
t

� = c

1

2 3

t1
t2
t3

x

x

t1

t2 = t3 > t1

Figure 3: The world line 1 → 2 → 3 describes the tachyonic
neutrino decay into a zero-energy, infinitely fast neutrino. Complete
reversal of the time ordering of the decay process takes place in the
primed frame; the observer interprets the process as the decay of an
incoming antineutrino along the trajectory 3 → 2 → 1.

We consider the matrix element

M =

𝐺
𝐹

√2

[𝑢

T
(𝑝
3
) 𝛾
𝜆
(1 − 𝛾

5

) 𝑢

T
(𝑝
1
)]

× [𝑢 (𝑝
4
) (𝑐
𝑉
𝛾

𝜆

− 𝑐
𝐴
𝛾

𝜆

𝛾

5

) V (𝑝
2
)] .

(14)
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Here, 𝑢T
(𝑝
1
) and 𝑢

T
(𝑝
3
) are Dirac spinor solutions of the

tachyonic Dirac equation [6, 7]. The bar denotes the Dirac
adjoint. In the helicity basis (see Chap. 23 of [35] and [6, 7]),
these are given by

𝑢

T
±

(𝑝) = (

√




�⃗�





± 𝑚𝑎
±
(�⃗�)

±√




�⃗�





∓ 𝑚𝑎
±
(�⃗�)

) , (15)

where 𝑎
±
(�⃗�) are the fundamental helicity spinors (see p. 87 of

[29]). Following [6, 7, 19], we use the tachyonic sum rule of
the fundamental tachyonic bispinor solutions [see Eq. (34a)
of [6]]:

∑

𝜎

(−𝜎) 𝑢

T
𝜎

(𝑝) ⊗ 𝑢

T
𝜎

(𝑝) 𝛾

5

= �𝑝 − 𝛾

5

𝑚, (16)

where 𝑝 = (𝐸, �⃗�) is the four-momentum and 𝜎 is a helicity
quantumnumber.We refer to [6, 7] for a thoroughdiscussion;
roughly speaking, factor (−𝜎) in (16) restores the correct sign
in the calculation of the time-ordered product of tachyonic
field operators (the propagator) for the contribution of all
virtual degrees of freedom of the tachyonic field [see Eqs.
(46)–(57) and Eq. (73)–(75) of [7]]. 𝛾

5 matrix in (16) is a
part of the natural Dirac “adjoint” for the tachyonic spinor.
Namely, the adjoint equation to the tachyonicDirac equation,
(i𝛾𝜇𝜕
𝜇
−𝛾
5
𝑚)𝜓(𝑥) = 0, reads as [𝜓(𝑥)𝛾

5
](i𝛾𝜇 ⃖

𝜕
𝜇
−𝛾
5
𝑚)𝜓(𝑥) =

0. As explained in Eqs. (73)–(75) of [17], right-handed particle
states and left-handed antiparticle states (those with the
“wrong” helicity) are excluded from the physical spectrum of
the tachyonic field by aGupta-Bleuler condition; these cannot
contribute to the oncoming and outgoing neutrino states in
Figure 1 [while they do contribute to the virtual states, that is,
the propagator; see Eqs. (46)–(57) of [7]]. Both the incoming
and the outgoing neutrinos in Figure 1 are real rather than
virtual neutrinos.Hence, in order to calculate the LPCRdecay
rate, we use the modified sum over tachyonic spinors:

̃

∑

𝜎

𝑢

T
𝜎

(𝑝) ⊗ 𝑢

T
𝜎

(𝑝) = (1 + 𝛾

5

�𝜏���̂�) (�𝑝 − 𝛾

5

𝑚]) 𝛾

5

, (17)

where 𝜏 = (1, 0, 0, 0) is a timelike unit vector, �̂� = �⃗�/|�⃗�| is
the unit vector in �⃗� direction, and upon promotion to a four-
vector, we have �̂�

𝜇

= (0, �̂�), so that 1 + 𝛾
5

�𝜏���̂� = 1 −
⃗

Σ ⋅ �⃗�/|�⃗�|

becomes a left-handed helicity projector.
We thus calculate with an incoming, positive-energy, left-

helicity tachyonic neutrino. One obtains the modified sum
over spins ̃

∑spins in the matrix element:

̃

∑

spins
|M|

2

=

𝐺
2

𝐹

2

Tr [1

2

(1 + 𝛾

5

�𝜏���̂�3) (�𝑝3 − 𝛾

5

𝑚])

⋅ 𝛾

5

𝛾
𝜆
(1 − 𝛾

5

)

1

2

(1 + 𝛾

5

�𝜏���̂�1) (�𝑝1 − 𝛾

5

𝑚])

⋅ 𝛾

5

𝛾] (1 − 𝛾

5

)]𝐾

𝜆𝜌

.

(18)

Here, 𝐾𝜆𝜌 = Tr[(�𝑝4 + 𝑚
𝑒
)(𝑐
𝑉
𝛾
𝜆
− 𝑐
𝐴
𝛾
𝜆
𝛾
5
)(�𝑝2 + 𝑚

𝑒
)(𝑐
𝑉
𝛾
𝜌
−

𝑐
𝐴
𝛾
𝜌
𝛾
5
)] is the familiar trace from the outgoing fermion

pair. The decay rate is given by (11) under the replacement
(1/2)∑spins |M|

2
→

̃
∑spins|M|

2. The integrals over the mom-
enta of the outgoing fermion pair (d3𝑝

2
and d3𝑝

4
) are done

using (𝑝2
2
= 𝑝
2

4
= 𝑚
2

𝑒
). Consider

𝐽
𝜆𝜌

(𝑞) = ∫

d3𝑝
2

2𝐸
2

∫

d3𝑝
4

2𝐸
4

𝛿

(4)

(𝑞 − 𝑝
2
− 𝑝
4
) (𝑝
2𝜆

𝑝
4𝜌

)

=

𝜋

24

√1 −

4𝑚
2

𝑒

𝑞
2

[𝑔
𝜆𝜌

(𝑞

2

− 4𝑚

2

𝑒
)

+ 2𝑞
𝜆
𝑞
𝜌
(1 +

2𝑚
2

𝑒

𝑞
2

)] .

(19)

It remains to analyze the domain of allowed �⃗�
3
vectors [see

the “cupola structure” in Figure 2(b)], which is defined by the
requirement 𝑞2 > 4𝑚

2

𝑒
, for 𝑝

𝜇

1
= (√𝑝

2

1𝑧
− 𝑚
2

] , 0, 0, 𝑝1𝑧). The

dispersion relation 𝐸] = √�⃗�

2

] − 𝑚
2

] implies that

𝑞

2

= 2 (√𝐸
2

1
+ 𝑚
2

]√𝐸
2

3
+ 𝑚
2

] cos 𝜃 − 𝐸
1
𝐸
3
− 𝑚

2

]) . (20)

Here, 𝜃 is the polar angle in spherical coordinates:

𝑝

𝜇

3
= (𝐸
3
,





�⃗�
3





sin 𝜃 cos𝜑,





�⃗�
3





sin 𝜃 sin𝜑,





�⃗�
3





cos 𝜃) . (21)

Pair production threshold is reached, for given 𝐸
1
and 𝐸

3
, by

solving (20) for 𝑢 = cos 𝜃, setting 𝑞
2
= 4𝑚
2

𝑒
. After somewhat

tedious integration over the allowed �⃗�
3
vectors (no masses

can be neglected), one obtains

Γ =

{
{
{

{
{
{

{

𝐺
2

𝐹
𝑚
6

]

128𝜋
3
𝑚
2

𝑒

(𝐸] − 𝐸th)
2

𝐸th
𝐸] >

≈

𝐸th

𝐺
2

𝐹
𝑚
4

]

288𝜋
3
𝐸] 𝐸] ≫ 𝐸th,

(22a)

for the decay rate, and

d𝐸]

d𝑥
=

{
{
{

{
{
{

{

𝐺
2

𝐹
𝑚
5

]

64𝜋
3

(𝐸] − 𝐸th)
2

𝐸th
𝐸] >

≈

𝐸th

𝐺
2

𝐹
𝑚
4

]

144𝜋
3
𝐸
2

1
𝐸] ≫ 𝐸th,

(22b)

for the energy loss rate. In the high-energy limit, one may
(somewhat trivially) rewrite the expressions as follows (𝑚] =

𝐸
1
√𝛿]):

Γ =

𝐺
2

𝐹
𝐸
5

]𝛿
2

]

288𝜋
3

,

d𝐸]

d𝑥
=

𝐺
2

𝐹
𝐸
6

]𝛿
2

]

144𝜋
3

,

𝐸] ≫ 𝐸th.

(23)

These results confirm that it is possible to use the tachyonic
bispinor formalism [2–7] for the calculation of decay rates of
tachyonic particles.
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5. Constraints on the Mass of
a Tachyonic Neutrino

Our threshold relation (8) is based on a Lorentz-covariant
dispersion relation. Only neutrinos with 𝐸] < 𝐸th =

√2𝑚
𝑒
/𝛿
1/4

th survive the possibility of generalized leptonic
Čerenkov radiation over a sufficiently long path length. The
hypothetical observation of an absence of neutrinos above
some energy 𝐸th could thus be interpreted as a constraint on
the neutrino mass. Let us assume a neutrino mass of 𝑚] =

𝑋 eV, where 𝑋 is generally assumed to be of order unity or
less. Then, threshold is reached for 𝑚] = 𝑋 eV, 𝛿th = 3.67 ×

10
−24

𝑋
4, and 𝐸th = (522/𝑋)GeV.

The IceCube experiment [36, 37] has observed 37 neu-
trinos having energies 𝐸] > 10TeV during 3 years of data
taking.Three of these events had energies𝐸] > 1PeV, and one
(often referred to as “Big Bird”) had 𝐸] = (2.004±0.236) PeV.
According to the IceCube collaboration [37], the spectrum of
the 37 neutrinos is well fitted by a slope ∼ 𝐸

−2

] , which includes
astrophysical as well as background atmospheric neutrinos,
the latter being exclusively below 0.4PeV. However, their best
fit to the spectrum predicts 3.1 additional events for 𝐸] >

2PeV, and yet nonewere seen. Preliminary data for the fourth
year includes 17 additional events, with none seen for 𝐸] >

1PeV [38].These facts suggest to the IceCube authors [36, 37]
the possibility that there may be a cutoff for the spectrum for
neutrinos above 𝐸 ≈ 2PeV. The hypothesis is given further
support by models which show that the Glashow resonance
[39] (resonant ]

𝑒
𝑒
−
→ 𝑊
−
→ anything) should add between

zero and three times the number of events that appear in the
interval 1PeV < 𝐸] < 2PeV as part of a broad peak centered
around 6.3PeV [40].While evidence for the cutoff is disputed
and alternative explanations have been proposed [41], the
significance of such a cutoff has been analyzed in the light of
superluminal neutrinos [42, 43].

Let us add a few clarifying remarks here. First, we note
that the plots in the paper [37] refer to the neutrino flux as
a function of neutrino energy; the events were apparently
sufficiently well reconstructed so that no excess neutrino
energy in addition to the energy deposited inside the detector
is expected. Our Figure 4 is based on Figure 4 of [37]. Mean-
while, members of the IceCube collaboration have presented
preliminary evidence for a throughgoing muon of energy ≥

(2.6± 0.3) PeV which could be interpreted as a decay product
of a neutrino of even higher energy [44, 45]. If the throughgo-
ing muon could indeed be assigned to an ultra-high-energy
neutrino of nonatmospheric origin, then it would push the
conceivable cutoff seen by IceCube to even higher energies,
further constraining the tachyonic mass term of the relevant
neutrino flavor. So far, the authors of [37] (see the right
column on page 4 of [37]) observe that “this [the lack of high-
energy events] may indicate, along with the slight excess in
lower energy bins, either a softer spectrum or a cutoff at high
energies.”

Assuming 𝐸th ≈ 2PeV we would find using (8) that 𝛿th =

(√2𝑚
𝑒
/𝐸th)
4

≈ 1.7 × 10
−38, and we would, furthermore, find

that𝑚] = √𝛿th𝐸th ≈ 0.00026 eV (i.e., −𝑚
2

] ≈ −6.8×10
−8 eV2)

for one or more of the three neutrino flavors (conceivably,
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Figure 4:Three years of data from the IceCube experiment showing
flux d𝑁]/d𝐸] multiplied by 𝐸

2

] plotted against the neutrino energy
𝐸]. The solid and dashed curves show what would be expected for
𝐸
−2

] power law for the flux, with 𝐸th = 2.5PeV threshold, and two
arbitrarily assumed values for the source distance, 𝐿 (dashed curve)
and 𝐿/2 (solid curve). The drop to zero above 𝐸th only occurs for
those neutrino flavors having a tachyonic mass consistent with a
2.5PeV threshold.

the one with the smallest absolute value of 𝑚
2

]). A shifted
cutoff [44, 45] of 𝐸th ≈ 3PeV would be consistent with a
tachyonic neutrino mass of 𝑚] = 0.00017 eV. One might
object that it is not possible to have one (or more) tachyonic
flavor masses (𝑚2 < 0) and satisfy both neutrino oscillation
data and the recent findings from cosmology for the sum of
the flavor masses; that is, Σ𝑚 ≈ 0.32 eV [46, 47]. However,
such consistency can be achieved using 3 active-sterile ±𝑚

2

(tardyon-tachyon) neutrino pairs [48].The curves in Figure 4
were generated using an assumed pure 𝐸

−2

] power law for
flux 𝑁 beyond the assumed threshold, 𝐸th. We then use our
d𝐸]/d𝑥 formula (22b) for 𝐸] > 𝐸th to find the modified 𝑁𝐸

2

]
spectrum. Good agreement is found with the IceCube data at
a threshold 𝐸th = 2.5PeV, although much more statistics will
be needed to determine if the cutoff is real.

6. Conclusions

Three main conclusions of the current investigation can be
drawn. (i) As described in Section 2, the assumption of a
Lorentz-covariant, tachyonic dispersion relation leads to tight
bounds on conceivable tachyonic neutrino mass terms, for
whatever neutrino flavor is causing the possible 2 PeV cutoff.
The tachyonic decay rate due to LPCR is most conveniently
calculated in the laboratory frame because of the space-
like kinematics involved in the process, which leads to a
nonunique time ordering of the trajectories, as discussed in
Section 4. (ii) We may apply the formalism of the tachyonic
bispinor solutions of the tachyonic Dirac equation [2–5]
recently developed in [6, 7, 19] to the calculation of the
tachyonic neutrino decay, as outlined in Section 4. (iii) A
comparison of recent IceCube data with the results for the
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calculated tachyonic decay rates reveals that a tachyonic neu-
trino could possibly explain a possible sharp cutoff in IceCube
data but only if the neutrino flavor involved has a very specific
tachyonic mass. In a more general context, the calculation
of tachyonic thresholds and decay rates based on Lorentz-
covariant dispersion relations could be of phenomenological
significance for string theories, some of which predict the
existence of tachyons [49, 50].The same is true for the precise
calculation of the tail of the beta decay spectrum, which is
influenced by a conceivably tachyonic neutrino mass term
[51].
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a tachyon,” Physics Letters B, vol. 150, no. 6, pp. 431–435, 1985.

[3] T. Chang, “A newDirac-type equation for tachyonic neutrinos,”
https://arxiv.org/abs/hep-th/0011087.

[4] T. Chang, “Parity violation and neutrino mass,” Nuclear Science
and Techniques/Hewuli, vol. 13, no. 3, pp. 129–133, 2002.

[5] T. Chang, “Parity violation and a preferred frame,” http://arxiv
.org/abs/quant-ph/0204002v1.

[6] U. D. Jentschura and B. J. Wundt, “Localizability of tachyonic
particles and neutrinoless double beta decay,” European Physical
Journal C, vol. 72, no. 2, pp. 1–13, 2012.

[7] U. D. Jentschura and B. J.Wundt, “From generalized dirac equa-
tions to a candidate for dark energy,” ISRN High Energy Physics,
vol. 2013, Article ID 374612, 21 pages, 2013.

[8] A. G. Cohen and S. L. Glashow, “Pair creation constrains super-
luminal neutrino propagation,” Physical Review Letters, vol.
107, no. 18, Article ID 181803, 2011.

[9] F. Bezrukov and H. M. Lee, “Model dependence of the
bremsstrahlung effects from the superluminal neutrino at
OPERA,” Physical Review D, vol. 85, no. 3, Article ID 031901,
2012.

[10] P. C.W. Davies and I. G.Moss, “Cosmological bounds on tachy-
onic neutrinos,” Astroparticle Physics, vol. 35, no. 10, pp. 679–
680, 2012.

[11] T. Adam, N. Agafonova, A. Aleksandrov et al., “The influence of
Earth rotation in neutrino speedmeasurements between CERN
and the OPERA detector,” 2011, http://arxiv.org/abs/1109.4897.

[12] F. Tamburini and M. Laveder, “Apparent Lorentz violation
with superluminal Majorana-tachyonic neutrinos at OPERA?”
Physica Scripta, vol. 85, no. 3, Article ID 035101, 2012.

[13] V. A. Kostelecky and R. Lehnert, “Stability, causality, and
Lorentz and CPT violation,” Physical Review D, vol. 63, Article
ID 065008, 2001.

[14] O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan,
“‘Meta’ relativity,” American Journal of Physics, vol. 30, pp. 718–
723, 1962.

[15] J. Dhar and E. C. G. Sudarshan, “Quantum field theory of
interacting tachyons,” Physical Review, vol. 174, no. 5, pp. 1808–
1815, 1968.

[16] O.-M. Bilaniuk and E. C. G. Sudarshan, “Causality and space-
like signals,” Nature, vol. 223, no. 5204, pp. 386–387, 1969.

[17] G. Feinberg, “Possibility of faster-than-light particles,” Physical
Review, vol. 159, no. 5, pp. 1089–1105, 1967.

[18] G. Feinberg, “Lorentz invariance of tachyon theories,” Physical
Review D, vol. 17, no. 6, pp. 1651–1660, 1978.

[19] U. D. Jentschura and B. J. Wundt, “Neutrino helicity reversal
and fundamental symmetries,” Journal of Physics G: Nuclear and
Particle Physics, vol. 41, no. 7, Article ID 075201, 2014.

[20] R. Ehrlich, “Implications for the cosmic ray spectrum of a
negative electron neutrino (mass)2,” Physical Review D, vol. 60,
no. 1, Article ID 017302, 4 pages, 1999.

[21] R. Ehrlich, “Is there a 4.5 PeV neutron line in the cosmic ray
spectrum?” Physical Review D—Particles, Fields, Gravitation
and Cosmology, vol. 60, Article ID 073005, 1999.

[22] R. Ehrlich, “Evidence for two neutrino mass eigenstates from
SN 1987A and the possibility of superluminal neutrinos,”Astro-
particle Physics, vol. 35, no. 10, pp. 625–628, 2012.

[23] R. Ehrlich, “Tachyonic neutrinos and the neutrino masses,”
Astroparticle Physics, vol. 41, pp. 1–6, 2013.

[24] D. Griffiths, Introduction to Elementary Particles, John Wiley &
Sons, New York, NY, USA, 1987.

[25] See the neutrino cross sections tabulated at http://cupp.oulu.fi/
neutrino/nd-cross.html.

[26] E. Recami, “Superluminal waves and objects: an overview of the
relevant experiments,” Journal of Physics: Conference Series, vol.
196, Article ID 012020, 2009.

[27] O.M.Bilaniuk, “Tachyons,” Journal of Physics: Conference Series,
vol. 196, no. 1, Article ID 012021, 2009.

[28] S. K. Bose, “Aspects of Tachyon theory,” Journal of Physics:
Conference Series, vol. 196, Article ID 012022, 2009.

[29] C. Itzykson and J. B. Zuber, Quantum Field Theory, McGraw-
Hill, New York, NY, USA, 1980.

[30] J. Horejsi, Fundamentals of Electroweak Theory, Karolinum
Press, Prague, Czech Republic, 2002.

[31] G. Rubtsov, P. Satunin, and S. Sibiryakov, “Calculation of cross
sections in Lorentz-violating theories,” Physical Review D, vol.
86, no. 8, Article ID 085012, 2012.

[32] V. A. Kostelecky and M. Mewes, “Neutrinos with Lorentz-
violating operators of arbitrary dimension,” Physical Review D,
vol. 85, no. 9, Article ID 096005, 2012.

[33] M. John, “Phase space and decay rates,” in Particle Basics, pp.
1–8, 2011.
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