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Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials

S. V. Novikov,1,2 D. H. Dunlap,2 V. M. Kenkre,2 P. E. Parris,3 and A. V. Vannikov1
1A. N. Frumkin Institute of Electrochemistry, Moscow, Russia

2Center for Advanced Studies, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131
3Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65401

(Received 26 May 1998)

The transport of photoinjected charges in disordered organic films is often interpreted using a
formula based on a Gaussian disorder model (GDM) that neglects spatial correlations due to charge-
dipole interactions, even though such correlations have recently been shown to explain the universal
electric field dependence observed in these systems. Based on extensive computer simulations of a 3D
disorder model that includes such correlations, we present a new formula for analyzing experiments that
accurately describes transport in these materials. [S0031-9007(98)07626-1]

PACS numbers: 73.50.Yg, 72.10.Bg, 72.80.Le

Recent efforts by a number of workers [1–7] have
increased our understanding of nearly universal features
of photoinjected charge transport in many disordered
organic materials, including molecularly doped polymers
[8,9], low molecular weight organic glasses [10,11], and
certain polyconjugated polymers [12,13]. In particular, it
is now recognized that the Poole-Frenkel (PF) dependence
[8–12],

m ~ expsg
p

E d , (1)

of the drift mobilitym on electric fieldE observed in these
materials results from slowly varying spatial fluctuations
in the potential energy of a charge migrating through the
material. Such energetic fluctuations can arise [1] from a
random distribution of molecules in the medium possess-
ing permanent electric dipole moments; a carrier’s inter-
action with the latter provides a significant contribution
Ud to the total site energy. More importantly, the energy
correlation function [1,3]

Csrd  kUds0dUdsrdl , s2
dayr (2)

decays very slowly with intersite separationr. Here,
sd  kU2

dl1y2 is the rms width of the dipolar energetic
disorder, anda is a minimal charge-dipole separation. In
a previous Letter [3], an analytical result equivalent to
(1) was derived for carriers diffusing along one spatial
dimension through a medium with correlations as in (2).
This same behavior was also observed in 3D charge
transport simulations [4]. Moreover, very recent studies
on both 1D and 3D systems suggest that this mechanism
producing PF behavior is stable under additional sources
of disorder less correlated than those that arise from
dipoles [5,6], and indicate that the PF factorg in (1)
is insensitive to all but the dipolar component of the
disorder.

These recent advances raise questions regarding the
way materials have been experimentally characterized in
the past. Most measurements in the last decade have
been interpreted using an uncorrelated Gaussian disorder
model, developed and extensively studied by Bässler and
co-workers prior to the recent recognition of the impor-

tance of spatial correlations [14]. In the GDM, transport
occurs through hops among localized states characterized
by a Gaussian distribution of site energies, with hopping
rates obeying an asymmetric detailed balance relation [14].
Numerical simulations capture well many features of ex-
periment; its Gaussian density of states (DOS) leads to
a temperature dependence lnm ~ 2sT0yT d2 routinely ob-
served, and the GDM reproduces low temperature transi-
tions between dispersive and nondispersive photocurrents.
However, site energies are distributedindependently,with
no correlations occurring over any length scale. Conse-
quently, and consistent with recent work, the field depen-
dence of the GDM agrees with (1) only over a very narrow
range at high fields (E . 3 3 105 Vycm) [15]. Nonethe-
less, the nondispersive mobility within this limited range
has often been empirically characterized in a form

m  m0 expf2s2ŝy3d2 1 Csŝ2 2 S2d
p

E g (3)

widely used in recent years to analyze experiment. In
Eq. (3),C is a constant determined from simulation,ŝ 
sykT is the width of the DOS relative tokT , and S

describes the spatial disorder. In analyzing data it is
usually assumed thatm0, s, andS completely characterize
any given material, withs representing the width of the
DOS due to all sources of energetic disorder. Values of
these three parameters have been obtained and tabulated
for many organic solids.

Although Eq. (3) does describe time-of-flight data, pro-
vided m0, s, andS are viewed simply as fitting parame-
ters, recent theoretical work casts doubt on whether thes

extracted from experiment using (3) represents the actual
width of the full DOS. In the 1D analysis of Ref. [3],
e.g., a particle moving in a correlated random potential of
width s is predicted to yield

m  m0 expf2ŝ2 1 2ŝ

q
eaEykT g . (4)

Use of (4) would lead to a different estimate ofs if
applied to data, and to a different dependence of the PF
factor on s and T . The use of Eq. (4) for analysis of
experimental data has been hindered by the reasonable
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doubt about its applicability to 3D case. Indeed, in 1D
case the transport path is always the same, while in 3D
case it is not fixed and, moreover, there is a possibility
that the dominant transport paths may change withE and
T in a way that would alter the essential field dependence.

Thus motivated, we have performed extensive numeri-
cal simulations on a simple 3Dcorrelateddisorder model
(CDM). The CDM shares some features with the GDM.
However, important differences exist that critically affect
the interpretation of experiment. Moreover, in contrast
to the GDM, essential transport properties of the CDM
are insensitive to the way detailed balance is included in
the hopping rate; the same PF field dependence occurs
with symmetric (“small polaronlike”) rates or asymmet-
ric (“Miller-Abrahams”) rates [16]. These and other re-
sults of the simulation verify essential predictions of 1D
analyses and quantify the relation between basic features
of measured mobilities and microscopic parameters that
govern them. On the basis of these simulations, detailed
below, we propose the following empirical relation

m  m0 exp

"
2

√
3ŝd

5

!2

1 C0

√
ŝ

3y2
d 2 G

!s
eaE
sd

#
,

(5)

describing nondispersive mobility in correlated (e.g.,
dipolar) media, whereC0  0.78, and G  2. In (5),
the parameterm0 may have additional temperature de-
pendence due to other less correlated sources of energy
disorder or polaron effects. Experience with the GDM
suggests thatG characterizes geometrical disorder and
thus should depend upon transport site concentration. We
now describe our numerical studies leading to Eq. (5), the
main result of the present Letter.

The CDM treats carrier hopping among sites arranged
on a cubic lattice of cell spacinga, but differs from
the GDM in the way site energies are determined. In
the current dipolar CDM, an independently and randomly
oriented dipole of momentp is placed at each lattice site,
and the energy of a carrier at a given site is then the sum
(calculated using the Ewald method [17])

Um  2
X

nfim

e $pn ? s$rn 2 $rmd
´j$rn 2 $rmj3

(6)

of its interaction with dipoles at all sites except its
own. The site energy distribution for this model has
been extensively studied, and shown to be approximately
Gaussian, with a width [18,19]

sd  2.35epy´a2. (7)

However, unlike the GDM, the many long-range contri-
butions comprising (6) introduce correlations in the dis-
tribution of site energies, making this a correlated version
of the GDM with the particular kind of correlations de-
scribed by (2).

Our numerical implementation of the dipolar CDM
starts with a simple cubic lattice of50 3 50 3 50 sites,

from which an extended transport layer is formed by peri-
odic continuation. To determine the mobility, we have
performed Monte Carlo simulations using both Miller-
Abrahams and small-polaron-like hopping rates that fall
off with distance as exps22ard. We take2aa  10,
as in Ref. [14]. For each field strength the mobility
m  yyE is calculated from the average carrier veloc-
ity y. Except where noted, data presented below are
evaluated with transport layer thicknessL  2000 lattice
planes (sufficient to obtain a nondispersive equilibrium
mobility). To compare with the GDM, we have followed
the same procedure with uncorrelated Gaussian site ener-
gies. In Fig. 1 we present field-dependent mobilities for
the CDM using Miller-Abrahams rates for a wide range
of ŝd , along with a curve showing typical behavior of
the GDM. With Miller-Abrahams hopping rates [16], the
rate for hops down in energy is independent of energy
mismatch, causing the drift velocity to saturate and giv-
ing a mobility that reaches a maximum before decreasing
as E21 at high fields (E * eays). In Figs. 2 and 3 we
present data showing the effect of different hopping rates
on the GDM and the CDM, respectively.

The main difference between the two models is the
range of fields over which PF behavior occurs. In the
CDM, which has the proper correlations, PF behavior oc-
curs down to low fields and persists over a wide field
range. In the GDM, the mobility at low fields is almost
parabolic when plotted versus

p
E (see Fig. 1). This sug-

gests, as confirmed in Fig. 2, that at low-to-intermediate
fields the GDM is better described by a lnm ~ EykT law,
rather than by (1). Indeed, such a linear field dependence
is analytically exact for one-dimensional models with
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FIG. 1. Field-dependent mobility of the CDM for different
values ofŝd (from top curve downward). The lowest curve is
the mobility for the GDM forŝ  5.10. If sd  0.1 eV and
a  10 Å, theneaEysd ø 1 for E  106 Vycm.
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FIG. 2. Field-dependent mobility for the GDM for̂s  4.17
and two different types of hopping rate: Miller-Abrahams
(squares) and symmetric (diamonds).

uncorrelated Gaussian disorder. Moreover, a nearly linear
field dependence is also consistent with simple scaling ar-
guments. The mobility in energetically uncorrelated me-
dia is limited by the slow rate of carrier release from deep
sites, rates that would exponentially depend on the (linear)
decrease in energy difference between neighboring sites
along the field. Indeed, the limited PF behavior of the
standard GDM arises from a crossover between the nearly
linear E dependence of lnm at low fields and theE21

dependence ofm at high fields, a mechanism that criti-
cally requires Miller-Abrahams rates. This viewpoint
is supported by the top curve in Fig. 2, which shows
no PF dependence in the GDM when symmetric rates
are used.

In the CDM, by contrast, we note a PF region at low-
to-intermediate fields (see Fig. 3), which, aside from a
slight vertical shift, is the same for both rates. Thus,
the PF behavior commonly observed in dipolar materials
can be considered a robust feature, associated more
with long-range fluctuations of the potential characteristic
of the medium and less upon the details of electron-
phonon coupling constants or of particular hopping rates
they produce. This viewpoint was expressed in earlier
analytical studies for the 1D version of this model, where
it was argued that the relatively low energy difference
between neighboring sites in a correlated potential renders
the particular form of hopping rate unimportant [3,20].

To characterize the CDM empirically, we have fit the
simulation data to a trial function that generalizes the
GDM and 1D results, Eqs. (3) and (4). Specifically, we
assumed that the dependence ofm on E and T , for
moderate fields, has the form
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FIG. 3. Field dependent mobility for the CDM for̂sd  5.1
and two different types of hopping rate: Miller-Abrahams
(squares) and symmetric (diamonds).

m  m0 expf2A1ŝn 1 A2sŝm 2 A3d
q

eaEys g , (8)

with constantsn, m, A1, A2, A3 to be determined. In the
standard GDM,n  m  2, and in the 1D treatment,
n  2, m  3y2. The coefficient A1 was determined
from the temperature dependence ofm at zero field,
and A2 and A3 from the temperature dependence of the
slope of lnm versus

p
E in the PF region. To find

the exponentsn and m, a linear fit was made of the
PF region for simulation data generated usingL  104

lattice planes, and the fit parameters used with (8) to
calculate a correlation coefficientR for different values
of n andm. Maximization ofR2 gives the most probable
valuesn ø 1.8 and m ø 1.55. These are close enough
to those in the 1D analysis (4) that we may reasonably
take n  2 and m  1.5 (small differences inn and m
may arise from non-Gaussian deviations of the site energy
distribution). For these values ofn and m we then find
A1  0.35 ø s3y5d2, A2  0.78, andA3  1.97, leading
to our proposed Eq. (5). The main difference with the 1D
model is the nonzero value ofA3, i.e.,G.

To demonstrate use of (5), we present here a lim-
ited comparison with experiment, focusing on the organic
glass NPPDA [10]. This particular material was cho-
sen because of its high dipole moment of3.02 D, rela-
tively nondispersive charge transport [10], and the close
resemblance between a material with 100% concentra-
tion of transport sites and our current studies of spa-
tially ordered dipolar lattices. Using Eq. (5) to analyze
data on NPPDA digitized from Ref. [10], we find from
the temperature dependence of the PF factor the value
sd  0.095 eV, in reasonable agreement with the value
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sd  0.084 eV found using Eq. (7). As we have men-
tioned previously, this slope should depend only on the
dipole component of disorder. These values are obtained
assuminga  9.2 Å, calculated using a reasonable mass
densityr  1.1 gycm3. On the other hand, the extrapo-
lated zero field mobility for the same data, assuming
only dipolar disorder, gives using (5) a different width,
sd  0.109 eV. The increase over our previous value is
clearly a measure of the other sources of energetic disor-
der (e.g., Van der Waals [10,11]) present in the system,
sources that affect the zero-field mobility but not the PF
factor. Assuming only a Van der Waals contribution, we
expect, based upon the GDM, that the prefactorm0 in
Eq. (5) is proportional to expf2s2ŝvdwy3d2g. Using this
givessydw  0.04 eV.

The only significant difference between simulation and
experimental data for NPPDA is the difference inG;
the experimental value is4.55 rather than the proposed
G  2. The coefficientG is analogous to the positional
disorder parameterS2 of the GDM [14]. NPPDA glass
is a material with randomly located molecules, while our
present calculations on the CDM have included no explicit
positional disorder in the transport sites. It is therefore
reasonable thatG for the glass would be greater than for
a regular lattice. The small difference between calculated
and experimental values ofsd may also be associated
with this neglect of positional disorder, sincesd is greater
for randomly distributed dipoles than for a regular lattice
of the same density. Investigations into the effects of
explicit positional disorder on the CDM will be reported
elsewhere.

In summary, we have (i) presented a comparison of the
transport properties of the (older) GDM and a (new) CDM
expected to more closely describe transport in disordered
organic polar materials; (ii) shown that Poole-Frenkel field
dependence ofm is a universal feature of the CDM,
independent of the kind of hopping rate, unlike in the
case of the GDM; and (iii) proposed, on the basis of
numerical and analytical studies, an explicit operational
prescription (5) for the analysis of mobility measurements.
We hope that the present analysis will encourage further
experimental studies designed to critically examine Eq. (5)
through the systematic variation of polarity of the transport
medium.
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