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PHYSICAL REVIEW A

VOLUME 20, NUMBER 3

"SEPTEMBER 1979

Doubly differential cross sections for proton-impact ionization of argon

D. H. Madison :
Department of Physics, Drake University, Des Moines, Iowa 50311

S. T. Manson
Department of Physics, Georgia State University, Atlanta, Georgia 30303
(Received 22 January 1979)

Proton-impact-ionization cross sections for argon which are differential in the energy and angle of the
ejected electron have been calculated within the framework of the Born approximation using both Hartree-
Slater and Hartree-Fock wave functions for the ejected electron. Results. of the two types of calculations are
compared with each other and with experiment. Differential cross sections for all five sub shells of argon are
examined and particular attention is given to some interesting features of the K-shell cross sections. The
range of applicability of the theoretical models is discussed.

I. INTRODUCTION

The problem of proton-impact ionization of
atoms has been receiving considerable attention
in the literature recently. Extensive experimental
and theoretical work has been concentrated on ob-
taining total energy-dependent cross sections,
particularly for the K and L shells of atoms.'*

In these works, it has been found that reasonable
agreement between experiment and theory for to-
tal cross sections can be obtained using first-
order classical, semiclassical, or quantum-
mechanical perturbation theory with elementary
wave functions describing the atomic charge dis-
tribution. Comparison of total cross sections with
theoretical calculations does not represent an
adequate test of theory, however, since important
phenomena can be obscured or lost in the summing
and averaging necessary for obtaining total cross
sections. Comparing cross sections that are dif-
ferential in one or more of the kinematic param-
eters represents a far better test.

A limited amount of double differential cross
section (DDCS) work on atoms (differential in the
energy and angle of the ionized electron) has ap-
peared in the literature over the last few years.
Most of this work has concentrated on proton-
impact ionization of helium.®~” Helium is well
suited for an initial study since it is known that
the ionized electron has been ejected from a K
shell. In these studies, it has been seen that
semiclassical calculations are in poor agreement
with the large-angle experimental data. On the
other hand, the plane-wave Born approximation
(PWBA) gives reasonable agreement with the
DDCS data given even down to incident proton
energies as low as 5 keV (Ref. 7) if the bound
and continuum wave functions for the ionized elec-
tron are calculated as eigenfunctions of a realistic
atomic potential. The largest difference be-

tween experiment and the PWBA is seen at small
angles when the outgoing proton and electron have
comparable velocities and charge exchange to the
continuum® (CEC) becomes significant.

More recently, experimental proton-ionization
work has appeared for ionization of atoms more
complex than helium with a considerable interest
in ionization of argon.®*® In these DDCS mea-
surements, no discrimination is made between the
different atomic subshells. As a result, these
cross sections represent sums of DDCS for each
of the five subshells of argon. From a theoretical
point of view, examination of this problem is im-
portant for several reasons. (i) The outermost
subshell (which dominates the cross section) is a
3p which has more structure and extent than a
simple 1s shell. (ii) The PWBA has not been
thoroughly tested for complex charge distributions.
(iii) Photoionization results indicate a strong
sensitivity of the 3p— ed channel on the details of
the atomic wave functions used.'***® This sensi-
tivity will be important for charged particle scat-
tering. (iv) The effect of CEC has not been
scrutinized for complex atoms.

In this paper we have examined the proton-im-
pact ionization of argon within the framework of
the PWBA, Calculations were performed using
Hartree-Slater (HS) wave functions for all discrete
and continuum wave functions. In addition, calcu-
lations for the 3p - ed channel were also performed
using full Hartree-Fock (HF_) wave functions for
the discrete and final states. Some details of the
calculation, as well as a very brief outline of the
theoretical formulation are given in Sec. II; the
details of the theory and method of calculation are
given in Refs. 5 and 6.

The primary differences between the HS and HF
calculations occur for ejected-electron energies
less than 50 eV. In Sec. III, the results of our HS
calculation for ejected-electron energies greater
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than 50 eV are presented and compared with ex-
perimental results for argon. Section IV compares
the HS results with the improved calculation which
includes 3p— ed in the HF approximation and an
assessment is made of the limitations of the im-
provement. In Sec. V, the contribution of each
shell of argon to the sum over shells is examined.
Section VI examines some interesting properties
of the DDCS for K-shell ionization and Sec. VIII
contains the conclusions.

THEORY AND METHOD OF CALCULATION

In the PWBA, the basic ingredients of the cross
sections are the matrix elements of the spherical
Bessel functions, j,, between initial discrete wave
functions U",o/r and final continuum wave functions

Ua/r |

i)\+ Na41+1!

320n10.ek _Zzzaf; M

a(e/R)dQ, T/R m' "o ,2;:
AN
L,

R:’D.et (K) E[m Ue,(r)*j)\(Kr)U,,,o(r)dr. (1)

Here Kaq, is the momentum transfer (a, is the
Bohr radius) and ¢ is the ejected-electron energy.
In terms of these matrix elements and the phase
shifts &,(€) of the various continuum waves, the
triple differential cross sections (TDCS) can be
written, i.e., the cross-section differential in the
energy of the ejected electron, the angle of ejec-
tion, and the scattering angle of the proton. Since
there is not data on the TDCS for proton-impact
ionization, we consider the DDCS, i.e., energy
and angular distribution of secondary electrons,
which can be obtained by integrating the TDCS over
the scattering angles of the proton to yield®:®

x expli(t, = £ (2L +1)(21+1)(21" +1)(2x +1)(2\" +1)
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with N, the initial-state occupation number, 05
the angle the momentum transfer makes with the
proton beam, 6, the angle of observation of the
ejected electron, M and m are the proton and
electron masses, respectively, T the incident
proton energy, R the Rydberg energy (13.605 eV),
and [g Zf-] and {2 2 ¢} the Wigner 3-j and 6-j sym-
bols, respectively.

The one-particle wave functions were taken as
solutions to the radial Schrddinger equation

(j—; +E_v(r)-l(lr—§”) () =0 3)

with V(r) the Hartree-Slater potential for the
ground state of the atom as tabulated by Herman
and Skillman.'® For discrete states E =¢,,, the
one-electron energy, and for continuum states,

E =¢, the kinetic energy of the ejected electron.
In general small changes in the potential will re-
sult in small changes in the wave functions and,
thus, in the subsequent matrix elements. In cer-
tain cases, this will not be true. To explore this,

d(Ka,)
(Kao)g) P(cosb,), (2)

J
we look at the effective potential, V¢ (7)=V(#)

+1(I+1)/72. The effective potentials for argon are
given in Fig. 1 for [=0, 1,2 and 3. From this fig-
ure, it is seen that V4 for =2 behaves qualitative-
ly differentialy from the others: it has a barrier
with attractive wells on either side. This barrier
is the result of the balance between the attractive
electrostatic and repulsive centrifugal potentials.’
The addition of two large numbers of opposite sign
yields a very small result (the sum is ~5% of each
of the terms individually). Thus a small change in
the electrostatic potential V() can change the ef-
fective potential dramatically. Thus we have an
ab initio criterion for when a more accurate calcu-
lation must be done. Since the barrier does not
appear for the other partial waves, we are fairly
safe in using HS functions in those cases.

To provide more accurate results, therefore,
we have calculated the 3p—~ ed matrix elements
using HF wave functions for initial 3p and final ed
states with full allowance for core relaxation. The
details of this calculation are given elsewhere!*
where it was seen that, in photoionization, going
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FIG. 1. Effective potential for argon in Ry (13.6 eV)
for the first four partial waves.

from HS to HF reduced discrepancies between
theory and experiment from a factor of 2 to about

20%.

III. HARTREE-SLATER CALCULATION

In Sec. IV, it will be shown that the differences
between the HS and HF calculations are significant
only for ejected-electron energies less than about
50 eV. In this section, we will compare the re-
sults of the HS calculation with experimental data
for ejected-electron energies greater than 50 eV.
We have performed the HS calculations for ejected-
electron energies between 10 and 300 eV and inci-
dent proton energies between 5 keV and 5 MeV for
ionization of all five subshells of argon. Complete
tables of the differential cross sections for the
shells or sum over shells can be obtained from one
of the authors (D.H.M.).

The experiments which have been performed to
date do not distinguish the subshells from which
the electron has been ejected. As a result, the
experimental diff erential cross sections repre-
sent cross sections summed over all the shells of
the atom. In Fig. 2, the summed differential cross
sections are compared with the experimental data
of Crooks and Rudd,? Gabler et al.'® and Criswell
et al.*® for 75-eV ejected electrons and incident
proton energies between 50 keV and 5 MeV. As
may be seen from the figure, the overall agree-
ment between theory and experiment is reasonable
over the entire angular range for the ejected elec-
tron except for small angles at 100 and perhaps
500 keV. This disagreement is readily understood

20 DOUBLY DIFFERENTIAL CROSS SECTIONS FOR... 827
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FIG. 2. DDCS for proton-impact ionization of argon.
The results are presented for ejection of a 75-eV elec-
tron as a function of ejected-electron observation angle
for incident protons with energies between 50 keV and
5 MeV. The solid curves are theoretical HS calcula-
tions. The experimental data are as follows: @ Cris-

~ well et al. (Ref. 13), m Crooks and Rudd (Ref. 9), and
" A Gabler et al. (Ref. 10).

in terms of CEC.® The effect of CEC is known to
be most important at small scattering angles when
the velocity of the ejected electron matches the
velocity of the proton. For a 75-eV electron, this
velocity match would occur for a proton of about
150 keV. In this proton energy region, the experi-
mental data should exhibit an enhanced cross sec-
tion due to the charge exchange process over the
theoretical calculation which does not include this
effect. Figure 2 exhibits this behavior. The CEC
effects are greatly reduced for 500-keV protons
and are not apparent for 50-keV and 5-MeV pro-
tons. It is also interesting to note the good agree-
ment between experiment and theory for 50-keV
incident protons. It is surprising that the Born
approximation is reliable at these low energies
since this is the region where one might expect a
molecular-orbital approach to be more appropriate.
A similar surprising good agreement between ex-
periment and theory for proton energies as low as
5 keV has been noted by Rudd and Madison’ for
ionization of helium. ‘

Figure 3 shows a similar comparison for ejected
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FIG. 3. Same as Fig. 2 except for 100-eV ejected
electrons.

electrons with an energy of 100 eV. Examination
of this figure yields conclusions similar to those
obtained from Fig. 2. CEC would be most pro-
nounced for 200-keV incident protons. Residual
effects of this phenomena are observables at 100
and 500 keV, but again have disappeared by 50 keV
and 5 MeV. The overall agreement between ex-
periment and theory is quite good.

The final comparison between the HS calculation
and experiment is presented in Fig. 4 for 250-eV
ejected electrons. For 250-eV ejected electrons,
the CEC effect at 500 keV is less pronounced than
that observed for the lower ejected-electron
energies. Comparison of the results of Fig. 4 with
the two previous figures reveals two major differ-
ences. The first difference lies in the fact that the
50-keV experimental data is in worse agreement
with the theoretical calculation. The significance
of this disagreement is not clear since these cross
sections are small and harder to measure experi-
mentally.

The second difference lies in the behavior of the
cross sections as a function of proton energy. It
is interesting to note that for the lower electron
energies, the cross sections generally tended to
decrease with increasing proton energy, while for
the 250-eV ejected electrons, the cross sections
increase between 50 and 500 keV and then de-
crease. The phenomena observed here can be
understood in terms of the proton-energy-depen-
dent cross section for a fixed electron energy.
This cross section rises to a maximum with in-
creasing proton energy and then falls off. The

10‘23

250-eV Electrons

m2/(eV sr atom)

|O-25_ 5 MeV
RS> s
IO’26 I R 1 I "
0] 60 120 180
Angle (deg)

FIG. 4. Same as Fig. 2 except for 250-eV ejected
electrons.

peak in this function is around 50 keV for the
lower ejected-electron energies, and the peak
moves to higher proton energies with increasing
ejected-electron energies. The proton-energy-
dependent cross section has been examined by
Criswell et gl.**

IV. HARTREE-FOCK CALCULATIONS

If comparisons between the HS calculation of
Sec. IIT and experiment are made for lower ejected-
electron energies, significant deviations are seen.
These differences between experiment and theory
can be observed even for scattering angles greater
than 90° and consequently cannot be attributed to
CEC. As aresult, it must be concluded that there
is a,deficiency in either the HS calculation or the
original perturbation theory on which the calcula-
tion is based. In this section, we shall examine
an improvement to the HS calculation.

A suggestion for improving the calculation comes
from optical (photoionization) work on argon where
it was found that the 3p - ed channel has a Cooper
minimum,’+* j.e., an energy at which the positive
and negative contributions to the dipole matrix
element just cancel. Calculations of Ar 3p photo-
ionization show that HS wave functions predict a .
photoionization cross section that is too large at
threshold by a factor of 2 and then drops much too
rapidly to a Cooper minimum.®+?*® This deficiency
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can be partially corrected by using HF wave func-
tions for both initial discrete and final continuum
states,?® which reduces discrepancies in the photo-
ionization cross section to about 20% and moves
the theoretical Cooper minimum closer to the ex-
perimental one.

It will be shown in Sec. V, that for low ejected-
electron energies, the outer shell dominates the
ejected-electron spectrum. Further it is known
that for Ar, as well as Kr and Xe, the 3p—ed
channel is dominant and the ejected-electron
spectrum closely resembles the photoionization
cross section.?! This is a general phenomenon and
it has been shown that for high enough incident
proton energy, the low-energy electron spectrum
is directly related to the photoionization cross
section irrespective of the target atom (or mole-
cule), 2%

For the above reasons, we have performed the
DDCS calculation using a HF formalism for 3p
— ed and the HS approximation for the rest of the
calculation, as discussed in Sec. II. To give some
idea of how this procedure affects the results,
Figs. 5 and 6 show a comparison of the DDCS’s
for a large angle for 100-keV, 300-keV, 1-MeV,
and 4.2-MeV protons on Ar. A large angle was
chosen in each case, to obviate any CEC effects.

‘O-IG
6=90°
lo—l? Y -
= 100 keV
2 (x10)
(h’-, IO'IS
>
2
E ool
|0-20
A

0 50 100 150
Ejected Electron Energy (eV)

FIG. 5. DDCS for proton—/impact ionization of argon
as a function of the ejected electron energy at 90° angle
of observation for the ejected electron. The theoretical
curves are: solidline, HS calculation and dash-dot line,
HF calculation. The dashed curves are the experimental
data of Crooks and Rudd (Ref. 9).

107"

©=120°

lo—xa

10"

m2/(eV sr atom)

0 50 100 150
Ejected Electron Energy (eV)

FIG. 6. Same as Fig. 5 except for higher proton en-
ergies. In the top curves, the angle of observation for
the ejected electron is 120° and the experimental data
are those of Criswell ef al. (Ref. 13). In the bottom
curves, the angle of observation is 90° and the experi-
mental data are those of Gabler et al. (Ref. 10).

The first thing to note about the results is that
above about 50 eV the two theoretical results are
very similar. At lower energies, it is seen that
the HS calculation is larger at threshold and drops
down much faster than the HF result, indicative
of a Cooper minimum at a lower energy.

Compared to the experiment, the HF result is
closer than the HS right at threshold in all cases.
At the lower proton energies, 100 and 300 keV,
where the optical channel is not so dominant,? the
HS does better than HF in the 10-50 eV region in
absolute magnitude, while the HF does better on
overall shape. At the higher proton energies, 1
and 4.2 MeV, the HF calculation is in better agree-
ment with experiment than HS in both magnitude
and shape. A substantially similar improvement
will be obtained at all ejection angles, but due to
the CEC process it will not be obvious at the for-
ward angles for protons with energies around 100
keV or less. In any case, it is seen that the treat-
ment of the 3p—~ ed channel in HF does lead to im-
provements in the DDCS for ejection energies less
than 50 eV, particularly right near the threshold.
For energies greater than 50 eV, on the other hand,
this comparison shows that HS wave functions are
quite adequate.
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It is interesting to note that the Cooper minimum
in Ar, 3p—ed, is at a larger energy for HF than
HS and that the experimental Cooper minimum
lies between, but closer to HF.?! Thus the HF im-
provement overcompensates in the position of the
minimum. To get the Cooper minimum at just the
right energy, correlation must also be included in
addition to treating exchange exactly as the HF
does. In particular, using a multiconfiguration
ground state of the Ar atom, (p)°+(p)*(d)?, while
keeping the rest of the calculation as HF, has been
shown to place the Cooper minimum correctly.?®
Work on the DDCS employing this correlation effect
is in progress.

V. SUBSHELL CONTRIBUTIONS

We now turn our attention to the contributions of
the individual subshells to the cross sections sum-
med over the various subshells for the HS calcula-
tion. At first glance, one might assume that the
outer 3p subshell would give the major contribu-
tion to the sum. Generally, this expectation may
be verified. However, some interesting excep-
tions are readily found if one examines the energy
dependence of the various subshell contributions.
Figure 7 presents the percent contributions of the
various shells of argon to the sum over shells as
a function of the energy of the ejected electron for
various proton energies between 5 keV and 5 MeV.
The result presented in Fig. 7 were all obtained
for an ejected-electron angle of 0°, An examina-
tion of Fig. T reveals several interesting behaviors
for the various shells. One of the striking features
is the crossing of the 3s and 3p contributions for
5-keV protons. For electrons ejected with energies

100
- 3p 8 39 -
s50F 5 kev 4 k750 kev 4
- o Zp -
3s
- 3s -
§ o \ L A M.Zs
& 100
3p
3p )‘ 1
50 F 100 kev 1 L 5Mev g
2p
L 3 L p
3s 2s
10 100 30010 100 300

Ejected Electron Energy (eV)

FIG. 7. Percent contribution of the various shells of
argon to differential cross sections summed over shells
as a function of the energy of the ejected electron. The
results were all obtained from the HS calculation for a
0° observation angle for the ejected electron for pro-
ton energies between 5 keV and 5 MeV.

between 60—-80 eV, the 3s shell contributes more
strongly to the sum than the 3p shell. Outside of
this narrow range, the 3p dominates as expected.
This same type of structure can also be seen for
100-keV protons near an ejected-electron energy
of 230 eV. The curves do not cross, however,
and the 3s reaches a maximum contribution of 30%.
This structure is not present for the higher proton
energies for electron energies less than 300 eV.

For incident proton energies of 5 and 100 keV,
the n =2 levels make a negligible contribution to
the sum over shells. At the higher proton energies,
the inner shells become more important, particu-
larly for the higher ejected-electron energies.
This phenomena can be understood as follows:
the total ionization cross section for a subshell
reaches a maximum approximately when the veloc-
ity of the incident particle matches the velocity of
the electron in the subshell. This means that the
3p cross section will peak first, followed by the
3s, 2p, 2s, and 1s, respectively. The increased
importance of the 2p and 2s shells at the higher
proton energies reflects this peaking for the inner
shells. It is interesting to note that for the higher
proton energies, the 2p and 3s cross sections are
comparable at the lower ejected-electron energies
and that the 2p gives the dominant contribution to
the sum over subshells for the higher ejected-
electron energies. The 2s cross section, on the
other hand, never becomes very significant for
these parameters, contributing a maximum of
around 10% and generally only a few percent or
less. The K shell does not make a significant con-
tribution to the sum over subshells for the proton
and electron energies considered.

Figure 8 presents similar results for a large
electron ejection angle of 120°. An examination
of Fig. 8 reveals that the behavior of the various
shells at 120° is qualitatively similar to that ob-
served for 0°,

100
3
E p B - 3p 4
50} 5keV 4 | 750 kev
- 4 - 2p
o 3s 3 2s
g o ]
8
é: 100
3p
L 3p
s50L 100 kev ] b 5Mev i
| 3s | 2p
3s ]
2p
25>
O " S 1L
10 100 300 10 100 300

Ejected Electron Energy (eV)

FIG. 8. Same as Fig. 7 except for an ejected-electron
observation angle of 120°.
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VI. K-SHELL CROSS SECTIONS

The present comparison between theory and ex-
periment for differential cross sections summed
over shells represents a more sensitive test of
theory than single differential cross sections or
total cross sections since much information can
be lost in the integration process. However, an
even more sensitive test of theory would lie in
the examination of differential cross sections for
individual subshells. At present, no experimental
data exists for these cross sections and space
limitations prohibit the display of the cross sec-
tions for all the subshells. However, over the
last few years there has been an intense interest
in K-shell ionization developed primarily by the
expanded use of nuclear accelerators to do atomic
physics. For this reason and the fact that the
K-shell cross sections exhibit some interesting
properties, we present differential cross sections
for K-shell ionization in this section.

DDCS for ionization of the K shell of argon by
100-keV and 1-MeV proton impact are presented
in Figs. 9 and 10, respectively, for a range of
ejected electron energies between 10 and 300 eV.
One of the first striking features noticeable from
these figures is the fact that the cross section for
backward ejection is larger than forward ejection.
This feature becomes more prominant as the elec-
tron energy is lowered. The physical basis for this

16%° .
K shell DDCS ]
100 keV protons

10eV x 10

PPy ] N it -
g0 ~~"50eVx10
L
«©
N
>
2
N
E 331
107 100eV____—_ =
i 300 eV 1
532 l | ] | | |
10 0 60 120 180

Ejected electron angle (deg)

FIG. 9. DDCS for 100-keV proton-impact ionization
of the K shell of argon as a function of the angle of
observation for the ejected electron. The theoretical
curves are HS calculations for ejected-electron ener-
gies between 10 and 300 eV,

‘0‘27

K shell DDCS

m2/(eV sr atom)

| 0-29

0 60 120 180
Ejected Electron Angle (deg)

FIG. 10. Same as Fig. 9 except for 1-MeV incident
protons. .

increased flux in the backward direction can be
understood using the following simplified model.
Each electron in the atom is viewed as being trap-
ped in a potential well and the well depth is equal
to the ionization potential of the subshell for the
electron. The incoming proton transfers energy
to an electron creating a wave packet with enough
energy to escape the well. The wave packet is
formed inside the well with a preferentially for-
ward direction. When the packet encounters the
boundary of the well, it will be partially reflec-
ted—the amount of reflection being directly related
to the ratio of the energy of the packet divided by
the well depth. Significant reflection and subse-
quent ejection in the backward direction will occur
only for small ratios of electron energies to ion-
ization potentials. For ionization of the outer
shells, this enhancement in the backward direction
occurs at very low energies, due to the small
binding energies, where other processes not in-
cluded in a perturbation type calculation such as
this could become important.

The situation is very different for ionization of
a K shell, however. The ionization potential of the
K shell of argon is 3.2 keV. Consequently, rela-
tively high-energy electrons can represent a small
fraction of this ionization potential and be strongly
reflected, as seen in Figs. 9 and 10. The intrigu-
ing aspect of this phenomena associated with K-
shell ionization lies in the fact that these ejected
electrons have energies large enough that perturba-
tion theory would be expected to be valid. As a
result, this phenomena should be observable for
K-shell ionization, whereas it may be obscured by
other effects for the outer shells.
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Another interesting feature of the differential
K-shell cross section for a fixed proton energy is
the weak dependence on the ejected-electron
energy. If the factors of 10 were removed from
the upper curves, all four of the angular distribu-
tions would lie on top of one another. Again, this
phenomena can be understood in terms of the mag-
nitude of the ejected-electron energies relative to
the ionization potential of the shell. For the ex-
treme outer shells, the ionization potentials lie in
the energy region of 12-25 eV. An ejected-electron
energy range of 12-300 eV represents a signifi-
cant change relative to the ionization potentials of
the outer shells but not of the inner shells. As a
result, cross sections for the outer shells change
more rapidly for this range of ejected-electron
energies than those for the inner shells.

VII. CONCLUSION

We have calculated doubly differential cross sec-
tions for proton-impact ionization of argon within
the framework of the Born approximation. Two
different theoretical calculations were performed.
In the first calculation, both the bound and continu-
um (ejected) electron wave function were calcula-
ted in the Hartree-Slater approximation. In the
second calculation, the bound 3p and continuum
ed wave functions were calculated in the Hartree-
Fock approximation, while the remaining wave
functions were calculated in the HS approximation.
Comparison of these two calculations revealed that
they were very similar for ejected-electron ener-
gies greater than about 50 eV for all the proton
energies considered here. Fairly large differences
between the calculations were observed for the
lower electron energies. Neither the HS or HF
calculations could be said to be in good agreement
with all the experimental data at low electron
energies. Overall, the HF calculation was in bet-
ter agreement with the data than the HS calcula-
tion. The HF cal culation did predict the threshold
behavior much better than the HS calculation. It
appears that correlated atomic wave functions will
have to be used in the calculation before good
agreement with the low ejected-electron energy
data will be achieved. For electrons ejected with
energy greater than 50 eV, the HS (or HF) calcula-
tion was, overall, in fairly good agreement with

the experimental data. The only major discrepan-
cies between the theory and experiment were seen
at small angles when both the electron and proton
were leaving the collision with comparable velocit-
ies. This disagreement is expected since this is
the regime where charge exchange to the continuum
is expected to be important and this effect has not
been included in the calculations.

The contribution of the various subshells to the
differential cross section summed over subshells
was also examined. This study revealed that, as
expected, the 3p contribution generally dominated
the sum. However, the 3s and 2p subshells can
represent major contributions to the sum. The
relative weights of these two shells generally in-
crease with increasing ejected-electron energy
and, for the proper kinematical parameters,
either the 3s or 2p can represent the major con-
tributor to the sum, While the K-shell cross sec-
tion never makes a significant contribution to the
sum over shells, it does exhibit some interesting
properties. One of the most interesting is that
the cross section for backward ejection exceeds
the cross section for forward ejection.

One of the primary results of this work is the
demonstration that the Born approximation using
realistic wave functions for the ejection electron
can give theoretical DDCS for complex atoms that
are essentially as reliable as those given for
helium. This indicates that the Born approxima-
tion can be used to predict detailed differential
cross sections for other ionization processes and
other atoms as long as the angular dependence of
the proton is not examined. Recently however,
experiments are starting to be performed which
examine the angular dependence of the protons.2®
Cross sections differential in the proton scattering
angle for medium to large angles will probably re-
quire a distorted-wave type of approach.?’
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