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Correlated three-electron continuum states in triple ionization by fast heavy-ion impact
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3Gesellschaft fu¨r Schwerionenforschung, D-64291 Darmstadt, Germany

4Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601
~Received 6 July 1999; published 5 January 2000!

We have performed a kinematically complete experiment for triple ionization in atomic collisions. Data were
obtained for 3.6-MeV/amu Au531 impact on Ne. A specific Dalitz representation was developed allowing one
to plot in a single spectrum the energy of all three ionized electrons and, simultaneously, obtain information on
their emission angles with respect to the projectile direction. The data show distinct fragmentation patterns
favoring very asymmetric energy partitionings with one fast and two slow electrons. They are compared to
various Classical Trajectory Monte Carlo~CTMC! models. The experimental results are well described only if
the electron-electron interaction is included throughout the collision and surprisingly, if the classically modeled
electrons are fully correlated in the initial state.

PACS number~s!: 34.10.1x, 34.50.Fa

I. INTRODUCTION

One of the fundamental, unsolved problems in physics is
the quantitative description of time-dependent many-body
systems. In various areas, like e.g., atomic, molecular,
nuclear, and particle physics, the same basic question is often
the focus of experimental and theoretical research: what is
the time evolution of a system of mutually interacting par-
ticles? Both the classical equations of motion and the Schro¨-
dinger equation are not solvable in closed form for more than
two interacting particles. In atomic physics where the long
range Coulomb potential is involved, one is faced with the
additional problem that it is extremely difficult to find appro-
priate numerical methods. As a result, even the most simple
and basic atomic many-body systems, involving only 3 or 4
particles, are not fully understood.

For ionization the situation is particularly complicated
since continuum states of several particles are involved. In
general, the ionized electrons depart from both the recoiling
target ion and the projectile ion to infinite distances. How-
ever, because of the long range nature of the Coulomb force,
the electrons still interact with both heavy particles and with
each other at all distances. Thus, the transition amplitudes in
principle involve an integration over infinite space. In con-
trast, for excitation or capture reactions the electrons remain
with one of the collision partners and the integration can to a
good approximation be limited to finite space. Similarly, the
integration can often be reduced to finite space if a short
range interaction potential is involved, like in nuclear phys-
ics. Because of the long range nature of the Coulomb poten-
tial ionization processes belong to the most delicate time-
dependent reactions to describe theoretically.

The complexity of ionization processes is also reflected
by the fact that in spite of tremendous efforts and significant
progress over the last two decades, the agreement between
theory and experimental data is often not satisfactory. Espe-
cially at low projectile velocities, theory has great difficulty
in achieving good agreement with experiment even for single
ionization in the most simple ion-atom collision systems like
protons impinging on hydrogen or helium@1–3#. For double

ionization, our understanding is even less complete. Few at-
tempts have been made to treat double ionization by fast
charged particles@4–8# and not a single quantum mechanical
approach has been made to calculate differential multiple
ionization cross sections for any type of projectile. Total
multiple ionization cross sections have been calculated only
recently beyond an independent electron model using time-
dependent density functional methods@9#.

Given these theoretical problems with ionization pro-
cesses, it is critically important to obtain experimental data
as detailed as possible. Whereas kinematically complete ex-
periments on single ionization have been feasible for more
than two decades for fast electron impact@10,11# such mea-
surements for ion impact succeeded only recently@12#. For
both projectile species experiments are in good agreement
with results from increasingly sophisticated theoretical mod-
els both in the perturbative and nonperturbative regime. This
leads to a sound, though not complete understanding of
single ionization in fast collisions. As mentioned above, at
low velocities, however, basic difficulties remain.

Kinematically complete experiments on double ionization
of helium by charged particles became available in 1996 for
heavy ions in the non-perturbative regime@13#. During the
last year first experiments in the perturbative regime were
reported for electron@14,15# as well as fast ion impact@16#.
In the perturbative regime comparison of the experimental
data with various model calculations including the final state
interaction as well as the initial state correlation on different
levels of sophistication has lead to two important conclu-
sions: first, the calculated results sensitively depend on the
specific correlated initial state wave functions used. For fast
heavy ion impact~with comparable kinematics and perturba-
tion as in the present study! it was found that the two elec-
trons are emitted essentially simultaneously~within attosec-
onds! with a relatively small momentum transfer from the
projectile @13#. This revitalized the early hope that the mea-
sured correlated final state electron momenta represent in-
stantaneous images~‘‘snap shots’’! of the correlated initial
state. Second, the effect of the final state interaction was
found to depend on the specific correlated initial wavefunc-
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tion as well. Thus, it was concluded that an independent
discussion of the contributions of the electron-electron inter-
action in the initial and final state, respectively, is problem-
atic. They mutually depend on each other and their effect
cannot be separated.

In this paper we report on correlated momenta of three
electrons in the continuum after triple ionization of neon in
collisions with 3.6 MeV/amu Au531 ions. It is the second in
a series of three papers where we approach the dynamic
many-electron problem. We realize that an accurate theoret-
ical treatment of transitions of more than two electrons from
bound to continuum states appear to be beyond computa-
tional capacities in the near future. This makes experimental
information all the more important.

Four basic questions are addressed by our studies. First,
which features of many-electron processes, i.e., which of the
observables, can be described within an independent electron
model ~IEM!? How do the effective single-particle states
need to be constructed and what are the limitations of such
an approach? In our first paper we focused on this question
by analyzing the differential projectile energy-loss spectra
for different degrees of ionization@17#. This is a rather glo-
bal parameter since it is essentially determined by the sum
energy of all ejected electrons, but it is nevertheless impor-
tant for numerous applications~e.g., stopping powers of
dense matter, plasma physics, tumor therapy by heavy ion
irradiation!. It was demonstrated that the energy-loss spectra
can be described almost perfectly in an independent electron
picture. They could be reproduced forQ-fold ionization (Q
521 to 61) by a convolution procedure if only the en-
ergy spectrum of a single electron randomly picked out of
the Q electrons was measured. Furthermore, the energy-loss
spectra were well described byn-body classical trajectory
Monte Carlo ~nCTMC! calculations where the electron-
electron interaction is considered only in terms of a screen-
ing of the target nucleus.

The second question, to be addressed in this paper, con-
cerns signatures and relative importance of possible correla-
tions between the fragments of the collision, i.e., properties
which go beyond an IEM. Do certain observables of one
electron depend in a characteristic way on those of the others
and, if so, what are these observables? Since no such effects
were observed in the sum energy of all ionized electrons,
here we put emphasis on the analysis of the distribution of
the continuum energy and momentum of the three individual
electrons in triple ionization. Indeed, distinct fragmentation
patterns are found showing the limitations of an independent
particle description. nCTMC calculations, which were suc-
cessfully applied in the previous paper to calculate the total
energy transferred to all ionized electrons, cannot account for
the observed patterns. In a series of model calculations we
try to investigate the origin of the structures. Surprisingly,
strong correlations between the electrons in the initial state
as well as the electron-electron interaction throughout the
collision are needed to achieve reasonable qualitative agree-
ment with the data.

The third question, also to be addressed in this paper,
deals with the details of the transition dynamics from a
many-electron bound state to a continuum state. A stationary

target atom is an entity whith a high degree of order enforced
by the Pauli exclusion principle combined with quantization
rules. If a many-electron atom would follow the rules of
classical mechanics, in contrast, the electrons would behave
much more chaotically due to their mutual Coulomb repul-
sion. The question is, to what extent does the final continuum
state reflect the ordered structure of the initial state and to
what extent does the final state Coulomb interaction in the
continuum imposes a new ordered structure unrelated to the
initial state?

The fourth question is related to the previous question, but
also reaches far into the future: is it possible to find a tran-
sition in the theoretical treatment from a few particle descrip-
tion incorperating all mutual interactions to a more global,
statistical or thermodynamical approach. For one or two par-
ticles, the problem is exactly solvable if the interaction po-
tential is known. For a very large number of constituents,
statistical approaches work very well. Thus, these two ex-
treme situations can be considered as understood or at least
sophisticated theoretical models are available. In between we
are faced with a dark zone where theoretical concepts are
missing. Future experiments at the GSI storage ring will pro-
vide the unique opportunity to access the complete kinemat-
ics of double to potentially ten-fold ionization. Such experi-
ments deliver maximum amount of information on systems
with an intermediate number of constituents where, in addi-
tion, the pairwise two-body interaction potentials are pre-
cisely known.

II. EXPERIMENT

The final state of an ion-atom collision system after triple
ionization involves 5 unbound particles~3 electrons, the pro-
jectile, and the recoiling target ion!. Thus, a kinematically
complete experiment requires to measure the momentum
vectors of 4 particles. The fifth momentum vector can then
be deduced from momentum conservation. In the experiment
described below, the momentum vectors of the 3 ionized
electrons and the recoil ion were measured.

The experiment was performed at the Gesellschaft fu¨r
Schwerionenforschung~GSI! in Darmstadt. A 3.6 MeV/amu
Au531 beam was delivered by the Universal Linear Accel-
erator ~UNILAC ! and collimated to a size of about 1
31 mm2. The projectile beam was then crossed with an
atomic Ne beam from a supersonic gas jet. A switching mag-
net was used to analyze the projectile charge state after the
collision and the projectiles which did not change charge
state were detected by a scintillator.

The three stage supersonic gas jet is required to cool the
target gas in order to minimize the momentum spread of the
recoil ions due to their thermal motion. The first stage is a
reservoir containing Ne gas at a pressure of about 8 atm.
Some of the gas can escape this reservoir through a 30mm
nozzle into the second stage, which is kept at a vacuum of 10
mTorr by a roots pump. The large pressure gradient between
the first two stages leads to adiabatic expansion of the gas,
which results in a cooling of the gas in the direction of the
gradient to a temperature of less than 1 K. In the plane per-
pendicular to the pressure gradient, the gas is cooled by a
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skimmer with a diameter of 300mm, which collimates those
Ne atoms out which have a non-zero momentum component
in that plane. In the third stage, which is separated from the
second stage by the skimmer, a vacuum of 1025 Torr is
maintained by a 400 l/s turbomolecular pump. A second
skimmer with a diameter of 600mm separates the collision
chamber from the third stage of the jet. At the intersection
point with the projectile beam the gas jet has a diameter of
about 1 mm and a thickness of 1011/cm2. With the full gas
load in the reservoir of the gas jet, the vacuum in the colli-
sion chamber was 1027 Torr.

The electrons and recoil ions were momentum-analyzed
by the same spectrometer system, which is shown in Fig. 1.
It consists of two parallel resistive plates 22 cm in length and
separated by a distance of 7 cm which are oriented along the
projectile beam axis. An electric field was generated by ap-
plying a voltage of 30 V across the plates so that the elec-
trons were extracted parallel and the recoil ions antiparallel
to the projectile beam direction. After traversing a 22 cm
long field free drift tube following the extraction region, the
recoil ions and electrons were detected by two two-
dimensional channel plate detectors with diameters of 50 and
80 mm, respectively.

The extraction field was not strong enough to guide a
sufficiently large fraction of the electrons onto the detector.
Therefore, a uniform magnetic field of 20 G in the same
direction as the electric extraction field was generated by two
Helmholtz coils. As a result, the electrons were forced into
cyclotron motion with a radius proportional to the transverse
momentum component of the electrons. For transverse mo-
menta of less than 3.5 a.u. the cyclotron radius was small
enough for the electrons to hit the detector.

One of the most challenging aspects of this experiment
was to simultaneously record the time of flight and position
information of three electrons emitted in the same collision
event and hitting the same detector. This was accomplished
by using a delay line anode in conjunction with a multi-hit
time to digital converter~TDC!. Two wires were wrapped
around the anode in thex- andy-direction. For each electron
one timing signal was recorded from the channel plate and
two timing signals from the ends of each wire. The propaga-
tion times of the signal through the wire from the point
where the electron hit the anode to both ends of the wire are
proportional to the distance of that point to the corresponding
end. Therefore, the position information for each direction is

given by the time difference between the signals at the two
ends of each wire. The multi-hit TDC allowed us to record
the same signals for further electrons hitting the detector
with some time delay relative to the first electron. The multi-
hit resolution, i.e., the minimum time delay between two
electrons required to identify them as separate particles, was
10 ns. As a result of this deadtime, in the experiment only
triple ionization events are recorded in which the longitudi-
nal momentum between any two electrons differs at least by
an amountDp1 given by the approximate relationDpl

50.1 a.u.10.07* pl1
* pl2

, wherepl1
and pl2

are the longitu-

dinal momentum components of the two involved electrons.
The electron detector was set in coincidence with both the

recoil ion detector and the projectile detector. From the co-
incidence the time of flight of the recoil ions and the ionized
electrons from the collision to the respective detector were
obtained with a resolution of better than 1 nsec. From the
time of flight, in turn, the momentum component in the lon-
gitudinal direction was determined. The two transverse com-
ponents were deduced from the position information.

III. RESULTS AND DISCUSSION

A. Momentum balance between recoil ion and electron sum
momentum

In Fig. 2 the momentum distributions in the plane defined
by the initial projectile beam direction and the outgoing re-
coil ion momentum vector are shown for Ne31 recoil ions
and the sum momentum of the three ionized electrons. The
horizontal and vertical axis represent the parallel~longitudi-
nal! momentum component and the projection of the perpen-
dicular ~transverse! component onto the plane defined above.
Two features in this spectrum should be pointed out: first, the
recoil ion and electron sum momentum distributions are
aligned in opposite directions. Second, there is an obvious
forward-backward asymmetry in the longitudinal direction
with the sum momentum vector of the electrons pointing in
the forward direction and the recoil momentum vector point-
ing in the backward direction. Very similar characteristics
were observed by Moshammer,et al. @18# and theoretically
reproduced by Olsonet al. @19# for single ionization of He
by 3.6 MeV/amu Se281 impact. They pointed out that the
opposite direction of the recoil ion and the electron momenta

FIG. 1. Schematic picture of the recoil-ion
and electron momentum spectrometer. The multi-
hit time to digital converter~TDC! allows us to
detect up to three electrons for each collision
event simultaneously.
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reveals a close connection between ionization by energetic
heavy ion impact and photoionization. Since the momentum
transfer in a photoionization event is negligible, the recoiling
target ion has to compensate the sum-momentum of all emit-
ted electrons. Therefore, the recoil ion and electron momen-
tum vectors must point in opposite directions or, to turn the
conclusion around, the fact that they do proves that the mo-
mentum transfer from the projectile is small.

The small momentum transfer, i.e., the momentum
change of the projectile, in the longitudinal direction can
simply be explained by kinematics. For small projectile scat-
tering angles, which is always well fulfilled for energetic
heavy ion impact~for our collision system the scattering
angles are essentially never larger than 1mrad!, it can be
shown that the longitudinal momentum transfer is given by
the projectile energy lossDE devided by the initial projectile
velocity v0. For triple ionization in this collision system, the
energy loss distribution maximizes around 250 eV@17#. With
a projectile velocity of 12 a.u. this yields a longitudinal mo-
mentum transfer of 0.75 a.u., which is small compared to the
width of the electron and recoil ion momentum distributions.

The small momentum transfer in the transverse direction,
in contrast, is not just a kinematic effect, rather it provides
some information about the mechanism leading to triple ion-
ization. For example, binary collisions between the projectile
and the electrons can be ruled out as an important contribu-
tor. There, the recoil ion would be a passive spectator and
would gain a relatively small momentum without any fa-
vored direction relative to the electrons. At the same time
from the projectile energy dependence of total double ioniza-
tion cross sections it is known that independent interactions
of the projectile with each electron is the dominant mecha-
nism for the perturbation regime studied here (Q/v054.4)
@20–22#. It is reasonable to assume that this is also true for a
higher degree of ionization. Therefore, the close relation be-
tween ionization by charged particle impact and photoioniza-
tion pointed out by Moshammeret al. for single ionization
@18# is observed here for triple ionization as well. In a simple

picture, the projectiles serve as a provider of virtual photons,
through which energy, but not much momentum can be
transferred@23,24#.

For photoionization, one would expect the momentum
distribution of the recoil ions and electrons to be oriented
along the transverse direction~electric dipole distribution!.
The fact that in the experiment these distributions are rotated
toward the longitudinal direction was conclusively inter-
preted as due to the postcollision interaction~PCI! in the
case of single ionization@18,19#. The projectile is ‘‘pulling’’
the electrons along in the forward direction and ‘‘pushing’’
the recoil ions in the backward direction. In our data the
forward focusing of the electrons is more pronounced than in
these references illustrating that the total effect of the PCI is
even more important for multiple ionization since each of the
electrons is affected by it. Furthermore, for the collision sys-
tem studied here the perturbation is larger than in the work of
Moshammeret al.

These features observed in the data are also very well
reproduced by an nCTMC calculation@25#, which is shown
in Fig. 3. It is the only theory currently available for multiple
ionization which properly accounts for the interactions of the
target nucleus and the projectile with all ionized electrons
throughout the entire collision. In particular, this also means
that the PCI is fully included. As a result, the photoionization
characteristics and the forward-backward asymmetry ob-
served in the experimental electron and recoil ion momen-
tum distributions, which is generated by the PCI, are also
seen in the calculation.

B. Energy partitioning between the ionized electrons, Dalitz
plots

Two major problems occur when potential correlations
between three ionized electrons are to be explored: first, the
strong PCI, although being an interesting research object in
its own right which has been investigated in many different
studies @18,26–31#, might overshadow all mutual interac-
tions between the electrons. The second problem is simply a

FIG. 2. Distribution of the sum momentum vector of the three
ionized electrons~upper part! and of the recoil ions~lower part!.
The horizontal axis is the longitudinal and the vertical axis the
projection of the transverse momentum component onto the colli-
sion plane.

FIG. 3. Distribution of the sum momentum vector of the three
ionized electrons~upper part! and of the recoil ions~lower part!
calculated with the nCTMC model. The axis have the same mean-
ing as in Fig. 2.
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question of presenting the data. A signature of correlation
would be if a certain quantity of one electron~e.g., its en-
ergy! was dependent on the corresponding quantity of the
other two electrons. To see such an interdependence requires
one to plot that quantity for all three electrons simulta-
neously in the same spectrum.

In particle physics, one method of representing the ener-
gies of three particles simultaneously in the same spectrum is
known as Dalitz plot@32#. Recently, this kind of presentation
was applied in atomic physics to study the fragmentation
dynamics of the H3

1 molecule @33#. In a Dalitz plot, the
relative energy« i of each particle normalized to the sum
energy of all three particles is plotted in a coordinate system
consisting of an equilateral triangle. An example for the rela-
tive energies of three electrons is shown in Fig. 4 for our
triple ionization data. For a given data point, the relative
energy of each electron is given by the perpendicular dis-
tances of that data point to the three sides of the triangle, as
indicated in Fig. 4 by the arrows. If the height of the triangle
is normalized to unity, it can be shown by simple geometry
that for any point inside the triangle the sum of all perpen-
dicular distances to the three triangle sides is also 1. There-
fore every data point is already unambigously determined by
two triangular coordinates~i.e., by the relative energies of
two electrons!.

Some structures are observable in Fig. 4. The data appear
to accumulate near the triangle sides, especially near the tri-
angle corners while there is a minimum near the center.
However, in this plot a relatively small fraction of the infor-
mation available from the data has been used. In particular,
no information on the emission direction of the ionized elec-
trons is provided. Furthermore, the ionized electrons are
treated as equivalent particles in Fig. 4, i.e., they are not
distinguished from each other by any quantity apart from
their relative energies which are plotted. The structures ob-
served in the Dalitz plots may become more pronounced by
distinguishing the electrons in terms of additional measured
quantities like, for example, the emission angle relative to

the projectile direction and, more importantly, a larger
amount of information is contained in a single spectrum.

The exact definition of the electron emission angles and
the distinction of the electrons by that angle is illustrated in
Fig. 5. In the top part, it shows an example of a triple ion-
ization event with the momentum vectors of the three elec-
trons ~arrows labeled ase1, e2, ande3) and the initial pro-
jectile direction~arrow labeled asp0). The emission angle
for each electron is defined as the angle between its momen-
tum vector and the projectile direction vector such that it
takes values between 0° and 180°. We can now proceed to
distinguish the electrons by their emission angles in the Dal-
itz plots. In our example the angle of electron 3 is the small-
est of the three angles and the one of electron 1 is the largest.
For each triple ionization it can be determined which elec-
tron has the minimal, medium, and maximal emission angle
in this way. In a Dalitz plot the relative energy of the elec-
tron with the minimal angle can now be plotted as the per-
pendicular distance to one specific triangle side, say the
lower side. Likewise, the relative energies of the electrons
with the medium and maximal angles are represented by the
left and right triangle sides, respectively. This is illustrated
for our example in the bottom part of Fig. 5. Electron 2 has
the largest energy and the medium emission angle and elec-
tron 1 has the smallest energy and the maximal angle. There-
fore, this particular event has to be presented in the Dalitz
plot by a data point which is closest to the right and furthest
from the left triangle side.

In Fig. 6 a Dalitz plot with the electrons labeled by their
emission angles is shown. This labeling of the electrons in-

FIG. 4. Dalitz plot of the ionized electrons in the lab frame. The
electrons are treated as equivalent particles, i.e., they are not labeled
by any other quantity apart from their relative energy.

FIG. 5. Illustration of the distinction of the electrons by their
emission angle. The top part shows as an example of a triple ion-
ization event the momentum vectors of the electrons~arrows la-
belede1 , e2 , and e3) and the projectile direction~arrow labeled
p0) along with the electron emission angles relative to the projec-
tile. The bottom part shows schematically how this event is pre-
sented in a Dalitz plot with the triangle sides being determined by
the electron emission angle~see text!.
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deed leads to an enhancement of the structure which is ap-
parent already in Fig. 4 and additional information about the
collision daynamics can be extracted from the data. Now this
structure, which in Fig. 4 occurs near all triangle sides, is
compressed to a region close to only one triangle side, the
one corresponding to the electron with the largest emission
angle. In fact, the main contribution occurs near the top cor-
ner of the triangle. This means that very asymmetric energy
distributions with one fast and two slow electrons are
strongly favored. The electron with the smallest emission
angle is most likely the fastest electron. A second, although
much weaker maximum is observable near the lower right
corner of the triangle corresponding to events where the elec-
tron with the medium emission angle is fast and the other
two electrons remain almost at rest. The observed structure
means that the continuum reveals a surprisingly high degree
of order rather than a chaotic behavior which would be re-
flected by a more uniform energy distribution with similar
contributions from symmetric and very asymmetric parti-
tions.

One should be cautious not to prematurely interprete the
pronounced structure in the data as due to electron correla-
tion effects. In particular the importance of the PCI for the
collision system studied here should be kept in mind. It can-
not be ruled out that the PCI leads to peak structures in the
Dalitz plot for triple ionization. In order to conclusively ex-
plain the features in the data it is important to compare to
theoretical models which fully include the PCI. Ideally, these
calculations should be performed with and without the
electron-electron interaction included throughout the colli-
sion. The experimental observations which have to be repro-
duced by theory can be summarized in two points:~1! the
three-electron continuum is strongly structured favoring very
asymmetric energy distributions with one fast and two slow
electrons indicating some degree of order.~2! There is a
pronounced correlation between the emission angle and the
relative energy of the electrons in that the fast electron is
almost exclusively the one with the smallest emission angle.

Theoretical models for triple ionization with the electron-
electron interaction fully included are currently not available.
We therefore first discuss the data in comparison with the
nCTMC method which considers the ionized electrons to be
independent of each other. In the next section we will then
attempt a qualitative analysis by modeling the electron-
electron interaction in a rather simplified manner. In Fig. 7 a
Dalitz plot calculated with the nCTMC model with the elec-
trons labeled the same way as in Fig. 6 is shown. This model
has been successfully applied to calculate important quanti-
ties like the recoil ion charge state distribution@34#, electron
energy and angular differential cross sections@35#, recoil-ion
momentum distributions@34# and, recently, the projectile
energy-loss spectra in multiple ionization@17#. Moreover, it
describes well the momentum balance between the recoil ion
and the electron sum momentum vector~see above!. How-
ever, the electron-electron interaction is only incorporated in
so far as the total binding energy of all electrons in the atom
is reproduced correctly by using appropriate electron screen-
ing functions in the initial state.

The nCTMC model yields a fairly uniform energy distri-
bution without a pronounced structure, as expected for a cal-
culation without electron correlations. In particular, near the
top corner of the triangle, where the data show the most
pronounced structure, there is essentially no intensity in this
calculation. However, the calculation presented in Fig. 7 has
not been convoluted to the experimental restrictions of elec-
tron transverse momenta of less than 3.5 a.u. and those im-
posed by the multi-hit deadtime~see experimental section!.
In Fig. 8 we show the nCTMC calculation corrected for these
experimental restrictions. The major difference to the calcu-
lation without the correction is a line of reduced intensity
approximately extending from the lower left corner to the
midpoint of the right side of the triangle. This is mainly an
effect of the mulithit deadtime. Otherwise, the basic shape of
the Dalitz plot in Fig. 7 is maintained in Fig. 8, most impor-
tantly there is still essentially no intensity in the triangle
corners.

As mentioned above the nCTMC model has been very
successful in describing quantities in multiple ionization

FIG. 6. Dalitz plot with the electrons being labeled by their
emission angle relative to the projectile direction according to the
scheme illustrated in Fig. 5.

FIG. 7. Dalitz plot calculated with the nCTMC model. The elec-
trons are labeled the same way as for the data in Fig. 6.
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which are not sensitive to the electron-electron interaction.
Moreover it is known to correctly account for the PCI
@18,19#. We can therefore safely rule out the PCI as the sole
contributor to the structure observed in the data. Rather, the
comparison between the data and the calculation suggests
that these structures are in some way related to the electron-
electron interaction. Furthermore, the fairly uniform distribu-
tion indicates that the ten-body nCTMC model does not lead
to a high degree of order in the many-electron continuum.

C. Qualitative analysis of the role of the electron-electron
interaction

Since no theoretical method is currently available for
triple ionization which includes the electron-electron interac-
tion throughout the entire collision, in this section we at-
tempt to qualitatively interprete the structures observed in
the data by modeling the electron-electron interaction in a
simplified manner. Specifically, we will address the question
whether potential electron correlations are particularly im-
portant in the initial or in the final state or whether a combi-
nation of both is required to explain the data. This also re-
lates to the question spelled out in the introduction
concerning the ordered structure~or lack thereof! of several
electrons ionized in a collision. If, for example, the structures
in the data could be explained only by incorporating initial
state electron correlations this would indicate that in a triple
ionization event the ordered structure of the initial state is
mapped onto the continuum state. Likewise, a dominance of
a final state correlation could be interpreted as the electron-
electron interaction in the continuum generating a new order
unrelated to the initial state. We would like to stress, how-
ever, that our models described below should not be viewed
primarily as a theoretical effort to explain the data quantita-
tively, but rather as a means to analyze the data qualitatively.
We realize that full theoretical calculations incorporating the
electron-electron interaction in a more sophisticated manner
are needed and we hope that our work will initiate such
theoretical efforts.

The nCTMC code serves as the theoretical foundation for
our modeling efforts, where the role of the electron-electron
interaction was analyzed by applying two different methods.
In the first model, an electron-electron correlation in the ini-
tial target state is simulated. Here a five-body collision with
3 electrons in the 2p state is assumed. The electrons initially
orbit the nucleus on 3 elliptical trajectories in the same plane
with the major axis making an angle of 120° relative to each
other. The initial condition is chosen such that the electrons
are synchronized to the same distance from the nucleus at all
times in orbits of equal eccentricity. This imitates the repul-
sive electron-electron force in the initial state by keeping the
electrons as far apart from one another as possible. However,
the electron-electron interaction is not incorporated in the
evolution of the system during the collision. In the following
we refer to this model as CTMC-IC~IC stands for initial
state correlation!.

In the second model the initial state is chosen in the same
manner as in the CTMC-IC model. However, now the
electron-electron interaction between all three electrons is
fully included throughout the collision, i.e., electron-electron
correlations in the final continuum state are included as well.
This model we call CTMC-FC~FC stands for full correla-
tion!.

The results of these CTMC models are shown in Fig. 9
~center: CTMC-IC, bottom: CTMC-FC!. For comparison, in
the top we show again the original nCTMC calculation with-
out the electron-electron interaction. The CTMC-IC model
qualitatively reproduces one major feature observed in the
data: it also shows peak structures near the upper and lower
right triangle corners, i.e., it predicts that a very asymmetric
energy distribution with one fast and two slow electrons is
strongly favored. However, in the calculation the intensities
of these two peaks are reversed compared to the data. In the
CTMC-IC model the electron with the medium rather than
the minimal emission angle is most likely the fast electron.
Finally, the CTMC-FC model provides a very good qualita-
tive description of the data. It not only reproduces the asym-
metric energy distribution among the three electrons, as the
CTMC-IC does, but it also predicts correctly that the elec-
tron with the smallest emission angle is the fast electron. The
models of Fig. 9 are shown without the corrections for the
restrictions in the measured momentum distributions in order
to illustrate the effects of the electron-electron interaction
independently of any experimental condition. In the
CTMC-FC model this correction has the same influence as in
the nCTMC calculation in that it leads to a reduced intensity
along a line extending from the lower left corner to the mid-
point of the right side of the triangle. This leads to an im-
proved agreement with the data.

The comparison between the data and the various CTMC
models suggests that electron-electron correlations both in
the initial state and in the final continuum state are important.
The initial state correlation seems to be the decisive factor in
determining the energy partitioning. Without labeling the
electrons by their emission angle the CTMC-IC model, i.e., a
model which does not incorporate any final state correlation,
provides already an adequate picture~Fig. 4 is qualitatively
well described by this model!. The final state correlation, in

FIG. 8. Same as Fig. 7 with the calculation corrected for the
experimental restrictions in the electron momentum distributions
~see text!.
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contrast, predominantly affects the angular distribution of the
electrons since without it the CTMC model does not predict
correctly the relation between emission angle and relative
energy. This comparison between the CTMC-IC and
CTMC-FC models also indicates that the high degree of or-
der in the three-electron continuum reflected by the sharp
peak structures contains two components: first, to some ex-
tent the initial order of the stationary target atom is appar-
ently imaged into the continuum leading to the asymmetric
energy distribution. Second, the electron-electron interaction
in the continuum appears to generate an additional new order
unrelated to the initial state leading to a connection between
the emission angle and the relative energy of the ionized

electrons.
While the CTMC-FC model is in good qualitative agree-

ment with the data, quantitatively there are some discrepan-
cies. The structures in the calculation are more pronounced
and more focused around the upper triangle corner than in
the data. Such quantitative discrepancies are not surprising
since the electron-electron correlations, especially in the ini-
tial state, are certainly modeled in a simplified manner. In
particular, the initial state correlation is overestimated by
keeping the electrons as far apart from each other as pos-
sible. While one would expect that the mutual repulsion
leads to a somewhat increased distance, it is, of course, un-
realistic to assume that the electrons maintain at all times a
maximum distance. However, the advantage of this model is
that the final state dynamics are correctly portrayed by the
five-body pairwise Coulomb interactions.

IV. CONCLUSIONS

In this paper we have presented a kinematically complete
experiment on triple ionization. We have demonstrated that
Dalitz plots are a very efficient method to simultaneously
present the energies of three particles in a single spectrum.
This is crucially important in order to analyze the interrela-
tion between the three involved particles. Plotting the energy
of only two particles, for example, is equivalent to integrat-
ing of the third particle and valuable information on possible
correlation effects may be lost.

Our data show that in triple ionization highly asymmetric
energy distributions with one fast and two slow electrons are
strongly favored. The fast electron is almost always the one
with the smallest emission angle relative to the projectile
direction. This behavior cannot be reproduced by our
nCTMC calculation, which does not include the electron-
electron interaction. However, if the electron-electron inter-
action is incorporated throughout the collision, although in a
greatly simplified manner, very good qualitative agreement
is achieved. The comparison between the data and theory
suggests that the very asymmetric energy distribution is gen-
erated by an electron-electron correlation in the initial target
state, while the predominantly small emission angles for the
fast electrons are caused by the electron-electron interaction
in the final continuum state. We are therefore led to conclude
that a proper incorporation of the electron-electron interac-
tion is critical in both the initial and the final state. This
supports the conclusion of Bapatet al. @16# that it is not
possible to separate the electron-electron interaction in the
initial from the one in the final state.
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CTMC-IC, but with electron-electron interaction in the final con-
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