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Strong-disorder magnetic quantum phase transitions:

Status and new developments

T Vojta

Department of Physics, Missouri University of Science & Technology, Rolla, MO 65409, USA

E-mail: vojtat@mst.edu

Abstract. This article reviews the unconventional effects of random disorder on magnetic
quantum phase transitions, focusing on a number of new experimental and theoretical
developments during the last three years. On the theory side, we address smeared quantum
phase transitions tuned by changing the chemical composition, for example in alloys of the type
A1−xBx. We also discuss how the interplay of order parameter conservation and overdamped
dynamics leads to enhanced quantum Griffiths singularities in disordered metallic ferromagnets.
Finally, we discuss a semiclassical theory of transport properties in quantum Griffiths phases.
Experimental examples include the ruthenates Sr1−xCaxRuO3 and (Sr1−xCax)3Ru2O7 as well
as Ba(Fe1−xMnx)2As2.

1. Introduction
The question of how random disorder influences a zero-temperature quantum phase transition
has been a subject of great interest during the last two decades. Pioneering theoretical work
initially focused on model systems such as the random transverse-field Ising chain. Using a
strong-disorder renormalization group, Fisher [1, 2] showed that the ferromagnetic quantum
phase transition in this system is of exotic infinite-randomness type (for a review of this method,
see, e.g., Ref. [3]). It is accompanied by strong off-critical singularities in various thermodynamic
quantities, the so-called quantum Griffiths singularities. They are caused by rare spatial regions
that are locally in the “wrong phase.” Analogous results were obtained using optimal fluctuation
theory and numerical simulations [4, 5, 6]. Later, these findings were generalized to higher
dimensions [7, 8, 9].

Castro Neto and Jones [10] pioneered the application of the Griffiths singularity concept to
itinerant (metallic) systems. The qualitative behavior of disordered metals close to a magnetic
instability is determined by the order parameter symmetry together with the dissipative
character of the order parameter dynamics [11]. For Ising symmetry, the quantum dynamics
of a sufficiently large individual magnetic rare region stops completely because the magnetic
fluctuations are overdamped [12]. This destroys the sharp global quantum phase transition by
smearing [13, 14]. In contrast, for continuous (XY or Heisenberg) order parameter symmetry,
individual rare regions continue to fluctuate to the lowest temperatures [15]; this leads to
quantum Griffiths singularities similar to those of the dissipationless transverse-field Ising chain.1

1 This means, somewhat surprisingly, the dissipationless random transverse-field Ising model and the disordered
metallic Heisenberg magnet are in the same universality class.
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Note that long-range interactions between different rare regions can actually lead to a (cluster-
glass) freezing transition at the lowest temperatures even in the continuous symmetry case [16].
These and many more results were summarized in Refs. [11, 17].

While significant progress was made since the mid-1990s in the theory of disordered quantum
phase transitions, experimental verifications of the predicted exotic disorder effects were lacking
for a long time. This changed only in the years 2007 to 2010, when quantum Griffiths singularities
were observed in the vicinity of ferromagnetic quantum phase transitions in the magnetic
semiconductor Fe1−xCoxS2 [18, 19, 20], the Kondo lattice system CePd1−xRhx [19, 21], and
the transition metal alloy Ni1−xVx [22, 23]. These experiments were reviewed in Ref. [17].

In the last three years, the field has made further progress, both in theory and in experiment.
The purpose of the present paper is to review these new results and to relate them to the state
of knowledge. The paper is organized as follows. Section 2 is devoted to new developments
in the theory of disordered quantum phase transitions. In particular, we address smeared
quantum phase transitions tuned by changing the chemical composition in systems of the type
A1−xBx. We also consider the enhancement of ferromagnetic quantum Griffiths singularities in
disordered metallic systems as well as a semiclassical theory of transport properties in quantum
Griffiths phases. In Sec. 3, we review a number of exciting new experiments that show additional
strong disorder effects. In particular, we discuss the smeared quantum phase transition in the
ruthenate Sr1−xCaxRuO3, an unusual nearly ferromagnetic phase in (Sr1−xCax)3Ru2O7, as well
as a possible antiferromagnetic quantum Griffiths phase in Ba(Fe1−xMnx)2As2. We conclude in
Sec. 4.

2. New developments: Theory
2.1. Composition-tuned smeared quantum phase transitions
Let us start by contrasting sharp and smeared transitions. Phase transitions are commonly
defined as singularities of the free energy in parameter space. Such singularities can only
occur in infinitely large systems; for continuous transitions they are associated with an infinite
correlation length; and in the case of first-order transitions, they correspond to macroscopic
phase coexistence.

What about phase transitions in the presence of randomness that locally favors one phase over
the other? Do they remain sharp in the above sense, or will the singularity be smeared over a
range of the tuning parameter? It turns out that phase transitions in random systems generically
remain sharp. The reason is that finite-size regions normally cannot order independently of each
other; the global phase transition thus occurs due to a collective effect of the entire sample. It
was shown in Ref. [13], however, that this argument does not apply to certain magnetic quantum
phase transitions in the presence of both disorder and dissipation. If a magnetic (Ising) cluster is
coupled to an Ohmic dissipative bath, it can undergo the localization transition of the dissipative
two-level system [24, 25]. This implies that sufficiently large clusters develop static magnetic
order independently of the bulk because their quantum dynamics stops completely. As more
and more clusters freeze, the global order parameter thus arises gradually, rather than as a
collective effect of the entire system; and the correlation length remains finite. This defines
a smeared phase transition. The prime experimental application of this concept are metallic
quantum magnets in which the dissipation stems from the coupling of the magnetization to the
fermionic degrees of freedom.

It is important to emphasize that the smearing of the quantum phase transition is a finite-
length-scale phenomenon (there is a finite minimum size required for the magnetic clusters to
freeze), in contrast to the usual critical phenomena that arise in the limit of infinite lengths. This
also means that smeared transitions cannot be expected to display the same degree of universality
as critical points. In particular, tuning the transition with different tuning parameters can lead
to qualitatively different behavior.
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Figure 1. Schematic temperature-composition phase diagram of a binary alloy A1−xBx

displaying a smeared quantum phase transition. In the tail of the magnetic phase, which
stretches to x = 1, the rare regions are aligned. Above Tc, they act as independent classical
moments, resulting in super-paramagnetic (PM) behavior (after Ref. [26]).

The original theory of smeared (magnetic) quantum phase transitions [13] focused on tuning
a given disordered sample through the transition by varying a parameter such as pressure.
However, in almost all of the experimental systems in which unconventional disorder effects
have been observed, the transition is actually tuned by changing the chemical composition. In
Ref. [26], we therefore adapted the theory to alloys of the type A1−xBx which are tuned through a
quantum phase transition by changing x. A schematic of the resulting temperature-composition
phase diagram is shown in Fig. 1. The ordered phase develops a pronounced tail that stretches
all the way to x = 1. Two separate regimes can be distinguished. The major decrease of the
critical temperature Tc near the mean-field critical concentration x0c is of exponential type,

Tc ∼ exp

[
−C

(x− x0c)
2−d/ϕ

x(1− x)

]
(1)

where C is a nonuniversal constant and ϕ is the finite-size shift exponent. In the far tail of the
smeared transition, x → 1, the critical temperature vanishes as a nonuniversal power law,

Tc ∼ (1− x)L
d
min = (1− x)(D/x0

c)
d/ϕ

(2)

where Lmin is the minimum size a rare region must have to freeze, and D is another constant.
The zero-temperature magnetization M behaves in a similar fashion. Close to x0c , M varies as

M ∼ exp

[
−C

(x− x0c)
2−d/ϕ

x(1− x)

]
(3)

while it follows the power law

M ∼ (1− x)L
d
min = (1− x)(D/x0

c)
d/ϕ

(4)

for x → 1. We thus find thatM is nonzero in the entire composition range 0 ≤ x < 1, illustrating
the notion of a smeared quantum phase transition.
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The fact that smeared phase transitions are nonuniversal also implies that spatial disorder
correlations can have significant effects. This question was explored in Ref. [27]. It was found
that even short-range correlations can qualitatively change the behavior of observable quantities
at smeared transitions, in contrast to critical points, at which short-range correlations do not
change the critical behavior.

2.2. Quantum Griffiths singularities in ferromagnetic metals
The theory of Griffiths singularities started when Griffiths [28] showed that the free energy of a
disordered systems that does undergo a sharp phase transition is singular not only right at the
transition point but in an entire parameter region around out. Today, this region is known as
the Griffiths region or Griffiths phase, and the off-critical singularities are summarily called the
Griffiths singularities.

The theory of quantum Griffiths phenomena in metallic systems initially focused on
antiferromagnetic quantum phase transitions. This had two reasons: First, there are many more
materials featuring antiferromagnetic than ferromagnetic quantum phase transitions. Second,
the theory for the antiferromagnetic case is considerably simpler (at least in three space
dimensions). In the ferromagnetic case, extra complications arise from the order parameter
conservation and from soft-mode induced long-range interaction between the order-parameter
fluctuations [29, 30]. Ironically, all the recent experimental observations of quantum Griffiths
physics mentioned in Sec. 1 were in ferromagnetic conductors (Fe1−xCoxS2, CePd1−xRhx,
Ni1−xVx) for which the theory was not well developed.

To remedy this problem, a theory of quantum Griffiths singularities associated with itinerant
ferromagnetic quantum phase transitions was developed in Ref. [31]. The crucial technical
difference between the ferromagnetic and antiferromagnetic cases lies in the dynamic part of
the two-point vertex of the order-parameter (LGW) field theory [32]. In the antiferromagnetic
case, it takes an Ohmic form ∼ |ωn| and becomes momentum-independent in the limit of small
momenta and frequencies. In a disordered ferromagnet, the damping term instead has the
structure ∼ |ωn|/q2, reflecting the conserved nature of the total magnetization. As a result, the
tunneling rate of a locally ordered ferromagnetic cluster decays as exp(−cL5) with its linear size
L, compared with a exp(−cL3) decay in the antiferromagnetic case (c is a constant).

The form of the ferromagnetic quantum Griffiths singularities can now be worked out by
adapting the usual optimal fluctuation arguments (see, e.g., Ref. [11]) to the case at hand. The
resulting low-energy density of states of the rare regions takes the form

ρ(ϵ) ∼ 1

ϵ
exp[{−λ̃ log(ϵ0/ϵ)}3/5] . (5)

Here, ϵ0 is a microscopic energy scale, and the nonuniversal parameter λ̃ takes the place of the
usual Griffiths exponent. In contrast to itinerant antiferromagnets (and models such as the
transverse-field Ising chain), this quantum Griffiths singularity in the density of states is not a
pure power law. However, the exp[| ln ϵ|3/5] structure implies that it is “almost a power law.”
Correspondingly, the quantum Griffiths singularities in observables also differ from pure power
laws. The low-temperature susceptibility, for example, is expected to behave as

χ(T ) ∼ 1

T
exp[{−λ̃ log(T0/T )}3/5] . (6)

Compared to the power-law form T λ−1, eq. (6) provides an additional upturn at low
temperatures. This may be responsible for the slight upward deviations from power-law behavior
observed at the lowest temperatures in the susceptibility data of Ni1−xVx [22, 23]. We emphasize
that eqs. (5) and (6) only hold in the asymptotic regime, when the relevant rare regions are so
large that the order-parameter conservation significantly hampers their dynamics.
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2.3. Semiclassical transport theory
Most theoretical studies of disordered quantum phase transitions and the accompanying
quantum Griffiths singularities have focused on thermodynamics while transport properties have
received much less attention. This is particularly true for metallic systems whose transport
properties such as the electrical resistivity are easily accessible in experiments but hard to
calculate theoretically. In Ref. [33], we therefore developed a theory of the electrical resistivity in
an antiferromagnetic quantum Griffiths phase of a disordered metal. It is based on a semiclassical
approach in which the conduction electrons are scattered by the spin fluctuations of the rare
regions. Other transport quantities including the thermal resistivity, the thermopower and the
Peltier coefficient were calculated in the same way.

The calculation starts from a two-band model of s and d electrons, H = Hs + Hd + Hs−d

[34]. Only the s electrons contribute to the electric transport; they are scattered by the spin
fluctuations of the d electrons which are assumed to be in an antiferromagnetic quantum Griffiths
phase. This is described by means of a Boltzmann equation in which the dynamic susceptibility
of the d electrons enters the collision term for the s electrons. The linearized Boltzmann equation
is then solved using Ziman’s variational principle [35]. The resulting rare region contribution to
the electrical resistivity takes the form

∆ρ ∼ T λ . (7)

Thus, the temperature-dependence of the resistivity follows a non-universal power law controlled
by the same Griffiths exponent λ that also governs the thermodynamics. (The reason is that
the main contribution to the resistivity stems from scattering off the magnetic fluctuations
whose temperature dependence is characterized by λ.) Analogous calculations for the thermal
resistivity W , the thermopower S, and the Peltier coefficient Π yield

∆W ∼ T λ−1, ∆S ∼ T λ+1, ∆Π ∼ T λ+2 . (8)

All of these results apply to antiferromagnets in three space dimensions for which quasiparticles
are (marginally) well-defined. Moreover, they hold in the case of strong randomness when the
temperature-independent impurity part ρ0 of the resistivity is large compared to the rare region
contribution (see Ref. [36]).

The unusual temperature dependencies of thermodynamic and transport properties also affect
various “universal ratios” that are commonly used to characterize Fermi liquid behavior [37].
The Wilson ratio RW = χT/C (which relates the susceptibility χ and the specific heat C) and
the Grüneisen parameter Γ = β/C (the ratio of the thermal expansion coefficient β and C) both
diverge logarithmically with T ,

RW = χT/C ∼ [log(1/T )]2 , Γ = β/C ∼ log(1/T ) . (9)

While RW and Γ only involve thermodynamics, further ratios can be calculated from the
transport quantities. For example, the rare regions give a subleading contribution to the Lorenz
number L = ρ/WT ,

∆L ∼ T λ . (10)

Moreover, the ratio q = S/C between the thermopower and the specific heat as well as Kadowaki-
Woods ratio RKW = (ρ− ρimp)/C

2 both show nontrivial power laws in T ,

q = S/C ∼ T 1−λ , RKW = (ρ− ρimp)/C
2 ∼ T−λ , (11)

in contrast to the temperature-independent Fermi-liquid behavior.
The above results apply to quantum phase transitions in antiferromagnetic metals, the

corresponding theory for the more complicated ferromagnetic quantum phase transition remains
a task for the future.
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Figure 2. Left: (a) Photographic image of the composition-spread Sr1−xCaxRuO3 epitaxial
film. (b) Contour plot of the magnetizationM over the composition-temperature phase diagram.
The phase boundary, Tc(x), derived from the susceptibility and magnetization data is shown
by the black and white symbols, respectively. (c) Schematic of the magnetism in the tail of
the smeared transition. The Sr-rich rare regions form locally ordered clusters whose dynamics
freezes, giving rise to an inhomogeneous long-range ferromagnetic order. Right: Magnetization
and transition temperature as functions of the composition in the tail region. The symbols
represent the experimental data while solid lines are fits to the theory of Sec. 2.1 (after Ref.
[45]).

3. New developments: Experiment
3.1. Smeared quantum phase transition in Sr1−xCaxRuO3

The perovskite-type ruthenate SrRuO3 is a ferromagnetic metal having a Curie temperature T 0
c

of about 165K. In contrast, CaRuO3 does not develop long-range magnetic order even at the
lowest temperatures. By randomly substituting the smaller calcium atoms for the strontium
atoms, one can thus tune the material through a ferromagnetic quantum phase transition. This
system was extensively studied in the past, but different experiments [38, 39, 40, 41, 42, 43, 44]
showed large variations of the phase boundary and especially in the critical calcium concentration
xc beyond which long-range magnetic order vanishes.

To study the quantum phase transition in Sr1−xCaxRuO3 with high precision, the group of
Kézsmárki [45] used a high-quality composition-spread film whose calcium concentration changes
from 13% to 53% from one end to the other (see Fig. 2a). The magnetic properties were measured
using a magneto-optical Kerr microscope which gave a resolution δx ≈ 0.001 in composition and
about 6× 10−3µB per Ru atom in magnetization.

An overview over the results is given in Fig. 2b. The data show that the critical temperature
Tc(x) does not feature a singular drop at any calcium concentration. Instead, it develops a
pronounced tail towards the calcium-rich side of the phase diagram. A similar tail also appears
in the low-temperature magnetization as a function of temperature. These quantities thus
provide strong evidence for the quantum phase transition to be smeared. The right panel of
Fig. 2 shows a direct comparison of the magnetization and critical temperature with the theory
of smeared quantum phase transitions discussed in Sec. 2.1. The magnetization data follow the
prediction (3) over 1.5 orders of magnitude in M , giving x0c = 0.38. The critical temperature
can be fitted to eq. (1) using the same x0c .

Moreover, the smeared transition scenario provides a natural explanation for the strong
variations in the magnetization and phase boundary between the different older experiments. As
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mentioned at the end of Sec. 2.1 and discussed in detail in Ref. [27], smeared phase transitions
are particularly sensitive towards spatial disorder correlations. Model calculations have shown
that a disorder correlation length of less than two lattice constants is sufficient to move the
(seeming) critical concentration xc from 0.5 to 1.

3.2. Nearly ferromagnetic (Sr1−xCax)3Ru2O7

The double-layer ruthenate (Sr1−xCax)3Ru2O7 has a rich phase diagram [46, 47]. For calcium
concentration x < 0.08, it is in an itinerant metamagnetic state. In the region 0.08 < x < 0.4,
the system displays very strong ferromagnetic fluctuations but does not develop long-range order
at low temperatures. Instead, it freezes into a cluster glass state. For x > 0.4, the material is
an antiferromagnet consisting of ferromagnetic bilayers stacked antiferromagnetically along the
c-axis. The Neel temperature increases from about 30K at x = 0.4 to 56K at x = 1.

Qu et al. [48] performed a detailed analysis of the magnetization M and specific heat C of
(Sr1−xCax)3Ru2O7 in the composition range 0.08 < x < 0.4. Above the cluster glass freezing
temperature (which ranges from less than 1K at x = 0.08 to about 3K at x = 0.4), both
quantities exhibit anomalous power-law singularities. However, while the exponents of M(H)
and C(T ) agree, as expected in a quantum Griffiths phase, the exponent characterizing the
temperature dependence M(T ) in a small applied field differs significantly. This suggests that
the quantum Griffiths scenario may be insufficient to describe to observed behavior.

The quantum Griffiths scenario assumes that different rare regions are far enough apart to
be effectively independent of each other. The authors of Ref. [48] proposed that the observed
deviations from this scenario may be due to interactions between the rare regions that exist
in itinerant systems [16]. Specifically, the very strong strong ferromagnetic fluctuations in the
composition range 0.08 < x < 0.4 lead to a ferromagnetic coupling between the rare regions.
The magnetization therefore increases faster upon cooling than the magnetization of isolated
rare regions. Additional theoretical work is needed to provide a quantitative understanding of
this phenomenon.

3.3. Possible antiferromagnetic Griffiths phase in Ba(Fe1−xMnx)2As2
As discussed above, a number of explicit observations of rare region (Griffiths) physics in itinerant
ferromagnets have been reported in the last five years. In contrast, analogous observations in
itinerant antiferromagnets have been missing (or, at least, clear-cut verifications of the expected
power-law behaviors are not available). Very recently, Inosov et al. [49] reported a possible
realization of an antiferromagnetic quantum Griffiths phase in manganese-doped iron arsenide
Ba(Fe1−xMnx)2As2.

The antiferromagnetic spin-density wave order of the parent compound BaFe2As2 is
suppressed with increasing manganese concentration x. Above a critical concentration xc of
about 10%, the character of the magnetic transition changes: The long-range ordered phase,
is preempted by a broad region of phase coexistence between antiferromagnetism, cluster glass
and spin glass order. The authors of Ref. [49] interpret the coexistence of magnetically ordered
and paramagnetic clusters as a manifestation of a Griffiths phase and/or the smearing of the
antiferromagnetic quantum critical point due to the random distribution of the manganese
atoms.

Further research is required to firmly establish the rare region (Griffiths) scenario in this
system. In particular, various thermodynamic and transport quantities need to be studied and
compared in the putative Griffiths region above xc. Are they controlled by nonuniversal power-
laws in T and other control variables? Are their exponents related? These questions remain a
task for the future.

17th International Conference on Recent Progress in Many-Body Theories (MBT17) IOP Publishing
Journal of Physics: Conference Series 529 (2014) 012016 doi:10.1088/1742-6596/529/1/012016

7



4. Conclusions
To summarize, we have reviewed a number of theoretical and experimental developments
regarding the unconventional disorder effects at magnetic quantum phase transitions. The focus
has been on novel results that appeared after the review article [17]; this means roughly during
the last three years.

The theory of smeared quantum phase transitions in itinerant magnets has been extended
to the case of transitions tuned by changing the chemical composition in alloys of type
A1−xBx. Recent high-precision measurements demonstrated that the ferromagnetic quantum
phase transition in Sr1−xCaxRuO3 is a good example of such a smeared transition. Advances in
theory also showed that quantum Griffiths effects in ferromagnetic metals are enhanced because
the conservation of the ferromagnetic order parameter hampers the relaxation of locally ordered
clusters. The resulting quantum Griffiths singularities are more singular than pure power laws.
This may explain the low-temperature upturns observed in the susceptibility-temperature curves
of Ni1−xVx. Moreover, a semiclassical theory of various transport quantities in antiferromagnetic
quantum Griffiths phases yielded nonuniversal power-law temperature dependencies controlled
by the same Griffiths exponent that governs the thermodynamics.

On the experimental side, several interesting results have been obtained in addition to the
already mentioned smeared ferromagnetic quantum phase transition in Sr1−xCaxRuO3. The
double-layer ruthenate (Sr1−xCax)3Ru2O7 features a strongly fluctuating nearly ferromagnetic
phase for 0.08 < x < 0.4 in which magnetization and susceptibility are governed by nonuniversal
power laws. However, the behavior of the exponents does not fully line up with the predictions of
the quantum Griffiths scenario, possibly because of strong interactions between the rare regions.
Very recently, a possible antiferromagnetic Griffiths phase was reported in Ba(Fe1−xMnx)2As2.
This system shows a region of coexistence between antiferromagnetic and paramagnetic clusters
above a manganese concentration of about 10%. Further work will be necessary to determine
whether this is indeed a manifestation of rare region effects.

In addition to these examples, magnetic cluster effects were also observed in Gd5Ge4 and
related intermetallic compounds [50, 51, 52]. They occur above the sizable critical temperature
of the antiferromagnetic phase transition. The Griffiths singularities should thus be of classical
rather than quantum type. Such classical Griffiths singularities generically require spatial
disorder correlations to make them strong enough to be visible in experiment [53, 11]. The
precise nature of these correlations and their effect on observables requires further experimental
and theoretical work. The situation is thus somewhat similar to the Griffiths effects reported in
various manganites, see the discussion in Ref. [11].

To conclude, the last three years have seen considerable experimental and theoretical progress
in the field of strongly disordered quantum phase transitions. However, many problems remain
at best partially solved. Moreover, several new questions have emerged that will be attacked in
the future.
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