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LOW-MASS DWARF TEMPLATE SPECTRA FROM THE SLOAN DIGITAL SKY SURVEY

John J. Bochanski,
1
Andrew A. West,

1,2
Suzanne L. Hawley,

1
and Kevin R. Covey

1

Received 2006 July 14; accepted 2006 October 14

ABSTRACT

We present template spectra of low-mass (M0YL0) dwarfs derived from over 4000 Sloan Digital Sky Survey
spectra. These composite spectra are suitable for use as medium-resolution (R � 1800) radial velocity standards. We
report mean spectral properties (molecular band-head strengths, equivalent widths) and use the templates to investigate
the effects of magnetic activity and metallicity on the spectroscopic and photometric properties of low-mass stars.
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1. INTRODUCTION

Low-mass dwarfs are the dominant stellar component of theGal-
axy. These ubiquitous stars, with main-sequence lifetimes greater
than theHubble time (Laughlin et al. 1997), have been employed
in a variety of Galactic studies: tracing Galactic disk kinemat-
ics (Hawley et al. 1996; Gizis et al. 2002; Lépine et al. 2003;
Bochanski et al. 2005), describing age-velocity dispersion rela-
tions (West et al. 2006), and studying Galactic structure com-
ponents (Reid et al. 1997; Kerber et al. 2001; Pirzkal et al. 2005).
Modeling of their internal structure, atmospheric properties, and
magnetic activity (Burrows et al. 1993; Baraffe et al. 1998; Allard
et al. 1997; Hauschildt et al. 1999; Allred et al. 2006; West et al.
2006) presents interesting theoretical problems. Observationally,
the spectra of these stars are marked by the presence of strong
molecular absorption features, particularly titanium oxide (TiO),
which dominates the optical opacity of their cool atmospheres.
The TiO features, along with molecular band heads introduced
by vanadium oxide (VO) and calcium hydride (CaH), are used
to define the widely accepted M spectral subtype classification
scheme (Kirkpatrick et al. 1991, 1999; Reid et al. 1995a).

In order to increase the utility of low-mass stars in large stud-
ies of Galactic structure and dynamics, we have been engaged in
analyzing spectroscopic data from the Sloan Digital Sky Survey
(SDSS; York et al. 2000), resulting in a series of papers that de-
scribe our methods for photometrically selecting and spectral-
typing these objects (Hawley et al. 2002; West et al. 2004, 2005;
Walkowicz et al. 2004) and discussing their magnetic activity
properties (West et al. 2004, 2006). However, we have been un-
able to exploit the velocity information contained in the spectra
due to the inability of the SDSS pipeline reductions to provide ac-
curate velocities for M dwarfs (Abazajian et al. 2004). Our mo-
tivation for the present work is the desire to produce a set of radial
velocity (RV) templates by combining native, high-quality SDSS
spectra at each spectral subtype in the M dwarf sequence. In ad-
dition, we split the spectra at each subtype into active and in-
active stars, and we examine the spectroscopic and photometric
properties of these templates separately to determine whether the
activity is imprinting a signature that may affect our velocity anal-
ysis and to follow-up on previous suggestions that colors and
detailed absorption features may change depending on activity
level (Hawley et al. 1996, 1999; Amado & Byrne 1997).

The RV of an object is the projection of its intrinsic motion
onto the line of sight of an observer. In order to accurately de-
termine the RV of a given star, one must carefully address the

systematics imposed by the time and location of the observation.
This is usually accomplished by shifting the frame of the ob-
server to a heliocentric (Sun-centered) or barycentric (center-of-
mass-centered) rest frame. The standard method of determining
stellar and galactic RVs has been cross-correlation, as introduced
by Tonry & Davis (1979). This method compares the spectrum of
a science target against a known template, using cross-correlation
to determine the wavelength shift (and therefore velocity) nec-
essary to align the target with the template. Thus, correlating with
a template spectrum that is similar to the science target in all
ways except velocity ensures the most accurate determination
of the RV.

In the following sections we report on our efforts to establish a
set of low-mass star template spectra3 suitable for RV analysis
using SDSS spectra at medium (R � 1800) resolution. In x 2 we
describe the observational material from SDSS and introduce the
problems with the RVs reported for low-mass stars by the stan-
dard SDSS spectroscopic pipeline. The observations were spectral-
typed, inspected for signs of chromospheric activity, and co-added
to form templates at each spectral type, as discussed in x 3. The
resulting spectral templates, their accuracy as RV standards, and
their spectral and photometric properties are detailed in x 4. Our
conclusions follow in x 5.

2. DATA

2.1. SDSS Photometry

The SDSS (York et al. 2000; Gunn et al. 1998, 2006; Fukugita
et al. 1996; Hogg et al. 2001; Smith et al. 2002; Stoughton et al.
2002; Abazajian et al. 2003, 2004, 2005; Pier et al. 2003; Ivezić
et al. 2004; Adelman-McCarthy et al. 2006) has revolutionized
optical astronomy. Centered on the northern Galactic cap, SDSS
has photometrically imaged �8000 deg2 in five filters (u, g, r, i,
and z) to a faint limit of 22.2 mag in r. This has resulted in pho-
tometry of�180 million objects with typical photometric uncer-
tainties of�2% at r � 20 (Ivezić et al. 2003; Adelman-McCarthy
et al. 2006). SDSS imaging has been invaluable in recent studies
concerning low-mass dwarfs, particularly the colors of the M star
sequence (Walkowicz et al. 2004; West et al. 2005) and the study
of L and T spectral types (Strauss et al. 1999; Fan et al. 2000;
Leggett et al. 2000; Tsvetanov et al. 2000; Hawley et al. 2002;
Knapp et al. 2004; Chiu et al. 2006).

2.2. SDSS Spectroscopy

Photometry acquired in SDSS imaging mode is used to select
spectroscopic follow-up targets. The photometry is analyzed by

3 Available at http://www.astro.washington.edu/slh/templates/.
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a host of targeting algorithms (originally described in Stoughton
et al. 2002), with the primary spectroscopic targets being galax-
ies (Strauss et al. 2002), luminous red galaxies with z � 0:5Y1:0
(Eisenstein et al. 2001), and high-redshift quasars (Richards et al.
2002). Designed to acquire redshifts for �1 million galaxies and
100,000 quasars, twin fiber-fed spectrographs deliver 640 flux-
calibrated spectra per 3� diameter plate over a wavelength range
of 3800Y9200 8 with a resolution R � 1800. Typical obser-
vations are the co-added result of multiple 15minute exposures,
with observations continuing until the signal-to-noise ratio per
pixel is >4 at g ¼ 20:2 and i ¼ 19:9 (Stoughton et al. 2002).
Typically, this takes about three exposures.Wavelength calibra-
tions, good to 5 km s�1 or better (Adelman-McCarthy et al. 2006),
are carried out as described in Stoughton et al. (2002). The spectra
are then flux-calibrated using F subdwarf standards, with broad-
band uncertainties of 4% (Abazajian et al. 2004). These ob-
servations, obtained and reduced in a uniform manner, form a
homogeneous, statistically robust data set of over 673,000 spec-
tra (Adelman-McCarthy et al. 2006). SDSS has already proven to
be an excellent source of low-mass stellar spectroscopy (Hawley
et al. 2002; Raymond et al. 2003; West et al. 2004; Silvestri et al.
2006). Unfortunately, the RVs determined for low-mass stars
in the SDSS pipeline are known to be inaccurate4 (Abazajian
et al. 2004). These systematic errors, on the order of 10 km s�1

(Abazajian et al. 2004), result primarily from spectral mismatch,
since there are only four low-mass stellar templates in the standard
spectroscopic pipeline. Thus, we sought to remedy this situation
by establishing a uniform set of low-mass RV templates derived
from SDSS spectroscopy.

3. ANALYSIS

To build a database of low-mass stellar spectra, we queried the
Data Release 3 (DR3; Abazajian et al. 2005) Catalog Archive
Server (CAS) for spectra with late-type dwarf colors (fromWest
et al. 2005), using 0:5 < r � i < 3:05 and 0:3 < i� z < 1:9. The
color ranges quoted in West et al. (2005) were slightly extended
to increase the total number of low-mass stellar spectra. These
color cuts were the only restrictions applied to the DR3 data.We
treated each spectral subtype independently, performing 11 (M0Y
L0) queries, some of which overlapped in color-color space (see
Table 1). Thus, some spectra were selected twice, usually in
neighboring spectral subtypes (i.e., M0 and M1). These queries
yielded�133,000 candidate spectra in the 11 (M0YL0) spectral
type bins.

3.1. Spectral Types and Activity

The candidate spectra were examined with a suite of software
specifically designed to analyze M dwarf spectra. This pipeline,
as introduced in Hawley et al. (2002), measures a host of molec-
ular band indices (TiO2, TiO3, TiO4, TiO5, TiO8, CaH1, CaH2,
and CaH3) and employs relations first described by Reid et al.
(1995a) to determine a spectral type from the strength of the
TiO5 band head. All spectral types were confirmed by manual
inspection, adjusting the final spectral type if necessary. The ac-
curacy of the final spectral type is �1 subtype. In addition, the
software pipeline measures the equivalent width (EW) of the
H� line, quantifying the level of magnetic activity in a given low-
mass dwarf. SeeWest et al. (2004) for details on the measurement
of band heads and line strengths in low-mass-star SDSS spectra.

Inspection of each candidate spectrum allowed us to remove
contaminants (mostly galaxies) from the sample, reducing its

size to �20,000 stellar spectra. We also removed the white
dwarfYM dwarf pairs that were photometrically identified by
Smolčić et al. (2004). The databasewas then culled of duplicates.
As shown in West et al. (2005) (and Table 1), M dwarfs of dif-
ferent spectral types can possess similar SDSSphotometric colors.
Thus, some spectra with overlapping photometric colors were
duplicated in our original database (see x 3 and Table 1). Each
duplicate spectrum was identified by file name and, in cases in
which different spectral types were manually assigned by eye to
the same star (typically one subtype apart), the earlier spectral
type was kept. The typical difference in spectral type was one
subclass, in agreement with our stated accuracy. These various
cuts reduced the sample from �20,000 to �12,000 stars.
The spectra were then categorized based on their activity. In

order to be considered active, a star had to meet the criteria
originally described in West et al. (2004): (1) the measured H�
EW must be larger than 1.0 8, (2) the measured EW must be
larger than the error, (3) the height of the H� line must be 3 times
the noise at the line center, and (4) the measured EW must be
larger than the average EW in two 50 8 comparison regions
(6500Y6550 and 6575Y6625 8). In order to be considered in-
active, the measured EW had to be less than 1.0 8 and have a
signal-to-noise ratio greater than 3 in the comparison regions. By
selecting only these active and inactive stars, our final sample is
limited to spectra with well-measured features, removing spec-
tra with low signal-to-noise ratios. The resulting database consisted
of �6000 stellar spectra.

3.2. Co-addition

SDSS spectra are corrected to a heliocentric rest frame during
the standard pipeline reduction and are on a vacuum-wavelength
scale. To assemble the fiducial template spectra, stars of a given
spectral type were first shifted to a zero-velocity rest frame, then
normalized and co-added. Multiple strong spectral lines were
used to measure the velocity of each star to obtain an accurate
shift to the rest frame. For inactive stars, the red line (76998) of
the K i doublet and both lines (8183 and 8195 8) of the Na i

doublet were measured, while in active stars, H� was also used.
These spectral line combinations were selected for their strength
in all low-mass stellar spectra, ensuring that no single line would
determine the final velocity of a star. Spectral lines were fit with
single Gaussians and inspected visually to ensure proper fitting.
Stars with spurious fits or discrepant line velocities ( lines that
deviated from the mean by >30 km s�1) were removed from the
final co-addition. Removing these spectra reduced the final sam-
ple size to�4300 stars. The classical redshift correction was then
applied to each spectrum in the final sample, justifying the spec-
tra to a zero-velocity rest frame.4 See http://www.sdss.org/dr5/products/spectra/radvelocity.html.

TABLE 1

CAS Query Color Ranges

Spectral Type r � i i� z

M0.......................................... 0.50Y0.85 0.30Y0.50
M1.......................................... 0.60Y1.15 0.30Y0.65
M2.......................................... 0.80Y1.30 0.40Y0.75
M3.......................................... 0.90Y1.50 0.40Y0.90
M4.......................................... 1.10Y1.80 0.60Y1.10
M5.......................................... 1.45Y2.20 0.80Y1.15
M6.......................................... 1.65Y2.25 0.90Y1.20
M7.......................................... 1.90Y2.70 0.95Y1.65
M8.......................................... 2.65Y2.85 1.20Y1.90
M9.......................................... 2.85Y3.05 1.25Y1.80
L0 ........................................... 2.30Y2.70 1.70Y1.90
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The velocity of each spectral line in the final sample was fit
with a measurement uncertainty of �10 km s�1, as determined
by the mean scatter among individual-line RVmeasurements. In
wavelength space, this translates to about 0.2 8 resolution near
H� (note that the resolution of SDSS [R � 1800] implies 3.6 8
resolution at H� ). Since the observed spectrum is a discretiza-
tion of a continuous flux source (i.e., the star), wavelength shifts
introduced by the RVof a star will move flux within and between

resolution elements. These wavelength shifts, which are resolved
to subpixel accuracy, act to increase the resolution of the final co-
added spectrum (see Pernechele et al. 1996). This is similar to the
common ‘‘drizzle’’ technique of using multiple, spatially distinct
low-resolution images to produce a single high-resolution image
(Fruchter & Hook 2002).

The wavelength-justified spectra were then normalized at
8350 8 and co-added (with equal weighting of each spectrum)

Fig. 1.—Mean template spectra of active low-mass dwarfs of types M0YL0. The spectral type and number of stars (in parentheses) are labeled for each template.
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using the following prescription. At each subtype, we attempted
to construct three templates: one composed solely of active stars
(Fig. 1), one composed of inactive stars (Fig. 2), and a third
composed of both the inactive and the active stars from the pre-
vious two sets (Fig. 3). For each template, the mean and standard
deviation were calculated at each pixel. In later (>M7) subtypes,

the lack of spectra meeting our activity and velocity criteria re-
sulted in fewer templates.

4. RESULTS AND DISCUSSION

The final template spectra (Figs. 1Y3) represent the mean
spectral properties of low-mass dwarfs as observed by the SDSS

Fig. 2.—Mean template spectra of inactive low-mass dwarfs of typesM0YM7.NoM8YL0 dwarfsmet the activity and consistent line velocity criteria. The spectral type
and number of stars in each template are labeled.
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spectrographs. In Figure 4 we show illustrative examples of our
templates for an inactive M1 star and an active M6 star, with
strong atomic lines and molecular band heads labeled. Promi-
nent molecules include MgH, CaH, TiO, VO, and CaOH. The
active stars show the Balmer series to H8 (k � 3889 8) along
with Ca iiH and K (k � 3968 and 39338). In Figure 5 we com-

pare a high signal-to-noise ratio SDSS spectrum of an M5 star
to its template counterpart in the region near H� . It is clear that
the template has significantly higher spectral resolution; e.g., a
weak feature near 6575 8 is visible only in the template. In the
following sections we explore the feasibility of using these tem-
plates as RV standards and the effects of chromospheric activity

Fig. 3.—Mean composite template spectra for low-mass dwarfs of types M0YL0, formed by combining the data shown in Figs. 1 and 2. The spectral type and number
of stars in each template are labeled.
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and metallicity on the mean spectroscopic and photometric char-
acteristics of low-mass stars.

4.1. Radial Velocity Accuracy

The primary uncertainties associated with determining RVs
using the cross-correlation method are due to the resolution of
the spectra, the accuracy of the wavelength calibration, and match-
ing the spectral type of the template and science data. To ensure
that the RVs measured with our templates are accurate, we have
carried out tests that quantify the internal consistency and ex-
ternal zero-point precision of these templates. These tests are
described below.

4.1.1. Internal Consistency

To quantify the internal consistency among templates, se-
quential spectral types were cross-correlated using the fxcor task

in IRAF.5 This minimizes the error introduced by spectral type
mismatch, which often dominates the errors associatedwith cross-
correlation redshift measurements (Tonry & Davis 1979). Thus,
wavelength calibration and intrinsic resolution are the major
sources of uncertainty in our analysis. In all cases (i.e., active,
inactive, and combined templates) the mean difference in ve-
locity between adjacent spectral subtypes was P1 km s�1. This
compares favorably with the 3.5 km s�1 spread in SDSS data
reported by York et al. (2000). Note that this value is derived

Fig. 4.—Illustrative template spectra of an inactive M1 star and an active M6 star, with strong molecular and atomic features labeled.

Fig. 5.—Comparison of a high signal-to-noise ratio SDSS M5 spectrum
(bottom) with the activeM5 template (top) near H� . Note the higher resolution of
the template spectrum.

5 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.

Fig. 6.—Histogram comparison of high-resolution echelle RV measurements
(solid line), medium-resolution cross-correlation RV determinations (dashed
line), and SDSS pipeline RVs (dotted line) for 19 HyadesM dwarfs. Note that the
SDSS pipeline reported wildly discrepant velocities for two stars (not shown).
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from observations of stars in M67 (Mathieu et al. 1986) and
does not include any low-mass dwarfs.

4.1.2. External Consistency: Hyades

To test the external accuracy of the template spectra, they
were cross-correlated against Hyades cluster members with well-
measured RVs, observed as part of our SDSS collaboration effort
to produce RV standards for low-mass dwarfs. Each Hyades star
has a known RV (Reid & Mahoney 2000; Stauffer et al. 1994,
1997; Terndrup et al. 2000; Griffin et al. 1988) or is a confirmed
member of the cluster, whose dispersion is<1 km s�1 (Gunn et al.
1988;Makarov et al. 2000). The Hyades RVs in the literaturewere
measured from high-resolution echelle spectra, with a typical ac-
curacy of P1 km s�1. Thus, the SDSS spectra of these Hyades
stars provide a way to check our cross-correlation RVs against an
external standard system.

Themedium-resolution spectra of the Hyades stars secured by
SDSSwere correlated against our templates, with the results shown
in Figure 6. The high-resolution echelle data have a mean of
38.8 km s�1 and a standard deviation of 0.27 km s�1. The RVs
measuredwith our template spectra yield ameanRVof 42.6 km s�1

with a standard deviation of 3.2 km s�1. By comparison, the SDSS
pipeline RVs produced a mean velocity of 31.9 km s�1 and a
standard deviation of 6.8 kms�1 (after removing twohighly discrep-
ant measurements). Using the template spectra better reproduces
the coherent velocity signature of the Hyades and provides much
more reliable velocities than the standard SDSS pipelinemeasure-
ments. The templates are therefore well-suited for use as medium-
resolution RV standards for low-mass dwarfs.

4.2. Spectral Differences: Activity and Metallicity

The effect of magnetic activity on the spectral properties of a
low-mass star is clearly manifested by the existence of emission
lines. This effect is often quantified by measuring the luminosity
in the H� line divided by the bolometric luminosity (LH� /Lbol).
Other changes due to activity, such as varying strength of mo-
lecular band heads (Hawley et al. 1996, 1999) and changes in the
shape of the continuum, have been sparsely investigated. In ad-
dition, metallicity affects the strength of molecular band heads at
a given temperature (see Woolf & Wallerstein 2006). Using the
template spectra as fiducial examples of thin-disk, solar-metallicity
low-mass stars, we next examine changes in the spectral prop-

erties of low-mass stars introduced by magnetic activity and
metallicity.

4.2.1. Activity: Decrements and LH� /Lbol

Emission features are dependent on the temperature and den-
sity structure of the outer stellar atmosphere. The line fluxes of
the Balmer series lines and the Ca ii K line (k � 3933 8) can be
used to examine the structure of the chromosphere inmagnetically
active stars (Reid et al. 1995b; Rauscher & Marcy 2006) and to
investigate chromospheric heating in quiescent (i.e., nonflaring)
dMe stars (Mauas & Falchi 1994;Mauas et al. 1997). The Balmer

TABLE 2

Active Template Decrements

Spectral Type H� H� H� H� H8 Ca ii K

M0.............................................................................. 2.09 (0.22) 1.00 (0.15) . . . . . . . . . . . .

M1.............................................................................. 2.33 (0.50) 1.00 (0.28) . . . . . . . . . 0.19 (0.16)

M2.............................................................................. . . . . . . . . . . . . . . . . . .
M3.............................................................................. 3.08 (0.73) 1.00 (0.28) . . . . . . . . . . . .

M4.............................................................................. 3.37 (0.67) 1.00 (0.26) 0.51 (0.26) 0.43 (0.25) . . . . . .

M5.............................................................................. 4.27 (1.33) 1.00 (0.34) 1.12 (0.41) 0.52 (0.30) 0.13 (0.36) 0.86 (0.38)

M6.............................................................................. 3.68 (0.66) 1.00 (0.24) 0.76 (0.25) 0.36 (0.22) 0.31 (0.33) 0.67 (0.27)

M7.............................................................................. 4.18 (0.71) 1.00 (0.23) 0.72 (0.23) 0.47 (0.23) 0.25 (0.32) 0.80 (0.27)

M8.............................................................................. 5.90 (1.11) 1.00 (0.25) 0.90 (0.28) 0.64 (0.28) 0.32 (0.39) . . .

M9.............................................................................. . . . . . . . . . . . . . . . . . .

L0 ............................................................................... . . . . . . . . . . . . . . . . . .
Averagea ..................................................................... 3.61 (1.21) 1.00 (0.00) 0.80 (0.23) 0.48 (0.11) 0.25 (0.09) 0.78 (0.10)

AD Leo (Hawley & Pettersen 1991) ........................ . . . 1.00 0.81 0.69 0.50 0.18

Quiet model (Allred et al. 2006)............................... 2.20 1.00 0.58 0.21 0.34 3.65

Flare model (Allred et al. 2006) ............................... 0.57 1.00 0.84 0.75 0.54 0.10

Note.—Decrement measurements are reported with measurement errors in parentheses.
a Errors reported on means are 1 � of individual decrement measurements.

Fig. 7.—Decrements for the average active templates (diamonds, error bars).
Also shown are results for the dM3e star ADLeo: observed flare (circles; Hawley
& Pettersen 1991), model flare (squares), and model quiescent (triangles) dec-
rements (Allred et al. 2006). Flaring atmospheres have increased density at
chromospheric temperatures, resulting in higher opacity and increased emission
in the higher order Balmer lines compared to H� . The result is a relatively flatter
decrement.
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decrement (ratios of Balmer line strengths to a fiducial, here taken
to beH� ) is traditionally used to quantifymedium-resolution spec-
tra. Table 2 gives the Balmer series and Ca iiK decrements for the
active templates. There is no strong trend in the decrement with
spectral type for the template spectra, which is consistent with the
previous study of Pettersen &Hawley (1989), who reported av-
erage decrements over a range of K andM spectral types. How-
ever, both the templates and Pettersen & Hawley (1989) show a
gradual increase in theH� /H� ratiowith spectral type (see Table 2).
Evidently, the structure and heating of low-mass stellar chromo-
spheres remains fairly similar over the range of M dwarf effective
temperature (mass), with H� gradually becoming stronger rela-
tive to the higher order Balmer lines at later spectral types.

The Balmer decrements observed in AD Leo (dM3e) during a
large flare (Hawley & Pettersen 1991) and determined for qui-
escent and flaring model atmospheres (Allred et al. 2006) are
given in Table 2 for comparison. In Figure 7 we plot these ob-
served and model decrements together with the average Balmer
decrements of the active low-mass stellar templates. The flare
decrements, both observed and model, are much flatter than those
in the nonflaring atmospheres, suggesting (although within the
errors) increased emission in the higher order Balmer lines. This
probably reflects the higher chromospheric densities (hence greater
optical depth in the Balmer line-forming region) in the flare at-
mospheres. Evidently, the range in chromospheric properties
amongM dwarfs of different spectral types is much less (during
quiescent periods) than in a given star between its quiet and flaring
behavior.

For completeness, the average Balmer line and Ca ii K EWs
and the quantity LH� /Lbol measured from the active templates are
reported in Table 3. Used to quantify activity, LH� /Lbol was
calculated using the H� EW and the (i� z) continuum (�) re-
lation of West et al. (2005), as first described in Walkowicz et al.
(2004). The average EWs reported in Table 3 agree with previ-
ous results (Stauffer et al. 1997; Gizis et al. 2002). The general
increase toward later types is attributed to the lower continuum
flux in the vicinity of H� as the stellar effective temperature de-
creases. The LH� /Lbol ratios are also consistent with previous
studies (Hawley et al. 1996; Gizis et al. 2000; West et al. 2004),
attaining a relatively constant value (with large scatter) among
early- to mid-M (M0YM5) types and decreasing at later types.

4.2.2. Activity: Band Heads

Molecular rotational and vibrational transitions imprint large
band heads on the observed spectra of low-mass stars. The strength
of the TiO band heads in the visible is often used as a spectral
type discriminant (Reid et al. 1995a). In addition, CaOH, TiO,
and CaH band heads have been employed as temperature and
metallicity indicators (Gizis 1997; Hawley et al. 1999; Woolf
& Wallerstein 2006). Following previous conventions (Reid
et al. 1995a; Kirkpatrick et al. 1999), we provide measure-
ments for the CaH band heads at�64008 (CaH1) and�68008
(CaH2 and CaH3) in Table 4 and for the TiO band heads at
�70508 (TiO2, TiO4, and TiO5) and�84308 (TiO8) in Table 5.
Note that TiO2 and TiO4 are subbands of the full TiO5 band
head.

TABLE 3

Active Template Equivalent Widths and LH� /Lbol; i�z

Spectral Type H� EW H� EW H� EW H� EW H8 EW Ca ii K EW LH� /Lbol; i�z

M0........................................... 1.39 (0.04) 1.09 (0.11) . . . . . . . . . . . . 2.15E�04 (5.48E�05)

M1........................................... 1.33 (0.10) 1.54 (0.31) . . . . . . . . . 1.03 (0.84) 1.28E�04 (5.83E�05)

M2........................................... 3.57 (0.10) . . . . . . . . . . . . . . . 3.24E�04 (2.87E�05)

M3........................................... 2.45 (0.31) 2.40 (0.48) . . . . . . . . . . . . 1.42E�04 (7.00E�05)

M4........................................... 4.12 (0.35) 5.10 (0.93) 6.33 (3.09) 7.17 (4.09) . . . . . . 1.75E�04 (6.08E�05)

M5........................................... 5.85 (1.16) 5.56 (1.34) 16.15 (4.56) 8.28 (4.41) 3.78 (10.26) 25.09 (12.75) 1.82E�04 (7.14E�05)

M6........................................... 6.06 (0.39) 7.94 (1.34) 18.88 (5.55) 9.36 (5.75) 9.26 (10.20) 19.10 (9.16) 1.35E�04 (2.43E�05)

M7........................................... 8.15 (0.50) 10.47 (1.70) 25.85 (7.89) 15.73 (7.64) 10.29 (13.44) 21.30 (8.84) 1.01E�04 (3.45E�05)

M8........................................... 10.99 (0.64) 12.23 (2.24) 113.05 (60.46) 38.65 (19.74) 20.34 (27.37) . . . 4.41E�05 (1.14E�05)

M9........................................... 6.10 (0.18) . . . . . . . . . 10.94 (14.52) . . . 2.52E�05 (6.41E�06)

L0 ............................................ 6.86 (0.41) . . . . . . . . . . . . . . . 1.97E�05 (2.50E�06)

Notes.—EWs are reported in angstroms, with measurement errors in parentheses. The LH� /Lbol; i�z measurement errors are also in parentheses.

TABLE 4

CaH Template Band Heads

CaH1 CaH2 CaH3

Spectral Type Active Inactive All Active Inactive All Active Inactive All

M0............................. 0.94 (0.00) 0.91 (0.01) 0.91 (0.01) 0.79 (0.00) 0.79 (0.01) 0.79 (0.01) 0.87 (0.00) 0.89 (0.01) 0.89 (0.01)

M1............................. 0.86 (0.01) 0.85 (0.02) 0.85 (0.02) 0.68 (0.01) 0.67 (0.01) 0.67 (0.01) 0.82 (0.01) 0.83 (0.02) 0.83 (0.02)

M2............................. 0.81 (0.01) 0.80 (0.03) 0.80 (0.03) 0.49 (0.01) 0.56 (0.03) 0.56 (0.03) 0.68 (0.01) 0.76 (0.04) 0.76 (0.04)

M3............................. 0.74 (0.04) 0.78 (0.07) 0.78 (0.07) 0.48 (0.03) 0.48 (0.06) 0.48 (0.06) 0.71 (0.04) 0.72 (0.09) 0.72 (0.09)

M4............................. 0.76 (0.03) 0.76 (0.04) 0.76 (0.04) 0.39 (0.02) 0.43 (0.02) 0.42 (0.02) 0.65 (0.03) 0.69 (0.04) 0.68 (0.04)

M5............................. 0.75 (0.04) 0.80 (0.03) 0.78 (0.04) 0.37 (0.03) 0.38 (0.02) 0.38 (0.02) 0.64 (0.04) 0.67 (0.03) 0.66 (0.04)

M6............................. 0.76 (0.03) 0.79 (0.07) 0.77 (0.05) 0.33 (0.01) 0.33 (0.03) 0.33 (0.02) 0.60 (0.02) 0.64 (0.06) 0.62 (0.04)

M7............................. 0.78 (0.04) 0.77 (0.04) 0.78 (0.04) 0.29 (0.01) 0.28 (0.01) 0.28 (0.01) 0.58 (0.02) 0.59 (0.02) 0.58 (0.02)

M8............................. 0.84 (0.04) . . . 0.85 (0.04) 0.28 (0.01) . . . 0.28 (0.01) 0.57 (0.01) . . . 0.57 (0.01)

M9............................. 0.90 (0.03) . . . 0.91 (0.03) 0.30 (0.01) . . . 0.30 (0.01) 0.63 (0.01) . . . 0.63 (0.01)

L0 .............................. 0.97 (0.04) . . . 0.96 (0.04) 0.50 (0.01) . . . 0.50 (0.01) 0.71 (0.01) . . . 0.71 (0.01)

Note.—Measurement errors are given in parentheses.
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TABLE 5

TiO Template Band Heads

TiO2 TiO4 TiO5 TiO8

Spectral Type Active Inactive All Active Inactive All Active Inactive All Active Inactive All

M0........................................ 0.86 (0.01) 0.91 (0.02) 0.91 (0.02) 0.89 (0.01) 0.91 (0.02) 0.91 (0.02) 0.78 (0.01) 0.82 (0.01) 0.82 (0.01) 0.97 (0.00) 0.99 (0.01) 0.99 (0.01)

M1........................................ 0.79 (0.03) 0.85 (0.03) 0.84 (0.03) 0.83 (0.02) 0.85 (0.02) 0.85 (0.02) 0.71 (0.01) 0.72 (0.02) 0.72 (0.02) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01)

M2........................................ 0.72 (0.02) 0.78 (0.05) 0.77 (0.05) 0.75 (0.02) 0.79 (0.05) 0.79 (0.05) 0.52 (0.01) 0.61 (0.03) 0.60 (0.03) 0.97 (0.01) 0.97 (0.03) 0.97 (0.03)

M3........................................ 0.65 (0.07) 0.69 (0.13) 0.69 (0.13) 0.69 (0.06) 0.70 (0.10) 0.70 (0.10) 0.49 (0.03) 0.49 (0.07) 0.49 (0.07) 0.99 (0.03) 0.92 (0.06) 0.93 (0.06)

M4........................................ 0.56 (0.04) 0.62 (0.05) 0.61 (0.05) 0.64 (0.04) 0.64 (0.04) 0.64 (0.04) 0.39 (0.02) 0.41 (0.03) 0.41 (0.02) 0.91 (0.02) 0.90 (0.03) 0.90 (0.02)

M5........................................ 0.51 (0.05) 0.54 (0.04) 0.53 (0.05) 0.60 (0.04) 0.60 (0.04) 0.60 (0.04) 0.34 (0.03) 0.34 (0.02) 0.34 (0.02) 0.84 (0.03) 0.84 (0.02) 0.84 (0.03)

M6........................................ 0.43 (0.02) 0.46 (0.07) 0.44 (0.05) 0.56 (0.03) 0.54 (0.07) 0.55 (0.05) 0.28 (0.01) 0.27 (0.03) 0.27 (0.02) 0.77 (0.01) 0.77 (0.04) 0.77 (0.03)

M7........................................ 0.35 (0.02) 0.37 (0.02) 0.35 (0.02) 0.53 (0.03) 0.47 (0.03) 0.51 (0.03) 0.22 (0.01) 0.20 (0.01) 0.22 (0.01) 0.68 (0.01) 0.68 (0.01) 0.68 (0.01)

M8........................................ 0.32 (0.02) . . . 0.32 (0.02) 0.65 (0.03) . . . 0.65 (0.03) 0.25 (0.01) . . . 0.25 (0.01) 0.55 (0.01) . . . 0.55 (0.01)

M9........................................ 0.32 (0.01) . . . 0.32 (0.01) 0.62 (0.02) . . . 0.61 (0.02) 0.26 (0.01) . . . 0.26 (0.01) 0.54 (0.00) . . . 0.54 (0.00)

L0 ......................................... 0.65 (0.04) . . . 0.64 (0.04) 0.87 (0.05) . . . 0.86 (0.05) 0.64 (0.02) . . . 0.64 (0.02) 0.62 (0.01) . . . 0.62 (0.01)

Note.—Measurement errors are given in parentheses.



As first observed by Hawley et al. (1996), activity can intro-
duce changes in the TiO band heads (Hawley et al. 1999; Martı́n
1999). Shown in Figure 8 is the TiO2 index as a function of the
TiO4 index. For active stars, the strength of the TiO2 band head
is increased (smaller index) at a given value of the TiO4 index.
Alternately, at a given index of TiO2, the TiO4 index is weaker in
active stars. This provides interesting constraints on the structure
of the atmosphere, suggesting that the formation of TiO, thought
to take place near the temperature minimum region below the
chromospheric temperature rise (Chabrier et al. 2005; Reid &
Hawley 2005), is affected by the presence of an overlying chro-
mosphere. The opposite behavior of these two subbands serves
to decrease the sensitivity of TiO5 to chromospheric activity,
making it a good temperature (spectral type) proxy regardless of
the activity level of the star (see Hawley et al. 1999).

4.2.3. Activity: Spectral Features

Two main effects influence the colors of active stars: the
presence of emission lines and changes in the continuum emis-
sion. To investigate these effects, we divided the active templates
by their inactive counterparts. Figure 9 is an illustrative example
of our analysis, showing the individual active and inactive M0
template spectra together with the ratio of the active to inactive
flux. The approximate wavelength bounds of the SDSS g, r, and i
filters are indicated. The ratio shows enhanced blue continuum
emission in the active template and significantly enhanced emis-
sion lines, particularly in Ca ii H and K. These effects lead to a
bluer (g� r) color for the active star (see Table 6, discussed fur-
ther in x 4.3). The change in color is dominated by the continuum
enhancement, with the increased emission-line flux providing
only a marginal effect. Similar continuum and line-flux enhance-
ments are observed during flares, suggesting that the active M0
template may include one or more stellar spectra obtained during
low-level flaring conditions. As described in Güdel et al. (2002),
low-level flaring maybe responsible for a significant fraction of
the ‘‘quiescent’’ chromospheric emission observed on active stars.

The ratio also shows two ‘‘emission’’ lines in the r band cor-
responding to emission in the core of the Na i D doublet (k �
5900 8; doublet marginally resolved at SDSS resolution but well
resolved in our templates) and in H� . Again, these lines do not
significantly contribute to the combined flux of the template in the r
band, as shown by the marginally redder r � i color for the active
template in Table 6. The spectral flux ratio in the i band is very close
to unity, with no strongly varying emission or continuum features
between the active and inactive templates. This analysis suggests
that changes in the continuum emission of active stars provide the
most important contribution to observed color differences.

The variable strength of the CaOH (62308) band head is also
of note. Figure 10 shows the active-to-inactive ratios for M4YM7
subtypes. The growth of this feature indicates that there is some
dependence of the formation mechanism of CaOH on spectral
type (effective temperature, mass), perhaps changing the posi-
tion of the temperature minimum within the atmosphere. Note
that the feature near this wavelength previously discussed as a
good temperature indicator by Hawley et al. (1999) is actually
due to TiO in early M dwarfs. CaOH begins to dominate the
opacity in this region only at types later than M4, which were
not available for observation in the clusters described by Hawley
et al. (1999). Therefore, these new SDSS observations are the
first evidence of a real effect in the CaOHband that differswith the
presence of a chromosphere and changeswith spectral type. These
observations, together with the differences in the TiO2 and TiO4
bands, should provide strong constraints on the next generation of
atmospheric models (including chromospheres) for M dwarfs.

4.2.4. Metallicity: Spectral Features

We explored the effects of metallicity on the spectra by com-
paring our composite templates to a low-metallicity subdwarf
(½Fe/H � � �0:5; Woolf & Wallerstein 2006) and a metal-rich
Hyades dwarf (½Fe/H � ¼ 0:13; Paulson et al. 2003), both ob-
served with SDSS. The results are shown in Figure 11. Previous
studies (West et al. 2004) indicated that subdwarfs are �0.2 mag
redder than solar-metallicity stars in g� r. This is most likely due
to the multiple hydride bands present in the g filter (Hartwick
1977; Dahn et al. 1995; West et al. 2004). The region between
4000 and 4500 8 in Figure 11 (left) shows that the flux in the
subdwarf is depressed by �60% compared to the level present
in the composite template. Strong hydride bands, such as MgH
near 5000 8 and CaH bands near 6800 8, are also depressed.
These bands are labeled in Figure 4.
In contrast, the metal-rich Hyades star (Fig. 11, right) shows a

mostly enhanced but variable continuum in the g band, which is
difficult to attribute to any particular feature. There is enhanced
emission in the core of Na i D and Ca ii H and K, but these are
likely not strong enough to influence the colors. Unfortunately, we
do not have colors in the SDSS filters, measured with the 2.5 m
SDSS telescope, for the Hyades stars, and therefore we cannot
directly compare the spectral features with measured color dif-
ferences between the metal-rich stars and our templates.

Fig. 8.—TiO2 vs. TiO4 for active (triangles) and inactive (circles) templates.
At a constant TiO4 value, TiO2 is deeper (smaller index values) in the active stars,
confirming the result originally discussed in Hawley et al. (1996).

Fig. 9.—Illustrative example of our flux-ratio analysis. The activeM0 spectral
template (top) is divided by the inactive (middle) template. The resulting flux ratio
is plotted on the bottom. The windows display the approximate wavelength
bounds of the SDSS g, r, and i filters.
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TABLE 6

Template Colors

Number of Stars
a u� g g� r r � i i� z

Spectral Type Active Inactive All Active Inactive All Active Inactive All Active Inactive All Active Inactive All

M0............................... 7 570 577 2.21 (0.40) 2.56 (0.66) 2.56 (0.66) 1.24 (0.38) 1.40 (0.55) 1.40 (0.54) 0.68 (0.13) 0.65 (0.12) 0.65 (0.12) 0.41 (0.09) 0.39 (0.08) 0.39 (0.08)

M1............................... 4 275 279 2.17 (0.51) 2.54 (0.64) 2.53 (0.64) 1.43 (0.19) 1.47 (0.44) 1.47 (0.44) 0.77 (0.16) 0.80 (0.11) 0.80 (0.11) 0.58 (0.16) 0.47 (0.07) 0.47 (0.07)

M2............................... 1 66 67 2.69 (0.03) 2.29 (0.80) 2.30 (0.80) 1.90 (0.03) 1.60 (0.36) 1.60 (0.35) 1.07 (0.03) 1.04 (0.18) 1.04 (0.18) 0.60 (0.03) 0.59 (0.11) 0.59 (0.11)

M3............................... 6 186 192 2.00 (0.35) 2.18 (0.85) 2.18 (0.84) 1.69 (0.18) 1.59 (0.23) 1.60 (0.22) 1.30 (0.15) 1.28 (0.19) 1.28 (0.19) 0.76 (0.17) 0.70 (0.12) 0.70 (0.12)

M4............................... 25 137 162 2.28 (1.09) 2.28 (0.77) 2.28 (0.82) 1.60 (0.17) 1.55 (0.21) 1.56 (0.20) 1.49 (0.28) 1.42 (0.16) 1.43 (0.19) 0.87 (0.12) 0.79 (0.10) 0.81 (0.10)

M5............................... 171 235 406 2.13 (0.95) 2.18 (0.89) 2.16 (0.92) 1.52 (0.30) 1.57 (0.24) 1.55 (0.27) 1.74 (0.21) 1.72 (0.21) 1.73 (0.21) 0.98 (0.12) 0.95 (0.11) 0.96 (0.12)

M6............................... 1132 899 2031 2.12 (0.90) 2.17 (0.93) 2.15 (0.91) 1.59 (0.13) 1.55 (0.13) 1.57 (0.13) 1.98 (0.11) 1.99 (0.12) 1.98 (0.12) 1.10 (0.06) 1.09 (0.06) 1.09 (0.06)

M7............................... 400 150 550 1.89 (0.91) 1.98 (0.93) 1.92 (0.92) 1.63 (0.17) 1.55 (0.15) 1.61 (0.17) 2.33 (0.19) 2.35 (0.18) 2.34 (0.19) 1.31 (0.12) 1.26 (0.09) 1.29 (0.11)

M8............................... 16 . . . 16 1.65 (0.93) . . . 1.65 (0.93) 1.80 (0.16) . . . 1.80 (0.16) 2.76 (0.12) . . . 2.76 (0.12) 1.71 (0.09) . . . 1.71 (0.09)

M9............................... 5 . . . 5 1.79 (0.79) . . . 1.79 (0.79) 1.74 (0.14) . . . 1.74 (0.14) 2.83 (0.07) . . . 2.83 (0.07) 1.70 (0.09) . . . 1.70 (0.09)

L0 ................................ 4 . . . 4 1.35 (1.35) . . . 1.35 (1.35) 2.50 (0.39) . . . 2.50 (0.39) 2.54 (0.08) . . . 2.54 (0.08) 1.83 (0.04) . . . 1.83 (0.04)

Note.—Mean SDSS colors are reported in magnitudes, with the 1 � spread at each spectral type reported in parentheses.
a Number of stars composing each template spectrum.



4.3. Photometric Differences: Colors

Photometry was obtained from the SDSS CAS for each star
used in constructing the templates. The average colors for each
template are listed in Table 6 by spectral type. Previous studies
have been inconclusive, suggesting that active stars are mar-
ginally bluer inU � B (Amado & Byrne 1997), redder in V � I
(Hawley et al. 1999), or not statistically different from inactive
populations for SDSS colors (West et al. 2004). We computed
the color difference for each spectral subtype (active color minus
inactive color) and averaged over spectral type. The data in Table 6
indicate the following general trends: active stars are �0:09 �
0:24 mag bluer than their nonactive counterparts in u� g, while
they are �0:05 � 0:03 mag redder in i� z. We note that these
trends are suggestive but are within the scatter. No strong trends
were present in g� r or r � i.
Our goal was to link changes in the spectral features to dif-

ferences in photometric colors. Due to the spectral coverage of
the SDSS spectra, we were only able to investigate the g� r and
r � i colors in detail, which did not demonstrate any discernible
trends with activity. The bluer g� r color in the M0 active tem-
plate appears to be anomalous and, from the spectral analysis, may
be due to low-level flaring (see x 4.2.3). This may also be simply
due to the small number of spectra associated with the active
M0 template. However, the photometric trend in u� g, where
active stars were an average of �0.09 mag bluer than inactive
stars, may be reflecting the presence of similar low-level flaring
in many of the active templates, as the enhanced blue continuum
during flares will appear even more strongly in the u band (Moffett
& Bopp 1976; Hawley & Pettersen 1991).
The small number of M subdwarfs identified in the SDSS

database and the lack of SDSS photometry for the Hyades M
dwarfs prevented us from investigating color differences due
to metallicity. As noted in x 4.2.4,West et al. (2004) showed that
M subdwarfs are �0.2 mag redder in g� r than their solar-
metallicity counterparts.

5. CONCLUSIONS

We used the large SDSS spectral database from DR3 to form
active, inactive, and composite template spectra of M dwarfs
spanning types M0YL0 on a uniform, zero-velocity scale. Our
spectral templates provide suitable radial velocity standards for
analyzing spectra with R � 1800, with an external accuracy of
3.8 km s�1, within the quoted error associated with the wavelength

Fig. 10.—Ratio of the active to inactive flux for the M4YM7 templates in the
vicinity of the CaOH (6230 8) band head. Note the increase in the ratio at later
types, indicating a shallower CaOH band in the active template compared to its in-
active counterpart. Apparently, the formation mechanism of CaOH depends on both
the star’s spectral type (effective temperature) and the presence of a chromosphere.

Fig. 11.—Illustrative examples of our flux ratio analysis of anM0 subdwarf (left) and anM1 Hyades star (right). The subdwarf and Hyades star are the top spectra in their
respective panels; the composite template of the same spectral type (from Fig. 3) appears as the middle spectrum, and the ratio of the two spectra is shown on the bottom.
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scale for SDSS spectroscopy (York et al. 2000). Internally, the
templates are consistent to <1 km s�1.

Themagnetically active templates, as identified by the presence
of H� emission in the individual stellar spectra, show little dif-
ference in the measured Balmer decrements with spectral type,
indicating that chromospheric structure and heating are apparently
similar throughout the M dwarf sequence. Flares cause much
larger changes in the decrement. We found some evidence that
color changes (active stars appearing bluer in u� g and in one
case in g� r) are due primarily to blue continuum enhancements
in the active stars, whichmay be due to intermittent low-level flar-
ing. In general, chromospheric line emission has a negligible ef-
fect on the colors of active stars.Molecular bands including TiO2,
TiO4, and CaOH showed significant changes between the active
and inactive templates.

With regard tometallicity, our findings extend the earlier study
by West et al. (2004), which found subdwarfs to be �0.2 mag
redder in g� r. Our spectral analysis shows that the flux in the
blue is depressed by as much as 60% and that the strong MgH
and CaH bands are significantly deeper in the subdwarfs. The spec-
tral analysis of metal-rich Hyades stars (½Fe/H � ¼ 0:13; Paulson
et al. 2003) shows continuum differences, but these are not ob-
viously attributed to any particular features.
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Güdel, M., Audard, M., Skinner, S. L., & Horvath, M. I. 2002, ApJ, 580, L73
Gunn, J. E., Griffin, R. F., Griffin, R. E. M., & Zimmerman, B. A. 1988, AJ, 96,
198

Gunn, J. E., et al. 1998, AJ, 116, 3040
———. 2006, AJ, 131, 2332
Hartwick, F. D. A. 1977, ApJ, 214, 778
Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377
Hawley, S. L., Gizis, J. E., & Reid, I. N. 1996, AJ, 112, 2799
Hawley, S. L., & Pettersen, B. R. 1991, ApJ, 378, 725
Hawley, S. L., Tourtellot, J. G., & Reid, I. N. 1999, AJ, 117, 1341
Hawley, S. L., et al. 2002, AJ, 123, 3409
Hogg, D. W., Finkbeiner, D. P., Schlegel, D. J., & Gunn, J. E. 2001, AJ, 122,
2129
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