
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 1996 

Tuning Numeric Parameters to Troubleshoot a Telephone-Tuning Numeric Parameters to Troubleshoot a Telephone-

Network Loop Network Loop 

Christopher J. Merz 
Missouri University of Science and Technology, merzc@mst.edu 

M. J. Pazzani 

A. P. Danyluk 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
C. J. Merz et al., "Tuning Numeric Parameters to Troubleshoot a Telephone-Network Loop," IEEE Expert, 
Institute of Electrical and Electronics Engineers (IEEE), Jan 1996. 
The definitive version is available at https://doi.org/10.1109/64.482957 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137734?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/64.482957
mailto:scholarsmine@mst.edu


Itmina Numeric Pammeters 

er J. Merz and Michael J. Pazzani, University of California, lrvine 
horeckyi Danyluk, Williams College 

R RESEARCH ADDRESSES THE 
challenge of learning to troubleshoot a tele- 
phone network using data provided by Nynex 
(the parent company of Nynex New England 
and Nynex New York, formerly New Eng- 
land Telephone and New York Telephone). 
Nynex has implemented a rule-based expert 
system, the Maintenance Administrator 
Expert (Max),’ which determines a malfunc- 
tion’s location for customer-reported tele- 
phone troubles In particular, Max trouble- 
shoots the local loop, the part of the telephone 
network from the central office to the cus- 
tomer’s premses Max, as well as other sys- 
tems generated from the original system, are 
an important part of the operations of Nynex 
New York and Nynex New England, the 
largest phone companies for those regions 

Like all expert systems, Max requires oc- 
casional maintenance to its knowledge base. 
In addition, many different sites in New York 
and New England use Max, and there are 
small differences in how each site diagnoses 
reported troubles Max’s designers have fa- 
cilitated this customization via numenc pa- 
rameters (indicating, for example, when a 
voltage is too high) that each site sets or that 
the designers adjust periodically to improve 
Max’s performance Our goal is to develop 
strategies to tune these parameters for im- 
proved performance on the examples Be- 
cause of the many troubles processed by Max 
and Max-related systems, a phone company 
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THE NYNEX 2MAx EXPERT SYSTEM ANALYZES THE RES[ T 
OF A N  AUTOMATED ELECTRIC TEST ON A TELEPHONE LIME 

AND DETERhflNES THE TYPE OF PROBLEM. HOWEVER, 
TUNING THE SYSTEM’S PARAMETER VALUES CAN BE 

DIFFICULT. THE 0n1-Ma SYSTEM CAN A UTOMTICALLY 
SET THESE PARAMETERS BY ANALYZING DEClSIONS MADE 

BY EXPERTS WHO TROUBLESHOOT PROBLEMS 

can save a significant amount of money with 
even a small improvement in performance 
(as little as 1%).  

In this article, we describe the trouble- 
shooting problem and Max in more detail 
and discuss how we collected the data for the 
study. Then we describe Opti-Max, our ap- 
proach for revising Max’s parameters, and 
describe the results of using Opti-Max to im- 
prove these parameters. 

The Nynex=Max 
expert system 

Max is an expert system developed by 
Nynex Science and Technology for the high- 
level diagnosis of customer-reported tele- 
phone troubles. Max runs on Sun worksta- 
tions and is implemented in Inference Corp.’s 

0885-9000/96/$4.00 0 1996 IEEE 

Automated Reasoning Tool (ART) Max, a 
moderately complex system comprising over 
150 rules, diagnoses troubles in the local 
loop Given information about the cus- 
tomer’s line, Max determnes roughly where 
the trouble lies and selects the type of tech- 
mcian that should address the trouble 

When Nynex customers have problems 
with their lines, they call a special number to 
report the trouble A phone company repre- 
sentative takes information from the cus- 
tomer about the trouble’s symptoms and cre- 
ates a trouble report At the same time, the 
representative initiates electncal tests on the 
line-AT&T’s Mechanized Loop Test The 
representative then attaches the data that the 
MLT gathers (for example, voltage readings) 
to the trouble report and sends it to a mam- 
tenance admnistrator for diagnosis The MA 
also receives a rough diagnosis from a prim- 
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itive rule-based system called the Screening 
Decisionunit. This unit makes its diagnosis 
on the basis of a vercode-a code that repre- 
sents MLT’s summary of its test results. The 
MAuses the information from the trouble re- 
port, MLT, and Screening Decision Unit tc 
make a high-level diagnosis of the trouble 
On the basis of this diagnosis, the MA deter- 
mines to what part of the local loop to dis- 
patch a repair technician: the central office 
the cable, or the customer’s home. The MA 
can also specify that a test should be per- 
formed on the trouble before it can be dis- 
patched. (Phone company operations are 
constantly evolving; this gives one view thal 
is adequate for understanding the Max ex- 
pert system.) 

Max performs the same role as the MAex- 
cept that it also may send a trouble to a 
human MA when it is unable to make a di- 
agnosis. (A human MAdoes not have the op- 
tion to refer a trouble to another MA.) There- 
fore, while the human MA has four choices, 
Max has five possible outcomes for each 
case: dispatch to the central office, dispatch 
to the cable, dispatch to the customer’s home, 
perform a test, or send to a human MA. 

Max is a rule-based system that makes its 
diagnosis on the basis of the MLT results as 
well as other general information, such as the 
type of switching equipment for the cus- 
tomer’s line. All maintenance locations 
throughout New York and New England use 
one general rule base, but it contains para- 
meters that can be tuned for local conditions. 
The segment below is a simplified fragment 
of a rule. (In this segment, numeric parame- 
ters that Opti-Max can change are capital- 
ized, variables whose values are set by the 
MLT are in small letters, and diagnoses are 
italicized.) 

If (highest-measure2 >= 
THRESHOLD21 

D i s p a t c h  t o  c u s t o m e r ’ s  
home 

Else If (highest-measure2 

H o l d  f o r  f u r t h e r  
testing 

Dispatch t o  c a b l e  

>= THRESHOLD31 

Else 

This rule tests voltage values against some 
parameter settings. The conditions test for 
high voltages. The classification produced 
by Max determines where to dispatch a re- 
pair person. 
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Max is currently in use throughout Nynex 
New York and New England. Since its de- 
ployment in 1990, Max has been modified 
and expanded for other related tasks in 
Nynex as well. Among its benefits, it is fast, 
consistent, and reduces the number of incor- 
rect dispatches over the Screening Decision 
Unit, which is a primitive rule-based system. 
Some of Max’s limitations are that it is not 
always correct and that the local parameters 
are difficult to tune properly. 

Data used in this study 

To evaluate how well Max performs and 
how much Opti-Max improves Max, Nynex 

TO GATHER THE EXPERT 
DIAGNOSES, W E  CREATED AN 
ON-LINE SURVEY SYSTEM 
THAT WOULD LET THE 
EXPERTS EASlLY CONSlDER 
TROUBLES A N D  lNPUT THEIR 
DIAGNOSES. 

collected 500 examples of troubles (from one 
geographical region, or site) that customers 
had reported. Max maintains a log of all trou- 
bles it has diagnosed, including all data used 
to describe the troubles. Max does not main- 
tain logs forever, but these logs do provide a 
useful mechanism for collecting trouble de- 
scriptions. Nynex presented the 500 exam- 
ple descriptions to between two and four 
human maintenance and dispatch experts (es- 
sentially expert MAS), who then analyzed the 
troubles. (In fact, Nynex implemented Max’s 
initial knowledge base from this type of 
expertise.) 

To gather the expert diagnoses, we created 
an on-line survey system that would let the 
experts easily consider troubles and input 
their diagnoses. We established a system that 
displays one trouble at a time on the screen 
in the same format as trouble reports are dis- 
played for an MA. Although this is not nec- 
essarily the clearest way to represent the trou- 
ble report, it is a format that the experts are 
very comfortable with. We asked our experts 
to diagnose each trouble. Alternatively, an 

expert might indicate that Max should send 
a case to a human MA. For troubles where 
four experts had provided diagnoses, we 
chose the answer given the majority of the 
time (if there was one) as the correct diag- 
nosis. In all other cases, we constructed a set 
of acceptable answers, defined as any answer 
given by an expert. We consider it acceptable 
for an automated system to react like any ex- 
pert would on a particular case. 

Using this definition of acceptable, each 
case has an average of 1.84 acceptable diag- 
noses. Max gave a diagnosis matching the 
acceptable answers in 66.2% of the 500 ex- 
amples. With five possible diagnoses, if Max 
were to guess randomly, it would be 36.8% 
accurate. Although getting 66.2% correct di- 
agnoses may seem low, in other studies’ 
Nynex has found that Max generally per- 
forms at least as well as experienced MAS. 
Some figures indicate a range of SO-95% ac- 
curacy, depending on the way accuracy is 
measured.’ 

In our study, conducted in a laboratory at 
the University of California, Irvine, we used 
only a subset of the complete Max knowl- 
edge base, which contributed in part to 
Max’s performance. (The complete Max 
knowledge base hasn’t been released to uni- 
versities for research purposes because of its 
proprietary nature.) In general, though, Max 
does not operate at 100% accuracy, because 
it is a broad system that must be tuned for 
good site-dependent performance. In fact, 
the capability to tune parameters effectively 
has eluded the system’s developers and 
maintainers. 

We use the data as follows: We repeatedly 
divide the 500 cases into two sets, one with 
400 examples and the other with 100. We 
give the 400 cases (the training set) to Opti- 
Max so that it can tune Max to agree with the 
-xpert diagnoses. And we use the 100 exam- 
ples in the other set (the test set) to evaluate 
rhe tuned parameters. 

Alternative sources of data 

The lack of agreement among the experts 
motivated us to explore alternative data 
sources. (The experts were, on average, giv- 
mg nearly two answers for each example de- 
scription.) Data for this task are particularly 
Jroblematic, and we considered various data 
sources. In addition, we explored various 
lata-engineering approaches to try to ex- 
ract useful information from this bad data.3 
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Given 
Parameters - a set of numeric parameters 
Examples a set of classified examples 

Errors = Errors(Examp1es. Parameters) 
Non-improvements = 0 
ReviseLoop Changed = False 

For each Parameter in Parameters 
OldValue = Parameter 
Parameter = Uniform(0, Parameter) 
NewErrors = Errors(Examples, Parameters) 
Effect = NewErrors - Errors 
If (Beneflcial(Effect)) Then Changed = True 
Else If (Zero(Effect) And Random(.5) = True)) 

Then Errors = NewErrors 
Else Parameter = OldValue 

F o r  each Parameter in Parameters 
OldValue = Parameter 
Parameter = Uniform(Parameter, 2 Parameter) 
NewErrors = Errors(Examp1es. Parameters) 
Effect = NewErrors Errors 
If (Beneficial(Effect)) 

Then Changed = True 
Else If (Zero(Effect) And Random(.S) = True)) 

Then Errors = NewErrors 
Else Parameter = OldValue 

For each Parameter in Parameters 
OldValue = Parameter 
Parameter = Uniform( 95 * Parameter, Parameter) 
NewErrors = Errors(Examples, Parameters) 
Effect = NewErrors - Errors 
If (Beneficial(Effect)) 

Then Changed = True 
Else If (Zero (Effect) And Random( 5) = True)) 

Then Errors = NewErrors 
Else Parameter = OldValue 

For each Parameter in Parameters 
OldValue = Parameter 
Parameter = Uniform(Parameter, 1.05 Parameter) 
NewErrors = Errors(Examples, Parameters) 
Effect = NewErrors - Errors 
If (Beneficial (Effect)) 

Then Changed = True 
Else If (Zero(Effect) And Random( 5) = True)) 

Then Errors = NewErrors 
Else Parameter = OldValue 

If Changed = True 
Then Non-improvements = 0 
Else Non-improvements = Non-improvements + 1 

If (Non-improvements < Maxwander) 
Then GoTo ReviseLoop 
Else Return Parameters 

Figure 1. The hill-climbing procedure for revising numeric parameter values. We use a value of 12 for 
Maxwander. Uniform(X, Y) returnsorandomnumberbetweenxandY.Random(X) returns 
  rue when a generated random number between zero and one is greater than X. 

Despite problems, the task of tuning Max’s 
parameters remains important to Nynex. 
Hence, we consider the expert-provided di- 
agnoses to be a reasonable starting point for 
doing this tuning. 

Machine learning approaches 
to tunirng Max 

We have investigated several learning ap- 
proaches for the Max domain-for example, 
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inductively learning a new knowledge base 
from data, modifying the existing knowledge 
base, and tuning the numeric parameter val- 
ues. In this article, we focus on parameter 
tuning, so now we briefly compare the other 
approaches to this one. 

In inductive learning, the task is to create 
a new knowledge base using data that de- 
scribes troubles and their diagnoses. The at- 
tributes used in inductive learning are the at- 
tributes that describe the troubles in Max. 
The classes that an inductive learner predicts 

are the diagnoses that the experts indicate 
Max should predict. We can apply any num- 
ber of inductive learning algorithms, includ- 
ing decision trees4 and neural  network^,^ to 
this learning problem In fact, Nynex has ex- 
perimented with decision trees and search 
techniques for generating new rules From 
a technical point of view, there is a possible 
disadvantage in using these inductive learn- 
ing algorithms They ignore all the knowl- 
edge contained in the Max rule base and 
focus solely on trying to find predictive 
relationships in the data Deductive learn- 
ers that are able to use existing domain 
knowledge, such as that encoded in the Max 
knowledge base, learn more accurately, and 
require fewer training examples than purely 
inductive learners 

However, from an organizational point of 
view, there is a more serious problem with 
inductive learners They produce decision 
trees or neural nets, instead of rules in ART 
that can be easily integrated into the existing 
operational environment Nynex has ex- 
pended considerable resources integrating 
Max into the computational environment of 
its maintenance centers, and Nynex would 
have to repeat much of this work if it 
switched to decision trees or neural nets In 
addition, Nynex has spent a lot of time hav- 
ing experts verify the rules in the Max rule 
base This work would also have to be re- 
peated. Furthermore, Nynex can customize 
Max to a specific site by simply changing the 
numeric parameters The decision tree or 
neural net would probably vary considerably 
at each site, increasing the effort required to 
manually inspect the rule base for errors Be- 
sides these financial- and time-investment is- 
sues, larger social issues concern the inte- 
gration of Max into the phone company 
operations Any modifications made to the 
system, even if clear improvements, are most 
wisely made in a manner that integrates 
neatly into the existing system. 

Theory revision systems, such as Either 
(Explanation-Based and Inductive Theory 
Extension and Refinement)s and FOCL 
(First-Order Combined Learner),7 overcome 
some of the technical shortcomings of in- 
ductive learners In particular, they take as 
input both a set of examples and the expert 
system’s rule base, and they produce as out- 
put a modified set of rules Experimental 
analysis typically shows such systems to be 
more accurate than inductive methods, when 
applicable We have experimented with 
FOCL on Max data and the Max rule base 
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To do this, we translated the Max rule base by 
hand into Prolog, and then FOCL revised the 
Prolog rules. The revisions involved spe- 
cializing some rules by adding extra condi- 
tions to them, deleting some rules that were 
incorrect, inducing some new rules, and 
deleting some conditions to rules. 

FOCL cannot directly change a numeric 
parameter. Instead, it might start with a con- 
dition, such as V o l t a g e  > 1 7  .5 and R e  - 
s i s t a n c e  > 2,400;deleteaconditionto 
producevol tage  > 1 7  .5;andaddacon- 
dition with induction to create Vo 1 t a g  e > 
1 7 . 5  and Resistance > 2 5 0 0 .  How- 
ever, nothing prevents FOCL from adding a 
condition involving a different attribute, such 
as V o l t a g e  > 1 7 . 5  and Type-of- 
s e r v i c e  = PBX. Although we demon- 
strated that FOCL was more accurate than an 
inductive learner, many of the organizational 
problems remain with FOCL. In particular, 
FOCL produces a different set of rules per 
site, rather than a different set of parameters. 

Parameter tuning for 
Nynex Max 

Parameters are the only mechanism used 
to customize Max for different sites. Here, 
we explore an automated approach to setting 
these parameter values. We have imple- 
mented a system called Opti-Max, which 
takes as input the following items: 

Training examples, each consisting of 
two components: (1) a set of 21 numeric 
and symbolic variables that describe 
items such as the type of telephone equip- 
ment that the customer uses and the AC 
and DC voltages and resistances between 
pairs of wires, and (2) a set of acceptable 
diagnoses for the particular case. We ob- 
tained these diagnoses from experts in the 
area of local loop maintenance. 
The rule base that Max uses. 
Initial parameter values. 

Opti-Max returns a set of revised parame- 
ter values that Max may use. The goal of the 
revision process is to reduce the number of 
times that Max disagrees with one of the ex- 
perts. Such a parameter revision system has 
an advantage over other learning approaches 
in that it does not require changing Max or 
the environment where it currently operates. 

The problem Opti-Max solves is essen- 
tially a function-optimization problem. The 
function to be optimized here is a complex 

function defined by symbolic rules. If we de- 
scribed the function and knew the derivatives 
of the function, we might be able to optimize 
it with standard mathematical methods such 
as gradient descent. Because this is not the 
case, we have explored various artificial in- 
telligence search methods. Although the 
methods we employ are not guaranteed to 
find a globally optimal solution, we have 
shown experimentally that they can improve 
the existing parameters and help customize 
Max for a new location. 

The methods we've tried include steepest 
ascent hill-climbing search, genetic algo- 
rithms,1° and simulated annealing." Opti- 
Max is a greedy hill-climbing search method. 
In previous experiments, we showed that an 

OP'II-mX RETURNS A SET OF 
REvlSED PARAMETER VALUES 

THAT Mm my USE. THE GOAL 
OF THE RE'VISION PROCESS IS TO 
REDUCE THE NUMBER OF TlMES 
THAT Mix DISAGREES WITH 
ONE OF THE EXPERTS. 

earlier version of a greedy hill-climbing 
search method performed at least as well as 
the other more complex search methods on a 
related problem but required much less time 
to revise the parameters.I2 

Figure 1 represents the Opti-Max algo- 
rithm. Basically, this algorithm randomly ad- 
justs a parameter by setting it to random num- 
bers between 0 and its current value, setting 
the parameter between its current value and 
twice its value, setting it to a value between 
its current value and 95% of that value, and 
setting it to a value between its current value 
and 105% of that value. For each, we evalu- 
ate how changing the parameter affects the 
training cases. If changing the parameter 
value reduces the number of mistakes made 
by Max, the algorithm changes the parameter 
value. If the change has no effect, then the pa- 
rameter is changed 50% of the time. Other- 
wise, the algorithm restores the parameter to 
its current value. The algoiithm repeats this 
process of cycling through all parameters, 
changing them to a random value, and eval- 
uating the effect of the change until it has cy- 
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cled through all parameters 12 times in a row 
without reducing the number of errors that 
Max makes. 

In previous versions of a hill-climbing 
search, we tried steepest-ascent hill climb- 
ing. In this approach, we changed only the 
parameter whose value most decreased the 
number of errors made on each cycle through 
the parameters. However, this approach re- 
quired many more cycles through the para- 
meters than our current approach does. In ad- 
dition, we tried hill-climbing operators that 
added or subtracted a fixed amount to each 
parameter value (for example, 2.5%) and in- 
creased this amount if no change had a ben- 
eficial effect. However, this approach was 
not as accurate as the more probabilistic ap- 
proach we currently use. 

Simulated annealing and genetic algo- 
rithms offer a potential advantage over our 
current approach. In particular, if there is an 
interaction among parameter values such that 
changing one parameter value is not benefi- 
cial unless another parameter value also 
changes, then the hill-climbing approach will 
not necessarily find such an improvement. 
However, this problem has not arisen in our 
experimental studies, where our current ap- 
proach is at least as accurate as the other 
methods yet requires considerably less time. 

Our approach changes a parameter fifty 
percent of the time if the change has no ef- 
fect. We added this step to allow exploration 
of some feature interactions. We design the 
operators in our hill-climbing search (which 
test parameters at random values rather than 
predetermined discrete differences) on the 
basis of our experience with more complex, 
time-consuming search methods. Further- 
more, our experience with genetic algorithms 
that can make both large and small changes 
to parameter values influenced our decision 
to explore both large changes (up to 100% of 
the parameter value) and small changes 
(within 5% of the parameter value). 

Experimentation and results 

We ran three experiments that demonstrate 
the effectiveness of the hill-climbing ap- 
proach summarized in Figure 1. In each ex- 
periment, we split the data into 30 random 
partitions of testing and training data. We 
trained the search methods on subsets of the 
training partition (from 100 to 400 examples 
in increments of 100). Then we evaluated the 
method's effectiveness by observing how 
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Figure 2. The results of using Opti-Max to (a) revise the parameter values currently in use to agreewiih expert diag- 
noses; (b) revise the parameter values currently in use at one site to agree with expert diagnoses at a different site; 
(c) revise the randomly set parameter values to agree with expert diagnoses. 

well Max performed on the examples in the 
test partition We averaged these results to 
generate the plots in Figure 2.  Each expen- 
ment passed different initial-parameter val- 
ues into Opti-Max The three possible initial 
pxameter configurations were 

Same-site setting. The actual parameters 
that Max uses are at the same site as 
where Nynex collected the training and 
test data. This tests Opti-Max’s capability 
to fine-tune Max in an operational setting 
by using expert feedback. 
Different-site setting. The actual parame- * 
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ters that Max uses are at a different site 
than where Nynex collected the data. This 
tests Opti-Max’s capability to customize 
Max to a new site, starting with a differ- 
ent site’s parameters. 
Random setting. We chose random val- 
ues for each parameter from a uniform 
distribution with a range from 75% of that 
parameter’s value to 125% of that value. 
This tests Opti-Max’s capability to tune 
the system, starting with reasonable but 
erroneous parameter settings. 

0 

Figure 2a plots Max’s average accuracy 

using the parameters that Opti-Max returns 
after training, when the initial parameters 
are those Max is currently using at the same 
site where Nynex collected the data. Under 
these conditions, the initial accuracy of Max 
was 66.2%. By tuning the parameters to em- 
ulate expert decisions, Opti-Max increased 
the accuracy of Max to 71 7% with 100 ex- 
amples and to 73 1% with 400 examples 
This demonstrates that Opti-Max can im- 
prove Max by making it agree with expert 
diagnosticians 

Figure 2b plots the average accuracy of 
Max using parameters that Opti-Max tunes 
when the initial parameters are the parame- 
ters that Max is currently using at a site that 
differs from the site where Nynex collected 
the data. In this experiment, we used the 
same data as in the previous experiment, but 
the initial parameter values were different. 
Here, Max’s initial accuracy was 64 5% By 
tuning the parameters to emalate expert de- 
cisions, Opti-Max increased the accuracy 
of Max to 71.0% with 100 examples and to 
72 7% with 400 examples This demon- 
strates that Opti-Max can customize Max to 
a new site by emulating the expert decisions 
at that site 

Finally, Figure 2c plots average accuracy 
of Max using parameters that Opti-Max 
tunes when we assign the initial parameters 
as random numbers within 25% of the val- 
ues currently used. Under this condition, 
Max’s initial accuracy was 63.2% By tun- 
ing the parameters to emulate expert deci- 
sions, Opti-Max increased the accuracy of 
Max to 72 0% with 400 examples. This 
demonstrates that Opti-Max can customize 
Max when the parameter values are set to 
random, but reasonable, values 

E HAVE DEMONSTRATED A 
parameter-tuning strategy, based on a hill- 
climbing search, for the Nynex Max trou- 
ble-screening expert system Max currently 
has a general set of rules that Nynex cus- 
tomzes for local optimization by setting pa- 
rameter values While customizing the rule 
base is extremely valuable, it is currently 
not very effective The parameters are diffi- 
cult to tune, because they may interact in 
ways that are not obvious when one looks 
at individual rules. Tuning them with a more 
global perspective would involve tracking 
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their interactions in all rules. Furthermore, 
Nynex needs to tune the parameters differ- 
ently at many sites, making the task partic- 
ularly time-consuming. Our search method 
tunes parameters to bring Max’s behavior 
closer to that of experts. This automated ap- 
proach reduces the time required of those 
who maintain the system. Furthermore, it 
tunes Max in a manner that is consistent 
with its current implementation; it does not 
modify the Max system itself. 

References 
I .  H. Rabinowitz et al., “Nynex Max: A Tele- 

phone Trouble Screening Expert System,” in 
Innovative Applications of Artificial Intelli- 
gence 3, R. Smith and C. Scott, eds., AAAI 
Press, Menlo Park, Calif., 1991, pp. 213-230. 

2. E. Wolin, Proc. Second Int’l Con$ Informa- 
tion and Knowledge Management, 1993, 
p. 729. 

3. F.J. Provost and A.P. Danyluk, “Learning 
from Bad Data,” in “Working Notes for Ap- 
plying Machine Learning in Practice: A 
Workshop at the 12th Int’l Machine Learn- 
ing Conf.,” Tech. Report AIC-95-023, Naval 
Research Laboratory, Navy Center for Ap- 
plied Research in Artificial Intelligence, 
Washington, D.C., 1995. 

4. J.R. Qninlan, “Induction of Decision Trees,” 
Machine Learning, Vol. 1, No. 1, 1986, pp. 
81-106. 

5. D. Rumelhart, G. Hinton, and R. Williams, 
“Learning Internal Representations by Error 

For display advertising, contact: 
Northwest: Jack Vance, 4030 Moorpark Avenue, Suite 116, San Jose, 
California 95117; Tel: (408) 741-0354; Fax: (408) 985-0181; 
email: j .vance@computer.org. 
Southern California and Mountain States: Richard C. Faust, 24050 
Madison Street, Suite 101, Torrance, California 90505; Tel: (310) 373-9604; 
Fax: (310) 373-8760. 
Southwest: Joe Tomaszewski, 366 Wall Street, Princeton, New Jersey 
08540-1517: Tel: (609) 683-7900; Fax: (609) 497-0412; 
email: l.edge@computer.org. 
Midwest: Harold L. Leddy, 345 Auburn Avenue, Winnetka, Illinois 60093- 
3603; Tel: (708) 446-8764; Fax: (708) 446-7985; 
email: h.leddy@computer.org. 
East CoasffSoutheast: Susan Barbash, 2 Stone Avenue, Ossining, New York 
10562; Tel: (914) 941-0195: Fax: (914) 941-8659. 
Northeast: Martin J. Tubridy, 3 Glenwood Road, Weston, Connecticut 
06883: Tel: (203) 222-7004, (800) 863-7432; Fax: (203) 227-5790. 

For production information, conference and classified advertising, contact 
Marian B. Tibayan, IEEE EXPERT, 10662 Los Vaqueros Circle, Los 
Alamitos, California 90720-1264; Tel: (714) 821-8380; Fax: (714) 821-4010; 
email: m.tibayan@computer.org; http://www.computer.org. 

Propagation,” in Parallel Distributed Pro- 
cessing: Explorations in the Microstructure 
of Cognition, Vol. I :  Foundations, D. Rumel- 
hart and J. McClelland, eds., MIT Press, Cam- 
bridge, Mass., 1986, pp. 318-362. 

6. A.P. Danyluk and F.J. Provost, “Small Dis- 
juncts in Action: Learning to Diagnose Errors 
in the Local Loop of the Telephone Network,” 
Proc. loth Int’l Machine Learning Con$, 
Morgan Kanfmann, San Francisco, 1993, pp, 
81-88. 

7. M. Pazzani and D. Kibler, “The Utility of 
Knowledge in Inductive Learning,” Machine 
Learning, Vol. 9, No. 1, June 1992, pp. 57-94. 

8. D. Ourston and R. Mooney. “Theory Refine- 
ment Combining Analytical and Empirical 
Methods,” Artificial Intelligence, Vol. 66, 
NO. 2,1994, pp. 311-344. 

9. M. Pazzani and C. Bmnk, “Finding Accurate 
Frontiers: A Knowledge-Intensive Approach 
to Relational Learning,” Proc. Nat’l Con$ Ar- 
tificial Intelligence, AAAI Press, Menlo Park, 
Calif., 1993, pp, 328-334. 

10. D. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, 
Addison-Wesley, Reading, Mass., 1989. 

11. P. van Laarhoven and E. Aarts, Simulated An- 
nealing: Theory and Applications, Kluwer 
Academic, Boston, 1989. 

12. C. Merz and M. Pazzani, “Parameter Tuning 
for the Max Expert System,” Proc. Sixth Int’l 
Con$ Tools with Artificial Intelligence, IEEE 
CS Press, Los Alamitos, Calif., 1994, p. 12. 

FEBRUARY 1996 

Christopher J. Merz is a PhD student in the De- 
partment of Information and Computer Science at 
the University of California, Irvine. His primary 
research interests are machine learning and neural 
networks. He received a BS in computer science 
from the University of Missouri, St. Louis, and an 
MS from the University of Missouri, Rolla. Read- 
ers can contact Merz at the ICs Department, Univ. 
of California, Irvine, CA 92717; cmerz@ics. 
uci.edu, 

Michael J. Pazzani is a professor and chair of the 
Department of Information and Computer Science 
at the University of Califomia, Irvine. He received 
a PhD in computer science from the University of 
California, Los Angeles, in 1987 and his MS and 
BS in computer science from the University of 
Connecticut in 1980. He serves on the editorial 
board for the Muchine Learning J. and the J.  Arti- 
ficial Zntelligence Research. He is the author of 
Learning Causal Relationships (Lawrence Erl- 
baum Associates, 1990). Readers can contact 
Pazzani at the ICs Department, Univ. of Califor- 
nia, Irvine, CA 92717; pazzani@ics.uci.edu; 
http://www.ics.uci.edu/-pazzani. 

Andrea Pohoreckyj Danyluk is an assistant pro- 
fessor of computer science at Williams College. 
From Nov. 1990 to June 1994, she was an em- 
ployee of Nynex Science and Technology. Her re- 
search interests are in machine learning, particu- 
larly in the analysis of the effects of data error on 
learning algorithms. She received a PhD in com- 
puter science from Columbia University in 1992 
and an AB from Vassar College in 1984. She is a 
member of the AAAI, ACM, and IEEE. Readers 
can contact Danyluk at the Dept. of Computer 
Science, Williams College, Bronfman Science 
Center, Williamstown, MA 01267; andrea@ 
cs.williams.edu. 

49 


	Tuning Numeric Parameters to Troubleshoot a Telephone-Network Loop
	Recommended Citation

	Tuning numeric parameters to troubleshoot a telephone-network loop

