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Electron self-energy for theK and L shells at low nuclear charge

Ulrich D. Jentschura,1,2,* Peter J. Mohr,1,† and Gerhard Soff2,‡

1National Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, Maryland 20899-8401
2Institut für Theoretische Physik, TU Dresden, Mommsenstraße 13, 01062 Dresden, Germany

~Received 22 August 2000; published 21 March 2001!

A nonperturbative numerical evaluation of the one-photon electron self-energy for theK- andL-shell states
of hydrogenlike ions with nuclear charge numbersZ51 to 5 is described. Our calculation for the 1S1/2 state
has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for theL-shell states (2S1/2, 2P1/2, and 2P3/2)
the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is
described in detail. The numerical results are compared to results based on known terms in the expansion of the
self-energy in powers ofZa.

DOI: 10.1103/PhysRevA.63.042512 PACS number~s!: 31.30.Jv, 12.20.Ds, 06.20.Jr, 31.15.2p

I. INTRODUCTION

The nonperturbative numerical evaluation of radiative
corrections to bound-state energy levels is interesting for two
reasons. First, the recent dramatic increase in the accuracy of
experiments that measure the transition frequencies in hydro-
gen and deuterium@1–3# necessitates a numerical evaluation
~nonperturbative in the binding Coulomb field! of the radia-
tive corrections to the spectrum of atomic systems with low
nuclear chargeZ. Second, the numerical calculation serves as
an independent test of analytic evaluations which are based
on an expansion in the binding field with an expansion pa-
rameterZa.

In order to address both issues, a high-precision numerical
evaluation of the self energy of an electron in the ground
state in hydrogenlike ions has been performed@4,5#. The
approach outlined in@4# is generalized here to theL shell,
and numerical results are obtained for the (n52) states
2S1/2, 2P1/2, and 2P3/2. Results are provided for atomic
hydrogen, He1, Li21, Be31, and B41.

It has been pointed out in@4,5# that the nonperturbative
effects~in Za) can be large even for low nuclear charge and
exceed the current experimental accuracy for atomic transi-
tions. For example, the difference between the sum of the
analytically evaluated terms up to the order ofa (Za)6 and
the final numerical result for the ground state is roughly 27
kHz for atomic hydrogen and about 3200 kHz for He1. For
the 2S state the difference is 3.5 kHz for atomic hydrogen
and 412 kHz for He1. The large difference between the re-
sult obtained by an expansion inZa persists even after the
inclusion of a result recently obtained in@6# for the logarith-
mic term of ordera (Za)7ln(Za)22. For the ground state, the
difference between the all-order numerical result and the sum
of the perturbative terms is still 13 kHz for atomic hydrogen
and 1600 kHz for He1. For the 2S state, the difference
amounts to 1.6 kHz for atomic hydrogen and to 213 kHz for
He1.

These figures should be compared to the current experi-
mental precision. The most accurately measured transition to
date is the 1S-2S frequency in hydrogen; it has been mea-
sured with a relative uncertainty of 1.8 parts in 1014 or 46 Hz
@3#. This experimental progress is due in part to the use of
frequency chains that bridge the range between optical fre-
quencies and the microwave cesium time standard. The un-
certainty of the measurement is likely to be reduced by an
order of magnitude in the near future@3,7#. With trapped
hydrogen atoms, it should be feasible to observe the 1S-2S
frequency with an experimental linewidth that approaches
the 1.3 Hz natural width of the 2S level @8,9#.

The perturbation series inZa is slowly convergent. The
all-order numerical calculation presented in this paper essen-
tially eliminates the uncertainty from unevaluated higher-
order analytic terms, and we obtain results for the self-energy
remainder functionGSE with a precision of roughly 0.8
3Z4 Hz for the ground state of atomic hydrogen and 1.0
3Z4 Hz for the 2S state.

In the evaluation, we take advantage of resummation and
convergence acceleration techniques. The resummation tech-
niques provide an efficient method of evaluation of the
Dirac-Coulomb Green function to a relative uncertainty of
10224 over a wide parameter range@5#. The convergence
acceleration techniques remove the principal numerical dif-
ficulties associated with the singularity of the relativistic
propagators for nearly equal radial arguments@10#.

The one-photon self-energy treated in the current investi-
gation is about two orders of magnitude larger than the other
contributions to the Lamb shift in atomic hydrogen. A com-
prehensive review of the various contributions to the Lamb
shift in hydrogenlike atoms in the full range of nuclear
charge numbersZ51 –110 has been given in@11–14#.

This paper is organized as follows. The method of evalu-
ation is discussed in Sec. II. The calculation is divided into a
low-energy part and a high-energy contribution. The low-
energy part is treated in Sec. III, and the high-energy part is
discussed in Sec. IV. Numerical results are compiled in Sec.
V. Also in Sec. V, we compare numerical and analytic re-
sults for the Lamb shift in the region of low nuclear charge
numbers. Of special importance is the consistency check
with available analytic results@15,16# for higher-order bind-
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ing corrections to the Lamb shift. We make concluding re-
marks in Sec. VI.

II. METHOD OF EVALUATION

A. Status of analytic calculations

The ~real part of the! energy shiftDESE due to the elec-
tron self-energy radiative correction is usually written as

DESE5
a

p

~Za!4

n3
F~nl j ,Za! mec2, ~2.1!

where F is a dimensionless quantity. In the following, the
natural unit system with\5c5me51 ande254pa is em-
ployed. Note thatF(nl j ,Za) is a dimensionless function
which depends for a given atomic state with quantum num-
bersn, l, andj on only one argument~the couplingZa). For
excited states, the~nonvanishing! imaginary part of the self-
energy is proportional to the~spontaneous! decay width of
the state. We will denote here thereal part of the self-energy
by DESE, exclusively. The semianalytic expansion of
F(nl j ,Za) about Za50 for a general atomic state with
quantum numbersn, l, and j gives rise to the semianalytic
expansion,

F~nl j ,Za!5A41~nl j ! ln~Za!221A40~nl j !1~Za! A50~nl j !

1~Za!2 @A62~nl j ! ln2~Za!221A61~nl j !

3 ln~Za!221GSE~nl j ,Za!#. ~2.2!

For particular states, some of the coefficients may vanish.
Notably, this is the case forP states, which are less singular
thanSstates at the origin@see Eq.~2.4! below#. For thenS1/2
state (l 50,j 51/2), none of the terms in Eq.~2.2! vanishes,
and we have

F~nS1/2,Za!5A41~nS1/2! ln~Za!221A40~nS1/2!

1~Za! A50~nS1/2!1~Za!2

3@A62~nS1/2! ln2~Za!221A61~nS1/2!

3 ln~Za!221GSE~nS1/2,Za!#. ~2.3!

The A coefficients have two indices, the first of which de-
notes the power ofZa @including those powers explicitly
shown in Eq.~2.1!#, while the second index denotes the
power of the logarithm ln(Za)22. For P states, the coeffi-
cientsA41, A50, andA62 vanish, and we have

F~nPj ,Za!5A40~nPj !1~Za!2 @A61~nPj !

3 ln~Za!221GSE~nPj ,Za!#. ~2.4!

For S states, the self-energy remainder functionGSE can be
expanded semianalytically as

GSE~nS1/2,Za!5A60~nS1/2!1~Za! @A71~nS1/2! ln~Za!22

1A70~nS1/2!1o~Za!# ~2.5!

~for the ‘‘order’’ symbolso andO we follow the usual con-
vention, see, e.g.,@17,18#!. For P states, the semianalytic
expansion ofGSE reads

GSE~nPj ,Za!5A60~nPj !1~Za! @A70~nPj !1o~Za!#.
~2.6!

The fact thatA71(nPj ) vanishes has been pointed out in@6#.
We list below the analytic coefficients and the Bethe loga-
rithms relevant to the atomic states under investigation. For
the ground state, the coefficientsA41 andA40 were obtained
in @19–25#, the correction termA50 was found in@26–28#,
and the higher-order binding correctionsA62 and A61 were
evaluated in@29–37,15#. The results are

A41~1S1/2!5 4
3 ,

A40~1S1/2!5 10
9 2 4

3 lnk0~1S!,

A50~1S1/2!54p @ 139
1282 1

2 ln 2#,

A62~1S1/2!521,

A61~1S1/2!5 28
3 ln22 21

20 . ~2.7!

The Bethe logarithm lnk0(1S) has been evaluated in@38# and
@39–43# as

ln k0~1S!52.984 128 555 8~3!. ~2.8!

For the 2S state, we have

A41~2S1/2!5 4
3 ,

A40~2S1/2!5 10
9 2 4

3 ln k0~2S!,

A50~2S1/2!54p @ 139
1282 1

2 ln 2#,

A62~2S1/2!521,

A61~2S1/2!5 16
3 ln 21 67

30 . ~2.9!

The Bethe logarithm lnk0(2S) has been evaluated~see@38–
43#, the results exhibit varying accuracy! as

ln k0~2S!52.811 769 893~3!. ~2.10!

It might be worth noting that the value for lnk0(2S) given in
@44# evidently contains a typographical error. Our indepen-
dent reevaluation confirms the result given in Eq.~2.10!,
which was originally obtained in@38# to the required preci-
sion. For the 2P1/2 state we have

A40~2P1/2!52 1
6 2 4

3 ln k0~2P!,

A61~2P1/2!5 103
180. ~2.11!

Note that a general analytic result for the logarithmic correc-
tion A61 as a function of the bound-state quantum numbersn,
l, and j can be inferred from Eq.~4.4a! of @34,35# upon
subtraction of the vacuum polarization contribution implic-
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itly contained in the quoted equation. The Bethe logarithm
for the 2P states reads@38,45#

ln k0~2P!520.030 016 708 9~3!. ~2.12!

Because the Bethe logarithm is an inherently nonrelativistic
quantity, it is spin-independent and therefore independent of
the total angular momentumj for a given orbital angular
momentuml. For the 2P3/2 state the analytic coefficients are

A40~2P3/2!5 1
12 2 4

3 ln k0~2P!,

A61~2P3/2!5 29
90 . ~2.13!

We now consider the limit of the functionGSE(Za) as
Za→0. The higher-order terms in the potential expansion
~see Fig. 3 below! and relativistic corrections to the wave
function both generate terms of higher order inZa which are
manifest in Eq.~2.2! in the form of the nonvanishing func-
tion GSE(Za), which summarizes the effects of the relativ-
istic corrections to the bound electron wave function and of
higher-order terms in the potential expansion. For very soft
virtual photons, the potential expansion fails and generates
an infrared divergence which is cut off by the atomic mo-
mentum scaleZa. This cutoff for theinfrared divergence is
one of the mechanisms that leads to the logarithmic terms in
Eq. ~2.2!. Some of the nonlogarithmic terms of relative order
(Za)2 in Eq. ~2.2! are generated by the relativistic correc-
tions to the wave function. The functionGSE does not van-
ish, but approaches a constant in the limitZa→0. This con-
stant can be determined by analytic or semianalytic
calculations; it is referred to as theA60 coefficient, i.e.,

A60~nl j !5GSE~nl j ,0!. ~2.14!

The evaluation of the coefficientA60(1S1/2) has been histori-
cally problematic@15,34–37#. For the 2S state, there is cur-
rently only one precise analytic result available~Ref. @15#!,

A60~2S1/2!5231.840 47~1!. ~2.15!

For the 2P1/2 state, the analytically obtained result is~Ref.
@16#!

A60~2P1/2!520.998 91~1!, ~2.16!

and for the 2P3/2 state, we have~Ref. @16#!

A60~2P3/2!520.503 37~1!. ~2.17!

The analytic evaluations essentially rely on an expansion of
the relativistic Dirac-Coulomb propagator in powers of the
binding field, i.e., in powers of Coulomb interactions of the
electron with the nucleus. In numerical evaluations, the bind-
ing field is treated nonperturbatively, and no expansion is
performed.

B. Formulation of the numerical problem

Numerical cancellations are severe for small nuclear
charges. In order to understand the origin of the numerical
cancellations it is necessary to consider the renormalization

of the self-energy. The renormalization procedure postulates
that the self-energy is essentially the effect on the bound
electron due to the self-interaction with its own radiation
field, minus the same effect on a free electron which is ab-
sorbed in the mass of the electron and therefore not observ-
able. The self-energy of the bound electron is the residual
effect obtained after the subtraction of two large quantities.
Terms associated with renormalization counterterms are of
order 1 in theZa expansion, whereas the residual effect is of
order (Za)4 @see Eq.~2.1!#. This corresponds to a loss of
roughly nine significant digits atZ51. Consequently, even
the precise evaluation of the one-photon self-energy in a
Coulomb field presented in@46# extends only down toZ
55. Among the self-energy corrections in one-loop and
higher-loop order, numerical cancellations in absolute terms
are most severe for theone-loop problem because of the
large size of the effect of the one-loop self-energy correction
on the spectrum.

For our high-precision numerical evaluation, we start
from the regularized and renormalized expression for the
one-loop self-energy of a bound electron,

DESE5 lim
L→`

H i e2 ReE
CF

dv

2pE dk

~2p!3
Dmn~k2,L!

3K c̄Ugm
1

p”2k”212g0V
gn UcL 2DmJ

5 lim
L→`

H 2 i e2 ReE
C

dv

2pE dk

~2p!3
Dmn~k2,L!

3^cu am eik•x G~En2v! an e2 ik•x uc&2DmJ ,

~2.18!

whereG denotes the Dirac-Coulomb propagator,

G~z!5
1

a•p1b1V2z
, ~2.19!

and Dm is the L-dependent~cutoff-dependent! one-loop
mass counter term,

Dm5
a

p
~ 3

4 ln L21 3
8 ! ^b&. ~2.20!

The photon propagatorDmn(k2,L) in Eq. ~2.18! in Feynman
gauge reads

Dmn~k2,L!52S gmn

k21 i e
2

gmn

k22L21 i e
D . ~2.21!

The contour CF in Eq. ~2.18! is the Feynman contour,
whereas the contourC is depicted in Fig. 1. The contourC is
employed for thev integration in the current evaluation@see
the last line of Eq.~2.18!#. The energy variablez in Eq.
~2.19! therefore assumes the value
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z5En2v, ~2.22!

where En is the Dirac energy of the atomic state, andv
denotes the complex-valued energy of the virtual photon. It
is understood that the limitL→` is takenafter all integrals
in Eq. ~2.18! are evaluated.

The integration contour for the complex-valued energy of
the virtual photonv in this calculation is the contourC em-
ployed in @46–49# and depicted in Fig. 1. The integrations
along the low-energy contourCL and the high-energy con-
tour CH in Fig. 1 give rise to the low- and the high-energy
contributionsDEL andDEH to the self-energy, respectively.
Here, we employ a further separation of the low-energy in-
tegration contourCL into an infrared contourCIR and a
middle-energy contourCM shown in Fig. 2. This separation
gives rise to a separation of the low-energy partDEL into the
infrared partDEIR and the middle-energy partDEM ,

DEL5DEIR1DEM . ~2.23!

For the low-Z systems discussed here, all complications that
arise for excited states due to the decay into the ground state
are relevant only for the infrared part. Except for the further
separation into the infrared and the middle-energy part, the
same basic formulation of the self-energy problem as in@47#
is used. This leads to the following separation: for the infra-
red partDEIR ,

vP~0, 1
10 En!6 id,

for the middle-energy partDEM ,

vP~ 1
10 En ,En!6 id,

and for the high-energy partDEH ,

vPEn1 i ~2`,1`!.

Integration along these contours gives rise to the infrared, the
middle-energy, and the high-energy contributions to the en-
ergy shift. For all of these contributions, lower-order terms
are subtracted in order to obtain the contribution to the self-
energy of order (Za)4. We obtain for the infrared part,

DEIR5
a

p F 21

200
^b&1

43

600
^V&1

~Za!4

n3
F IR~nl j ,Za!G ,

~2.24!

whereF IR(nl j ,Za) is a dimensionless function of order one.
The middle-energy part is recovered as

DEM5
a

p F279

200
^b&1

219

200
^V&1

~Za!4

n3
FM~nl j ,Za!G ,

~2.25!

and the high-energy part reads@47,48#

DEH5Dm1
a

p F2
3

2
^b&2

7

6
^V&1

~Za!4

n3
FH~nl j ,Za!G .

~2.26!

The infrared part is discussed in Sec. III A. The middle-
energy part is divided into a middle-energy subtraction term
FMA and a middle-energy remainderFMB . The subtraction
termFMA is discussed in Sec. III B, the remainder termFMB
is treated in Sec. III C. We recover the middle-energy term
as the sum

FM~nl j ,Za!5FMA~nl j ,Za!1FMB~nl j ,Za!. ~2.27!

A similar separation is employed for the high-energy part.
The high-energy part is divided into a subtraction termFHA ,
which is evaluated in Sec. IV A, and the high-energy remain-
der FHB , which is discussed in Sec. IV B. The sum of the
subtraction term and the remainder is

FH~nl j ,Za!5FHA~nl j ,Za!1FHB~nl j ,Za!. ~2.28!

The total energy shift is given as

FIG. 1. Integration contourC for the integration over the energy
v5En2z of the virtual photon. The contourC consists of the low-
energy contourCL and the high-energy contourCH . Lines shown
displaced directly below and above the real axis denote branch cuts
from the photon and electron propagator. Crosses denote poles
originating from the discrete spectrum of the electron propagator.
The contour used in this work corresponds to the one used in@47#.

FIG. 2. Separation of the low-energy contourCL into the infra-
red partCIR and the middle-energy partCM . As in Fig. 1, the lines
directly above and below the real axis denote branch cuts from the
photon and electron propagator. Strictly speaking, the figure is valid
only for the ground state. For excited states, some of the crosses,
which denote poles originating from the discrete spectrum of the
electron propagator, are positioned to the right of the line Rev
50. These poles are subtracted in the numerical evaluation.
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DESE5DEIR1DEM1EH2Dm

5
a

p

~Za!4

n3
@F IR~nl j ,Za!

1FM~nl j ,Za!1FH~nl j ,Za!#. ~2.29!

The scaled self-energy functionF defined in Eq.~2.1! is
therefore obtained as

F~nl j ,Za!5F IR~nl j ,Za!1FM~nl j ,Za!1FH~nl j ,Za!.
~2.30!

In analogy to the approach described in@46,47,49#, we define
the low-energy part as the sum of the infrared part and the
middle-energy part,

DEL5DEIR1DEM

5
a

p F3

2
^b&1

7

6
^V&1

~Za!4

n3
FL~nl j ,Za!G ,

~2.31!

where

FL~nl j ,Za!5F IR~nl j ,Za!1FM~nl j ,Za!. ~2.32!

The limits for the functionsFL(nl j ,Za) andFH(nl j ,Za) as
Za→0 were obtained in@5,48–50#.

C. Treatment of the divergent terms

The free-electron propagator

F5
1

a•p1b2z
~2.33!

and the full electron propagatorG defined in Eq.~2.19! fulfill
the following identity, which is of particular importance for
the validity of the method used in the numerical evaluation
of the all-order binding correction to the Lamb shift,

G5F2F V F1F V G V F. ~2.34!

This identity leads naturally to a separation of the one-
photon self-energy into a zero-vertex, a single-vertex, and a
many-vertex term. This is represented diagrammatically in
Fig. 3.

All ultraviolet divergences which occur in the one-photon
problem~mass counter term and vertex divergence! are gen-
erated by the zero-vertex and the single-vertex terms. The
many-vertex term is ultraviolet safe. Of crucial importance is
the observation that one may additionally simplify the prob-
lem by replacing the one-potential term with an approximate
expression in which the potential is ‘‘commuted to the out-
side.’’ The approximate expression generates all divergences
and all terms of lower order thana (Za)4 present in the
one-vertex term. Unlike the raw one-potential term, it is
amenable to significant further simplification and can be re-
duced toone-dimensional numerical integrals that can be
evaluated easily~a straightforward formulation of the self-

energy problem requires athree-dimensional numerical inte-
gration!. Without this significant improvement, an all-order
calculation would be much more difficult at low nuclear
charge, because the lower-order terms would introduce sig-
nificant further numerical cancellations.

In addition, the special approximate resolvent can be used
effectively for an efficient subtraction scheme in the middle-
energy part of the calculation. In the infrared part, such a
subtraction is not used because it would introduce infrared
divergences.

We now turn to the construction of the special approxi-
mate resolvent, which will be referred to asGA and will be
used in this calculation to isolate the ultraviolet divergences
in the high-energy part~and to provide subtraction terms in
the middle-energy part!. It is based on an approximation to
the first two terms on the right-hand side of Eq.~2.34!. The
so-called one-potential termFVF in Eq. ~2.34! is approxi-
mated by an expression in which the potential termsV are
commuted to the outside:

2FVF'2 1
2 $V,F2%. ~2.35!

Furthermore, the following identity is used:

F25S 1

a•p1b2zD
2

5
1

p2112z2
1

2 z ~b1z!

~p2112z2!2
1

2 z ~a•p!

~p2112z2!2
.

~2.36!

In 232 spinor space, this expression may be divided into a
diagonal and a nondiagonal part. The diagonal part is

diag~F2!5
1

p2112z2
1

2 z ~b1z!

~p2112z2!2
. ~2.37!

The off-diagonal part is given by

FIG. 3. The exact expansion of the bound electron propagator in
powers of the binding field leads to a zero-potential, a one-potential,
and a many-potential term. The dashed lines denote Coulomb pho-
tons; the crosses denote the interaction with the~external! binding
field.
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F22diag~F2!5
2 z ~a•p!

~p2112z2!2
.

We define the resolventGA as

GA5F2 1
2 $V,diag~F2!%. ~2.38!

All divergences that occur in the self-energy are generated
by the simplified propagatorGA . We define the propagator
GB as the difference ofG andGA ,

GB5G2GA5 1
2 $V,diag~F2!%2F V F1F V G V F.

~2.39!

GB does not generate any divergences and leads to the
middle-energy remainder discussed in Sec. III C and the
high-energy remainder~Sec. IV B!.

III. THE LOW-ENERGY PART

A. The infrared part

The infrared part is given by

DEIR52 i e2 ReE
CIR

dv

2pE dk

~2p!3
Dmn~k2!

3^cu am ei k•x G~En2v! an e2 i k•x uc&, ~3.1!

where relevant definitions of the symbols can be found in
Eqs.~2.18!–~2.21!, the contourCIR is as shown in Fig. 2, and
the unregularized version of the photon propagator

Dmn~k2!52
gmn

k21 i e
~3.2!

may be used. The infrared part consists of the following
integration region for the virtual photon:

vP~0, 1
10 En!6 i d

zP~ 9
10 En ,En!6 i d. ~3.3!

Following Secs. 2 and 3 of@47#, we write DEIR as a three-
dimensional integral@see, e.g., Eqs.~3.4!, ~3.11!, and~3.14!
of @47##

DEIR5
a

p

En

10
2

a

p
PE

(9/10) En

En
dzE

0

`

dx1 x1
2

3E
0

`

dx2 x2
2MIR~x2 ,x1 ,z!, ~3.4!

where P is the principal value and where

MIR~x2 ,x1 ,z!5(
k

(
i , j 51

2

f ı̄~x2! Gk
i j ~x2 ,x1 ,z!

3 f ̄~x1! Ak
i j ~x2 ,x1!. ~3.5!

Here, the quantum numberk is the Dirac angular quantum
number of the intermediate state,

k52 ~ l 2 j ! ~ j 1 1
2 !, ~3.6!

where l is the orbital angular momentum quantum number
and j is the total angular momentum of the bound electron.
The functionsf i(x2) ( i 51,2) are the radial wave functions
defined in Eq.~A.4! in @47# for an arbitrary bound state@and
in Eq. ~A.8! in @47# for the 1S state#. We defineı̄ 532 i . The
functionsGk

i j (x2 ,x1 ,z) ( i , j 51,2) are the radial Green func-
tions, which result from a decomposition of the electron
Green function defined in Eq.~2.19! into partial waves. The
explicit formulas are given in Eq.~A.16! in @47#.

The photon angular functionsAk
i j ( i , j 51,2) are defined in

Eq. ~3.15! of Ref. @47# for an arbitrary bound state. In Eq.
~3.17! in @47#, specific formulas are given for the 1S state. In
Eqs.~2.2!, ~2.3!, and~2.4! of @49#, the special cases ofS1/2,
P1/2, andP3/2 states are considered. Further relevant formu-
las for excited states can be found in@51#. The photon angu-
lar functions depend on the energy argumentz, but this de-
pendence is usually suppressed. The summation overk in
Eq. ~3.5! extends over all negative and all positive integers,
excluding zero. We observe that the integral is symmetric
under the interchange of the radial coordinatesx2 andx1, so
that

DEIR5
a

p

En

10
2

2 a

p
PE

(9/10) En

En
dzE

0

`

dx1 x1
2

3E
0

x1
dx2 x2

2MIR~x2 ,x1 ,z!. ~3.7!

The following variable substitution:

r 5x2 /x1 , y5a x1 ~3.8!

is made, so thatr P(0,1) andyP(0,̀ ). The scaling variable
a is defined as

a52 A12En
2. ~3.9!

The Jacobian is

U]~x2 ,x1!

]~r ,y!
U5U ]x2

]r

]x1

]r

]x2

]y

]x1

]y

U5
y

a2
. ~3.10!

The functionSIR is given by

SIR~r ,y,z!52
2 r 2 y5

a6
MIRS r y

a
,
y

a
,zD

52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3Gk

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD

JENTSCHURA, MOHR, AND SOFF PHYSICAL REVIEW A63 042512

042512-6



52
2 r 2 y5

a6 (
uku51

`

TIR,uku~r ,y,z!, ~3.11!

where in the last line we define implicitly the termsTIR,uku
for uku51, . . . ,̀ as

TIR,uku~r ,y,z!5 (
k56uku

(
i , j 51

2

f ı̄ S r y

a D Gk
i j S r y

a
,
y

a
,zD

3 f ̄S y

aD Ak
i j S r y

a
,
y

aD . ~3.12!

Using the definition~3.11!, we obtain forDEIR ,

DEIR5
a

p

En

10
1

a

p
PE

(9/10) En

En
dzE

0

1

dr E
0

`

dy SIR~r ,y,z!.

~3.13!

The specification of the principal value~P! is necessary for
the excited states of theL shell because of the poles along the
integration contour which correspond to the spontaneous de-
cay into the ground state. Here we are exclusively concerned
with the real part of the energy shift, as specified in Eq.~3.1!,
which is equivalent to the specification of the principal value
in Eq. ~3.13!. Evaluation of the integral overz is facilitated
by the subtraction of those terms that generate the singulari-
ties along the integration contour~for higher excited states,
there can be numerous bound-state poles, as pointed out in
@51,52#!. For the 2S and 2P1/2 states, only the pole contri-
bution from the ground state must be subtracted. For the
2P3/2 state, pole contributions originating from the 1S, the
2S, and the 2P1/2 states must be taken into account. The
numerical evaluation of the subtracted integrand proceeds
along ideas outlined in@49,51# and is not discussed here in
any further detail.

The scaling parametera for the integration overy is cho-
sen to simplify the exponential dependence of the functionS
defined in Eq.~3.11!. The main exponential dependence is
given by the relativistic radial wave functions~upper and
lower components!. Both components@ f 1(x) and f 2(x)]
vary approximately as~neglecting relatively slowly varying
factors!

exp~2a x/2! ~for largex!.

The scaling variablea, expanded in powers ofZa, is

a52 A12En
2

52A12S 12
~Za!2

2 n2
1O@~Za!4# D 2

52
Za

n
1O@~Za!3#. ~3.14!

Therefore,a is just twice theinverse of the Bohr radius
n/(Za) in the nonrelativistic limit. The product

f ı̄ S ry

a D3 f ̄S y

aD for arbitrary ı̄ ,̄P$1,2%

@which occurs in Eq.~3.11!# depends on the radial arguments
approximately as

e2y3exp@ 1
2 ~12r ! y# ~for largey!.

Note that the main dependence as given by the term
exp(2y) is exactly the weight factor of the Gauss-Laguerre
integration quadrature formula. The deviation from the exact
exp(2y)-type behavior becomes smaller asr→1. This is fa-
vorable because the region nearr 51 gives a large contribu-
tion to the integral in Eq.~3.13!.

The sum overuku in Eq. ~3.11! is carried out locally, i.e.,
for each set of argumentsr ,y,z. The sum overuku is abso-
lutely convergent. Foruku→`, the convergence of the sum is
governed by the asymptotic behavior of the Bessel functions
that occur in the photon functionsAk

i j ( i , j 51,2) @see Eqs.
~3.15! and ~3.16! in @47##. The photon functions contain
products of two Bessel functions of the formJl(r2/1), where
Jl stands for eitherj l or j l8 , and the indexl is in the range
l P$uku21,uku,uku11%. The argument is eitherr25(En
2z) x2 or r15(En2z) x1. The asymptotic behavior of the
two relevant Bessel functions for largel ~and therefore large
uku) is

j l8~x!5
l

x

xl

~2l 11!!! F11OS 1

l D G ~3.15!

and

j l~x!5
xl

~2l 11!!! F11OS 1

l D G . ~3.16!

This implies that when min$r2,r1%5r2,l, the function
Jl(r2) vanishes with increasingl approximately as
(e r2/2l ) l . This rapidly converging asymptotic behavior sets
in as soon asl'uku.r25r v y/a @see Eqs.~2.22! and
~3.12!#. Due to the rapid convergence foruku.r2, the maxi-
mum angular-momentum quantum numberuku in the nu-
merical calculation of the infrared part is less than 3000.

Note that becausezP( 9
10 En ,En) in the infrared part,v

, 1
10 En .
The integration scheme is based on a crude estimate of the

dependence of the integrandSIR(r ,y,z) defined in Eq.~3.11!
on the integration variablesr, y, andz. The main contribution
to the integral is given by the region where the arguments of
the Whittaker functions as they occur in the Green function
@see Eq.~A.16! in @47## are much larger than the Dirac an-
gular momentum,

2 c
y

a
@uku

~see also p. 56 of@48#!. We assume the asymptotic form of
the Green function given in Eq.~A.3! in @48# applies, and we
attribute a factor
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exp@2~12r ! c y/a#

to the radial Green functionsGk
i j as they occur in Eq.~3.11!.

Note that relatively slowly varying factors are replaced by
unity. The products of the radial wave functionsf ı̄ and f ̄ ,
according to the discussion following Eq.~3.14!, behave as

e2y exp@ 1
2 ~12r ! y#

for largey. The photon functionsAk
i j in Eq. ~3.11! give rise

to an approximate factor

sin@~12r ! ~En2z! y/a#

~12r !
. ~3.17!

Therefore@see also Eq.~2.12! in @48##, we base our choice of
the integration routine on the approximation

e2y expF2S c

a
2

1

2D ~12r ! yG3
sin@~12r ! ~En2z! y/a#

~12r !
~3.18!

for SIR . The three-dimensional integral in Eq.~3.13! is
evaluated by successive Gaussian quadrature. Details of the
integration procedure can be found in@5#.

In order to check the numerical stability of the results, the
calculations are repeated with three different values of the
fine-structure constanta,

a,51/137.036 000 5,

a051/137.036 000 0, ~3.19!

and

a.51/137.035 999 5.

These values are close to the 1998 CODATA recommended
value ofa215137.035 999 76(50)@53#. The calculation was
parallelized using the message passing interface~MPI! and
carried out on a cluster of Silicon Graphics workstations and
on an IBM 9276 SP/2 multiprocessor system@54#. The re-
sults for the infrared partF IR , defined in Eq.~2.24!, are
given in Table I for a value ofa215a0

215137.036. This
value ofa will be used exclusively in the numerical evalu-
ations presented here. For numerical results obtained by em-
ploying the values ofa, anda. @see Eq.~3.19!# we refer to
@5#.

B. The middle-energy subtraction term

The middle-energy part is given by

DEM52 i e2 E
CM

dv

2p E d3k

~2p!3
Dmn~k2!

3^cu am ei k•xG~En2v! an e2 i k•x uc&,

~3.20!

where relevant definitions of the symbols can be found in
Eqs. ~2.18!–~2.21! and Eq.~3.2!, and the contourCM is as
shown in Fig. 2. The middle-energy part consists of the fol-
lowing integration region for the virtual photon:

vP~ 1
10 En ,En!6 i d

zP~0, 9
10 En!6 i d. ~3.21!

The numerical evaluation of the middle-energy part is sim-
plified considerably by the decomposition of the relativistic
Dirac-Coulomb Green functionG as

G5GA1GB , ~3.22!

whereGA is defined in Eq.~2.38! and represents the sum of
an approximation to the so-called zero- and one-potential
terms generated by the expansion of the Dirac-Coulomb
Green functionG in powers of the binding fieldV. We define
the middle-energy subtraction termFMA as the expression
obtained upon substitution of the propagatorGA for G in Eq.
~3.20!. The propagatorGB is simply calculated as the differ-
ence ofG and GA @see Eq.~2.39!#. A substitution of the
propagatorGB for G in Eq. ~3.20! leads to the middle-energy
remainderFMB which is discussed in Sec. III C. We provide
here the explicit expressions

DEMA52 i e2 E
CM

dv

2p E dk

~2p!3
Dmn~k2!

3^cu am ei k•x GA~En2v! an e2 i k•x uc&

~3.23!

and

TABLE I. Infrared part for theK- and L-shell states,F IR(1S1/2,Za), F IR(2S1/2,Za), F IR(2P1/2,Za),
andF IR(2P3/2,Za), evaluated for low-Z hydrogenlike ions. The calculations were performed with the nu-
merical value ofa215137.036 for the fine-structure constant.

Z FIR(1S1/2,Za) F IR(2S1/2,Za) F IR(2P1/2,Za) F IR(2P3/2,Za)

1 7.236 623 736 8~1! 7.479 764 180~1! 0.085 327 852~1! 0.082 736 497~1!

2. 5.539 002 119 1~1! 5.782 025 637~1! 0.086 073 669~1! 0.083 279 461~1!

3 4.598 155 821 8~1! 4.840 923 962~1! 0.087 162 510~1! 0.084 091 830~1!

4 3.963 124 140 6~1! 4.205 501 798~1! 0.088 543 188~1! 0.085 140 788~1!

5 3.493 253 319 4~1! 3.735 114 958~1! 0.090 180 835~1! 0.086 403 178~1!
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DEMB52 i e2 E
CM

dv

2p E d3k

~2p!3
Dmn~k2!

3^cu am ei k•x GB~En2v! an e2 i k•x uc&.

~3.24!

Note that the decomposition of the Dirac-Coulomb Green
function as in Eq.~3.22! is not applicable in the infrared part
because of numerical problems for ultrasoft photons~infra-
red divergences!. Rewriting Eq.~3.23! appropriately into a
three-dimensional integral@5,47,48#, we have

DEMA5
a

p

9

10
En2

2 a

p E
0

(9/10) En
dzE

0

`

dx1 x1
2

3E
0

x1
dx2 x2

2 MMA~x2 ,x1 ,z!. ~3.25!

The functionMMA(x2 ,x1 ,z) is defined in analogy to the
function MIR(x2 ,x1 ,z) defined in Eq.~3.5! for the infrared
part. Also, we define a functionSMA(x2 ,x1 ,z) in analogy to
the functionSIR(x2 ,x1 ,z) given in Eq.~3.11! for the infrared
part, which will be used in Eq.~3.28! below. We have

SMA~r ,y,z!52
2 r 2 y5

a6
MMAS r y

a
,
y

a
,zD

52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3GA,k

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD
52

2 r 2 y5

a6 (
uku51

`

TMA, uku~r ,y,z!. ~3.26!

The expansion of the propagatorGA into partial waves is
given in Eqs.~5.4! and~A.20! in @47# and in Eqs.~D.37! and
~D.42! in @5#. This expansion leads to the component func-
tions GA,k

i j . The termsTMA, uku in the last line of Eq.~3.26!
read

TMA, uku~r ,y,z!5 (
k56uku

(
i , j 51

2

f ı̄ S r y

a D GA,k
i j S r y

a
,
y

a
,zD

3 f ̄S y

aD Ak
i j S r y

a
,
y

aD . ~3.27!

With these definitions, the middle-energy subtraction term
DEMA can be written as

DEMA5
a

p

9

10
En1

a

p E
0

(9/10) En
dzE

0

`

dy E
0

1

dr SMA~r ,y,z!.

~3.28!

The subtracted lower-order terms yield

DEMA5
a

p F279

200
^b&1

219

200
^V&1

~Za!4

n3
FMA~nl j ,Za!G .

~3.29!

The three-dimensional integral in Eq.~3.28! is evaluated by
successive Gaussian quadrature. Details of the integration
procedure can be found in@5#. The numerical results are
summarized in Table II.

C. The middle-energy remainder

The remainder term in the middle-energy part involves
the propagatorGB defined in Eq. ~2.39!, GB5G2GA ,
where G is defined in Eq.~2.19! and GA is given in Eq.
~2.38!. In analogy to the middle-energy subtraction term, the
middle-energy remainder can be rewritten as a three-
dimensional integral,

DEMB5
a

p E
0

(9/10) En
dzE

0

1

dr E
0

`

dy SMB~r ,y,z!,

~3.30!

where

SMB~r ,y,z!52
2 r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

f ı̄ S r y

a D
3GB,k

i j S r y

a
,
y

a
,zD f ̄S y

aD Ak
i j S r y

a
,
y

aD .

~3.31!

The functionsGB,k
i j are obtained as the difference of the ex-

pansion of the full propagatorG and the simplified propaga-
tor GA into angular momenta,

GB,k
i j 5Gk

i j 2GA,k
i j , ~3.32!

where theGk
i j are listed in Eq.~A.16! in @47# and in Eq.

~D.43! in @5#, and theGA,k
i j have already been defined in Eqs.

~5.4! and~A.20! in @47# and in Eqs.~D.37! and~D.42! in @5#.
There are no lower-order terms to subtract, and therefore

DEMB5
a

p

~Za!4

n3
FMB~nl j ,Za!. ~3.33!

The three-dimensional integral~3.30! is evaluated by succes-
sive Gaussian quadrature. Details of the integration proce-
dure are provided in@5#. Numerical results for the middle-
energy remainderFMB are summarized in Table II for theK-
andL-shell states.

For the middle-energy part, the separation into a subtrac-
tion and a remainder term has considerable computational
advantages that become obvious upon inspection of Eqs.
~3.29! and ~3.33!. The subtraction involves a propagator
whose angular components can be evaluated by recursion
@5,48#, which is not computationally time consuming. Be-
cause the subtraction term involves lower-order components
@see Eq.~2.25!#, it has to be evaluated to high precision
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numerically~in a typical case, a relative uncertainty of 10219

is required!. This high precision requires in turn a large num-
ber of integration points for the Gaussian quadratures, which
is possible only if the numerical evaluation of the integrand
is not computationally time consuming. For the remainder
term, no lower-order terms have to be subtracted, and the
relative precision required of the integrals is in the range of
10211•••1029. A numerical evaluation to this lower level of
precision is feasible, although the calculation of the Green
function GB is computationally more time consuming than
that of GA @5,47,48#. The separation of the high-energy part
into a subtraction term and a remainder term, which is dis-
cussed in Sec. IV, is motivated by analogous considerations
as for the middle-energy part. In the high-energy part, this
separation is even more important than in the middle-energy
part because of the occurrence of infinite terms that need to
be subtracted analytically before a numerical evaluation can
proceed@see Eq.~4.8! below#.

We now summarize the results for the middle-energy part.
The middle-energy part is the sum of the middle-energy sub-

traction termFMA and the middle-energy remainderFMB
@see also Eq.~2.27!#. Numerical results are summarized in
Table II for theK- andL-shell states. The low-energy partFL
is defined as the sum of the infrared contributionF IR and the
middle-energy contributionFM @see Eq.~2.32!#. The results
for FL are provided in Table III for theK- andL-shell states.
The limits for the low-energy part as a function of the bound-
state quantum numbers can be found in Eq.~7.80! of @5#:

FL~nl j ,Za!5
4

3
d l ,0 ln~Za!222

4

3
ln k0~n,l !1S ln22

11

10D 1

n

1S 2 ln 22
16

15D 1

2 l 11
1S 3

2
ln 22

7

4D
3

1

k ~2 l 11!
1S 2

3

2
ln 21

9

4D 1

uku

1S 4

3
ln 22

1

3D d l ,01S ln 22
5

6D n22 l 21

n ~2 l 11!

TABLE II. Numerical results for the middle-energy subtraction termFMA , the middle-energy remainder
term FMB , and the middle-energy termFM . The middle-energy termFM is given as the sumFM(nl j ,Za)
5FMA(nl j ,Za)1FMB(nl j ,Za) @see also Eqs.~2.25!, ~3.29!, and~3.33!#.

Z FMA(1S1/2,Za) FMA(2S1/2,Za) FMA(2P1/2,Za) FMA(2P3/2,Za)

1 2.699 379 904 5~1! 2.720 878 318~1! 0.083 207 314~1! 0.701 705 240~1!

2 2.659 561 381 1~1! 2.681 820 660~1! 0.084 208 832~1! 0.701 850 024~1!

3 2.623 779 453 0~1! 2.647 262 568~1! 0.085 831 658~1! 0.702 091 147~1!

4 2.591 151 010 1~1! 2.616 290 432~1! 0.088 040 763~1! 0.702 426 850~1!

5 2.561 096 522 1~1! 2.588 297 638~1! 0.090 803 408~1! 0.702 854 461~1!

Z FMB(1S1/2,Za) FMB(2S1/2,Za) FMB(2P1/2,Za) FMB(2P3/2,Za)

1 1.685 993 923 2~1! 1.784 756 705~2! 0.771 787 771~2! 20.094 272 681(2)
2 1.626 842 294 5~1! 1.725 583 798~2! 0.770 778 394~2! 20.094 612 071(2)
3 1.571 406 090 7~1! 1.670 086 996~2! 0.769 153 314~2! 20.095 165 248(2)
4 1.519 082 768 6~1! 1.617 650 004~2! 0.766 954 435~2! 20.095 922 506(2)
5 1.469 482 409 0~1! 1.567 873 140~2! 0.764 220 149~2! 20.096 874 556(2)

Z FM(1S1/2,Za) FM(2S1/2,Za) FM(2P1/2,Za) FM(2P3/2,Za)

1 4.385 373 827 7~1! 4.505 635 023~2! 0.854 995 085~2! 0.607 432 559~2!

2 4.286 403 675 7~1! 4.407 404 458~2! 0.854 987 226~2! 0.607 237 953~2!

3 4.195 185 543 6~1! 4.317 349 564~2! 0.854 984 972~2! 0.606 925 899~2!

4 4.110 233 778 8~1! 4.233 940 436~2! 0.854 995 198~2! 0.606 504 344~2!

5 4.030 578 931 1~1! 4.156 170 778~2! 0.855 023 557~2! 0.605 979 905~2!

TABLE III. Low-energy part FL for the K- and L-shell statesFL(1S1/2,Za), FL(2S1/2,Za),
FL(2P1/2,Za), andFL(2P3/2,Za), evaluated for low-Z hydrogenlike ions.

Z FL(1S1/2,Za) FL(2S1/2,Za) FL(2P1/2,Za) FL(2P3/2,Za)

1 11.621 997 564 5~1! 11.985 399 203~2! 0.940 322 937~2! 0.690 169 056~2!

2 9.825 405 794 7~1! 10.189 430 095~2! 0.941 060 895~2! 0.690 517 414~2!

3 8.793 341 365 4~1! 9.158 273 526~2! 0.942 147 482~2! 0.691 017 729~2!

4 8.073 357 919 4~1! 8.439 442 234~2! 0.943 538 386~2! 0.691 645 132~2!

5 7.523 832 250 6~1! 7.891 285 736~2! 0.945 204 392~2! 0.692 383 083~2!
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1O~Za!. ~3.34!

The limits for the states under investigation in this paper are

FL~1S1/2,Za!5~4/3! ln~Za!2221.554 6421O~Za!,

FL~2S1/2,Za!5~4/3! ln~Za!2221.191 4971O~Za!,

FL~2P1/2,Za!50.940 0221O~Za!,

FL~2P3/2,Za!50.690 0221O~Za!. ~3.35!

These limits are consistent with the numerical data in Table
III. For S states, the low-energy contributionFL diverges
logarithmically asZa→0, whereas forP states,FL ap-
proaches a constant asZa→0. The leading logarithm is a
consequence of an infrared divergence cut off by the atomic
momentum scale. It is a nonrelativistic effect which is gen-
erated by the nonvanishing probability density ofSwaves at
the origin in the nonrelativistic limit. The presence of the
logarithmic behavior forS states@nonvanishingA41 coeffi-
cient, see Eqs.~2.2! and~2.3!# and its absence forP states is
reproduced consistently by the data in Table III.

IV. THE HIGH-ENERGY PART

A. The high-energy subtraction term

The high-energy part is given by

DEH52 lim
L→`

i e2 E
CH

dv

2pE dk

~2p!3
Dmn~k2,L!

3^cu am ei k•x G~En2v! an e2 i k•x uc&, ~4.1!

where relevant definitions of the symbols can be found in
Eqs.~2.18!–~2.21!, and the contourCH is as shown in Fig. 1.
The high-energy part consists of the following integration
region for the virtual photon:

vP~En2 i `,En1 i `!

zP~2 i `,i `!. ~4.2!

The separation of the high-energy part into a subtraction
term and a remainder is accomplished as in the middle-
energy part @see Eq. ~3.22!# by writing the full Dirac-
Coulomb Green functionG @Eq. ~2.19!# asG5GA1GB . We
define the high-energy subtraction termFHA as the expres-
sion obtained upon substitution of the propagatorGA for G
in Eq. ~4.1!, and a substitution of the propagatorGB for G in
Eq. ~4.1! leads to the high-energy remainderFHB which is
discussed in Sec. IV B. The subtraction term~including all
divergent contributions! is generated byGA , the high-energy
remainder term corresponds toGB . We have

DEHA52 lim
L→`

i e2 E
CH

dv

2pE d3k

~2p!3
Dmn~k2,L!

3^cu am ei k•x GA~En2v! an e2 i k•x uc&

~4.3!

and

DEHB52 i e2 E
CH

dv

2pE dk

~2p!3
Dmn~k2!

3^cu am ei k•x GB~En2v! an e2 i k•x uc&.

~4.4!

The contributionDEHA corresponding toGA can be sepa-
rated further into a termDEHA

(1) , which contains all divergent
contributions, and a termDEHA

(2) , which contains contribu-
tions of lower order than (Za)4, but is convergent asL
→`. This separation is described in detail in@47,50#. We
have

DEHA5DEHA
(1)1DEHA

(2) . ~4.5!

We obtain forDEHA
(1) , which contains a logarithmic diver-

gence asL→`,

DEHA
(1)5

a

p F S 3

4
ln L22

9

8D ^b&1S 1

2
ln 22

17

12D ^V&

1
~Za!4

n3
FHA

(1)~nl j ,Za!G . ~4.6!

For the contributionFHA
(1) , an explicit analytic result is given

in Eq. ~4.15! in @47#. This contribution is therefore not dis-
cussed in any further detail here. The contributionDEHA

(2)

contains lower-order terms,

DEHA
(2)5

a

p F S 2
1

2
ln21

1

4D ^V&1
~Za!4

n3
FHA

(2)~nl j ,Za!G .

~4.7!

Altogether we have

DEHA5DEHA
(1)1DEHA

(2)

5
a

p F S 3

4
ln L22

9

8D ^b&2
7

6
^V&

1
~Za!4

n3
FHA~nl j ,Za!G . ~4.8!

The scaled functionFHA(nl j ,Za) is given by

FHA~nl j ,Za!5FHA
(1)~nl j ,Za!1FHA

(2)~nl j ,Za!. ~4.9!

The termDEHA
(2) falls naturally into a sum of four contribu-

tions @47#,

DEHA
(2)5T11T21T31T4 , ~4.10!

where

T152
1

10
^V&1

~Za!4

n3
h1~nl j ,Za!,
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T25S 7

20
2

1

2
ln 2D ^V&1

~Za!4

n3
h2~nl j ,Za!,

T35
~Za!4

n3
h3~nl j ,Za!,

T45
~Za!4

n3
h4~nl j ,Za!. ~4.11!

The functionshi ( i 51,2,3,4) are defined in Eqs.~4.18!,
~4.19!, and ~4.21! in @47# ~see also Eq.~3.6! in @49#!. The
evaluation of the high-energy subtraction term proceeds as
outlined in @47–49#, albeit with an increased accuracy and
improved calculational methods in intermediate steps of the
calculation in order to overcome the severe numerical can-
cellations in the low-Z region. We recoverFHA

(2) as the sum

FHA
(2)~nl j ,Za!5h1~nl j ,Za!1h2~nl j ,Za!1h3~nl j ,Za!

1h4~nl j ,Za!. ~4.12!

The scaled functionFHA(nl j ,Za) @see also Eqs.~2.26! and
~2.28!# is given by

FHA~nl j ,Za!5FHA
(1)~nl j ,Za!1FHA

(2)~nl j ,Za!.
~4.13!

The limits of the contributions FHA
(1)(nl j ,Za) and

FHA
(2)(nl j ,Za) as (Za)→0 have been investigated in

@47,49,50#. For the contributionFHA
(1)(nl j ,0), the result can be

found in Eq. ~3.5! in @49#. The limits of the functions

hi(nl j ,Za) ( i 51,2,3,4) asZa→0 are given as a function of
the atomic state quantum numbers in Eq.~3.8! in @49#. For
the scaled high-energy subtraction termFHA , the limits read
@see Eq.~3.9! in @49##

FHA~nl j ,Za!5S 11

10
2 ln 2D 1

n
1S 16

15
22 ln 2D 1

2 l 11

1S 1

2
ln 22

1

4D 1

k ~2 l 11!
1S 3

2
ln 22

9

4D 1

uku

1O~Za!. ~4.14!

Therefore, the explicit forms of the limits for the states under
investigation in this paper are

FHA~1S1/2,Za!521.219 6281O~Za!,

FHA~2S1/2,Za!521.423 0541O~Za!,
~4.15!

FHA~2P1/2,Za!521.081 2041O~Za!,

FHA~2P3/2,Za!520.524 3511O~Za!.

Numerical results forFHA , which are presented in Table IV,
exhibit consistency with the limits in Eq.~4.15!.

B. The high-energy remainder

The remainder term in the high-energy part involves the
propagatorGB defined in Eq.~2.39!, GB5G2GA , whereG
is defined in Eq.~2.19! and GA is given in Eq.~2.38!. The
energy shift is

TABLE IV. Numerical results for the high-energy subtraction termFHA and the high-energy remainder
term FHB . The high-energy termFH is the sumFH(nl j ,Za)5FHA(nl j ,Za)1FHB(nl j ,Za).

Z FHA(1S1/2,Za) FHA(2S1/2,Za) FHA(2P1/2,Za) FHA(2P3/2,Za)

1 21.216 846 6606(1) 21.420 293 291(1) 21.081 265 954(1) 20.524 359 802(1)
2 21.214 322 5369(1) 21.417 829 864(1) 21.081 451 269(1) 20.524 385 053(1)
3 21.212 026 7141(1) 21.415 635 310(1) 21.081 760 224(1) 20.524 427 051(1)
4 21.209 942 8474(1) 21.413 693 422(1) 21.082 192 995(1) 20.524 485 727(1)
5 21.208 059 0336(1) 21.411 992 480(1) 21.082 749 845(1) 20.524 561 017(1)

Z FHB(1S1/2,Za) FHB(2S1/2,Za) FHB(2P1/2,Za) FHB(2P3/2,Za)

1 20.088 357 254(1) 20.018 280 727(5)a 0.014 546 64~1! 20.042 310 69(1)
2 20.082 758 206(1) 20.012 729 99(1) 0.014 574 21~1! 20.042 296 81(1)
3 20.076 811 229(1) 20.006 861 02(1) 0.014 620 51~1! 20.042 273 58(1)
4 20.070 590 991(1) 20.000 746 40(1) 0.014 685 82~1! 20.042 240 92(1)
5 20.064 146 139(1) 0.005 567 16~1! 0.014 770 52~1! 20.042 198 76(1)

Z FH(1S1/2,Za) FH(2S1/2,Za) FH(2P1/2,Za) FH(2P3/2,Za)

1 21.305 203 915(1) 21.438 574 018(5) 21.066 719 31(1) 20.566 670 50(1)
2 21.297 080 743(1) 21.430 559 85(1) 21.066 877 06(1) 20.566 681 86(1)
3 21.288 837 943(1) 21.422 496 33(1) 21.067 139 72(1) 20.566 700 63(1)
4 21.280 533 839(1) 21.414 439 82(1) 21.067 507 18(1) 20.566 726 65(1)
5 21.272 205 173(1) 21.406 425 32(1) 21.067 979 33(1) 20.566 759 78(1)

aResult obtained with a greater number of integration nodes than are used for the higher-Z results.
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DEHB52
i a

p E
0

i `

dzE
0

`

dx1 x1
2E

0

x1
dx2 x2

2

3$MHB~x2 ,x1 ,z!1c.c.%, ~4.16!

where c.c. denotes the complex conjugate. The photon en-
ergy integration is evaluated with the aid of the substitution

z→ i u where u5
1

2 S 1

t
2t D . ~4.17!

In analogy with the middle-energy subtraction and remainder
terms discussed in Secs. III B and III C@see especially Eqs.
~3.26! and ~3.31!#, the functions MHB(x2 ,x1 ,z) and
SHB(r ,y,z) and the termsTHB,uku are defined implicitly in the
following:

SHB~r ,y,t !5S 11
1

t2D r 2 y5

a6
ReFMHBS r y

a
,
y

a
,i u D G

5S 11
1

t2D r 2 y5

a6 (
uku51

`

(
k56uku

(
i , j 51

2

ReF f i S r y

a D
3GB,k

i j S r y

a
,
y

a
,i u D f j S y

aD AkS r y

a
,
y

aD
2 f ı̄ S r y

a D GB,k
i j S r y

a
,
y

a
,i u D

3 f ̄S y

aDA k
i j S r y

a
,
y

aD G
5S 11

1

t2D r 2 y5

a6 (
uku51

`

THB,uku~r ,y,t !. ~4.18!

The only substantial difference from the treatment of the
middle-energy remainder lies in the prefactor generated by
the parametrization of the complex photon energy given in
Eq. ~4.17!. The photon angular functionsAk and A k

i j ( i , j
51,2) for the high-energy partare defined in Eq.~5.8! of
Ref. @47# and in Eq.~4.3! in @49# for an arbitrary bound state.
Special formulas for the ground state can be found in Eq.
~5.9! of Ref. @47#. The functionsAk andA k

i j arenot identical
to the photon angular functions for the infrared and middle-
energy partsAk

i j ( i , j 51,2) which are used for the low-
energy part of the calculation in Sec. III. It might be worth
mentioning that in@46–49# both the functionsAk

i j and A k
i j

are denoted by the symbolAk
i j . It is clear from the context

which of the functions is employed in each case.
In the last line of Eq.~4.18!, we implicitly define the

termsTHB,uku as

THB,uku~r ,y,t !5 (
k56uku

(
i , j 51

2

ReF f i S r y

a D GB,k
i j S r y

a
,
y

a
,i u D

3 f j S y

aDAkS r y

a
,
y

aD2 f ı̄ S r y

a D
3GB,k

i j S r y

a
,
y

a
,i u D f ̄S y

aDA k
i j S r y

a
,
y

aD G .
~4.19!

With these definitions, the high-energy remainder can be re-
written as

DEHB5
a

p E
0

1

dt E
0

1

dr E
0

`

dy SHB~r ,y,t !. ~4.20!

There are no lower-order terms to subtract, and therefore

DEHB5
a

p

~Za!4

n3
FHB~nl j ,Za!. ~4.21!

For the high-energy remainderFHB , the limits asZa→0
read@see Eq.~4.15! in @49##

FHB~nl j ,Za!5
1

2 l 11 F S 17

18
2

4

3
ln 2D d l ,01S 3

2
22 ln 2D 1

k

1S 5

6
2 ln 2D n22 l 21

n G1O~Za!. ~4.22!

For the atomic states under investigation, this leads to

FHB~1S1/2,Za!520.093 4571O~Za!,

FHB~2S1/2,Za!520.023 3641O~Za!,

FHB~2P1/2,Za!50.014 5381O~Za!,

FHB~2P3/2,Za!520.042 3151O~Za!. ~4.23!

The integration procedure for the high-energy part is adapted
to the problem at hand. To this end, a crude estimate is found
for the dependence of the functionSHB defined in Eq.~4.18!
on its arguments. The considerations leading to this estimate
are analogous to those outlined in Sec. III A for the infrared
part. The result is the approximate expression

e2y expF2S 1

a t
2

1

2D ~12r ! yG ~4.24!

for SHB . This leads naturally to the definition

qHB511S 1

a t
2

1

2D ~12r !, ~4.25!

so that the~approximate! dependence ofSHB on the radial
variable at largey is exp(2qHB y). Note thatqHB may as-
sume large values (@1) ast→0; this is unlike the analogous
quantity
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11S c

a
2

1

2D ~12r !

in the infrared and the middle-energy part, whereucu
5uA12z2u,1 becausezP(0,En). Having identified the
leading exponential asymptotic behavior of the integrand
SHB , it is rather straightforward to evaluate the three-
dimensional integral in Eq.~4.20! by Gauss-Laguerre and
Gauss-Legendre quadrature@5# @the scaling parametera is
defined in Eqs.~3.9! and ~3.14!#. The numerical results for
the high-energy remainder functionFHB are found in Table
IV. These results are consistent with the limits in Eq.~4.23!.

We now turn to a brief discussion of the convergence
acceleration techniques used in the evaluation of the function
SHB defined in Eq.~4.18!. The angular momentum decompo-
sition of SHB gives rise to a sum over the termsTHB,uku @see
the last line of Eq.~4.18!#, whereuku represents the modulus
of the Dirac angular momentum quantum number of the vir-
tual intermediate state. In shorthand notation, and suppress-
ing the arguments, we have

SHB} (
uku51

`

THB,uku . ~4.26!

The radial Green functionGB5GB(ry /a,y/a,z) in coordi-
nate space needs to be evaluated at the radial arguments
r y /a andy/a ~where 0,r ,1), and at the energy argument
z5En2v5 i /2 (t212t) @see Eq.~4.18!#. A crucial role is
played by the ratior of the two radial arguments. Indeed, for
uku→`, we have@see Eq.~4.7! in @48##

THB,uku5
r 2 uku

uku Fconst1OS 1

uku D G , ~4.27!

where ‘‘const’’ is independent ofuku and depends only onr,
y, and t. The series in Eq.~4.26! is slowly convergent forr
close to one, and the region nearr 51 is known to be prob-
lematic in numerical evaluations. Additionally, note that the
region atr 51 is more important at lowZ than at highZ.
This is because the functionSHB , for constanty, depends on
r roughly as exp@2y (12r)/(a t)# @see Eq.~4.24!#, wherea
52 (Za)/n1O@(Za)3#. For small Z, the Bohr radius
1/(Za) of the hydrogenlike system is large compared to
high-Z systems, which emphasizes the region nearr 51. In
this region the series in Eq.~4.26! is very slowly convergent.
We have found that the convergence of this series nearr
51 can be accelerated very efficiently using the combined
nonlinear-condensation transformation@10# applied to the se-
ries (k50

` tk wheretk5THB,k11 @see Eqs.~4.26! and ~4.27!#.
We first transform this series into an alternating series by

a condensation transformation due to Van Wijngaarden
@55,56#,

(
k50

`

tk5(
j 50

`

~21! j A j , ~4.28!

where

A j5 (
k50

`

2k t2k ( j 11)21 . ~4.29!

We then accelerate the convergence of the alternating series
( j 50

` (21) j A j by applying the nonlinear delta transform

dn
(0)(1,S0), which is discussed extensively in@57#. The ex-

plicit formula for this transformation is given by defining

Sn5(
j 50

n

~21! j A j ~4.30!

as thenth partial sum of the Van Wijngaarden transformed
input series. Thed transform reads@see Eq.~8.4-4! of @57##,

dn
(0)~1,S0!5

(
j 50

n

~21! j S n
j D ~11 j !n21

~11n!n21

Sj

Bj 11

(
j 50

n

~21! j S n
j D ~11 j !n21

~11n!n21

1

Bj 11

, ~4.31!

where

Bj5~21! j A j . ~4.32!

The convergence acceleration proceeds by calculating a se-
quence of transformsdn

(0) in increasing transformation order
n. It is observed that the transforms converge much faster
than the partial sumsSn defined in Eq.~4.30!. The upper
index zero in Eq.~4.31! indicates that the transformation is
started with the first termA0.

The combined transformation~combination of the con-
densation transformation and the Weniger transformation!
was found to be applicable to a wide range of slowly con-
vergent monotone series~series whose terms have the same
sign!, and many examples for its application were given in
Ref. @10#. For the numerical treatment of radiative correc-
tions in low-Z systems, the transformation has the advantage
of removing the principal numerical difficulties associated
with the slow convergence of angular momentum decompo-
sitions of the propagators near their singularity for equal ra-
dial arguments.

In a typical case, sufficient precision (10211) in the con-
vergence of the sum in Eq.~4.26! is reached in a transfor-
mation order n,100 for the nonlinear transformation
dn

(0)(1,S0), a region in which the nonlinear sequence trans-
formation d is numerically stable. Although thed transfor-
mation exhibits considerable numerical stability in higher
transformation orders@10,57#, inevitable round-off errors
start to accumulate significantly in an excessively high trans-
formation order ofn'500 in a typical case@5#, and this
situation is avoided in the current evaluation because the
transforms exhibit apparent convergence to the required ac-
curacy before numerical round-off errors accumulate. Note
that evaluation of the condensed seriesA j in Eq. ~4.29! en-
tails sampling of termsTHB,uku for rather largeuku, while
eliminating the necessity of evaluatingall termsTHB,uku up to
the maximum index. The highest angular momentumuku en-
countered in the present calculation is in excess of 4 000 000.
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However, even in extreme cases less than 3000 evaluations
of particular terms of the original series are required. The
computer time for the evaluation of the slowly convergent
angular-momentum expansion near the singularity is reduced
by roughly three orders of magnitude by the use of the con-
vergence acceleration methods.

In certain parameter regions~e.g., for large energy of the
virtual photon!, a number of terms of the input seriestk have
to be skipped before the convergence acceleration algorithm
defined in Eqs.~4.28!–~4.32! can be applied~in order to
avoid transient behavior of the first few terms in the sum
over k). In this case, the input data for the combined
nonlinear-condensation transformation are the termstk
5THB,k111ks

, whereks denotes the number of terms that are
directly summed before the transformation is applied. These
issues and further details regarding the application of the
convergence acceleration method to QED calculations can be
found in Appendix H.2 of@5#.

C. Results for the high-energy part

The limit of the functionFH as Za→0 can be derived
easily from Eqs.~4.14! and~4.22! as a function of the bound-
state quantum numbers. ForFH the limit is

FH~nl j ,Za!5S 11

10
2 ln 2D 1

n
1S 16

15
22 ln2D 1

2 l 11

1S 2
3

2
ln21

5

4D 1

k ~2 l 11!
1S 3

2
ln 22

9

4D 1

uku

1S 17

18
2

4

3
ln 2D d l ,01S 5

6
2 ln 2D n22 l 21

n ~2 l 11!

1O~Za!. ~4.33!

For the atomic states investigated here, this expression yields
the numerical values

FH~1S1/2,Za!521.313 0851O~Za!,

FH~2S1/2,Za!521.446 4181O~Za!,

FH~2P1/2,Za!521.066 6671O~Za!,

FH~2P3/2,Za!520.566 6671O~Za!. ~4.34!

Numerical results for the high-energy part

FH~nl j ,Za!5FHA~nl j ,Za!1FHB~nl j ,Za! ~4.35!

are also summarized in Table IV. Note the apparent consis-
tency of the numerical results in Table IV with their analyti-
cally obtained low-Z limits in Eq. ~4.34!.

V. COMPARISON TO ANALYTIC CALCULATIONS

The numerical results for the scaled self-energy function
F(nl j ,Za) defined in Eq.~2.1! are given in Table V, to-
gether with the results for the nonperturbative self-energy
remainder functionGSE(nl j ,Za), which is implicitly defined
in Eq. ~2.2!. Results are provided forK- and L-shell states.
The results here atZ55 are consistent with and much more
precise than the best previous calculation@46#. The numeri-
cal results for the self-energy remainderGSE are obtained by
subtracting the analytic lower-order terms listed in Eq.~2.2!
from the complete numerical result for the scaled self-energy
function F(nl j ,Za). No additional fitting is performed.

Analytic and numerical results at lowZ can be compared
by considering the self-energy remainder functionGSE. Note
that an inconsistency in any of the analytically obtained
lower-order terms would be likely to manifest itself in a
grossly inconsistent dependence ofGSE(nl j ,Za) on its ar-
gumentZa; this is not observed. ForS states, the following
analytic model forGSE is commonly assumed, which is mo-
tivated in part by a renormalization-group analysis@58# and
is constructed in analogy with the pattern of the analytic
coefficientsAi j in Eqs.~2.2! and ~2.3!,

TABLE V. Numerical results for the scaled self-energy functionF and the self-energy remainder function
GSE.

Z F(1S1/2,Za) F(2S1/2,Za) F(2P1/2,Za) F(2P3/2,Za)

1 10.316 793 650~1! 10.546 825 185~5! 20.126 396 37~1! 0.123 498 56~1!

2 8.528 325 052~1! 8.758 870 25~1! 20.125 816 16(1) 0.123 835 55~1!

3 7.504 503 422~1! 7.735 777 20~1! 20.124 992 24(1) 0.124 317 10~1!

4 6.792 824 081~1! 7.025 002 41~1! 20.123 968 79(1) 0.124 918 48~1!

5 6.251 627 078~1! 6.484 860 42~1! 20.122 774 94(1) 0.125 623 30~1!

Z GSE(1S1/2,Za) GSE(2S1/2,Za) GSE(2P1/2,Za) GSE(2P3/2,Za)

1 230.290 24(2) 231.185 15(9) 20.9735(2) 20.4865(2)
2 229.770 967(5) 230.644 66(5) 20.949 40(5) 20.470 94(5)
3 229.299 170(2) 230.151 93(2) 20.926 37(2) 20.456 65(2)
4 228.859 222(1) 229.691 27(1) 20.904 12(1) 20.443 13(1)
5 228.443 3723(8)a 229.255 033(8) 20.882 478(8) 20.430 244(8)

aThe result for this entry given in@4# contains a typographical error.
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GSE~nS1/2,Za!5A60~nS1/2!1~Za! @A71~nS1/2! ln~Za!22

1A70~nS1/2!#1~Za!2 @A83~nS1/2!

3 ln3~Za!221A82~nS1/2! ln2~Za!22

1A81~nS1/2! ln~Za!221A80~nS1/2!#.

~5.1!

The ~probably nonvanishing! A83 coefficient, which intro-
duces a triple logarithmic singularity atZa50, hinders an
accurate comparison of numerical and analytic data forGSE.
A somewhat less singular behavior is expected of the differ-
ence

DGSE~Za!5GSE~2S1/2,Za!2GSE~1S1/2,Za!, ~5.2!

because the leading logarithmic coefficients in any given or-
der of Za are generally assumed to be equal for allS states,
which would mean in particular

A71~1S1/2!5A71~2S1/2!

and

A83~1S1/2!5A83~2S1/2!. ~5.3!

Now we defineDAkl as the difference of the values of the
analytic coefficients for the two lowestS states

DAkl5Akl~2S1/2!2Akl~1S1/2!. ~5.4!

The functionDGSE defined in Eq.~5.2! can be assumed to
have the following semi-analytic expansion aboutZa50:

DGSE~Za!5DA601~Za! DA701~Za!2 @DA82 ln2~Za!22

1DA81 ln~Za!221DA801o~Za!#. ~5.5!

In order to detect possible inconsistencies in the numerical
and analytic data forGSE, we difference the data forDGSE,
i.e., we consider the following finite difference approxima-
tion to the derivative of the functionDGSE:

g~Z!5DGSE„~Z11! a…2DGSE~Za!. ~5.6!

We denote the analytic and numerical limits ofDGSE(Za) as
Za→0 asDA60

(an) and DA60
(nu) , respectively, and leave open

the possibility of an inconsistency between numerical and
analytic data by keepingDA60

(nu) andDA60
(an) as distinct vari-

ables. In order to illustrate how a discrepancy could be de-
tected by investigating the functiong(Z), we consider spe-
cial cases of the functionDGSE(Za) andg(Z). We have for
Z50, which is determined exclusively by analytic results,

DGSE~0!5DA60
(an) , ~5.7!

whereas forZ51, which is determined by numerical data,

DGSE~a!5DA60
(nu)1a @DA701o~a!#, ~5.8!

and forZ52,

DGSE~2a!5DA60
(nu)1a @2 DA701o~a!#, ~5.9!

etc. Hence forZ50, we have

g~0!5DGSE~a!2DGSE~0!

5DA60
(nu)2DA60

(an)1a @DA701o~Za!#. ~5.10!

For Z51, the value ofg is determined solely by numerical
data,

g~1!5DGSE~2a!2DGSE~a!5a @DA701o~Za!#,
~5.11!

and forZ52, we have

g~2!5DGSE~3a!2DGSE~2a!5a @DA701o~Za!#.
~5.12!

Analogous equations hold forZ.2. The analytic data and
the numerical data from Table V lead to the five values
g(0), g(1), g(2), g(3), andg(4). A plot of the function
g(Z) serves two purposes: First, the valuesg(1), . . . ,g(4)
should exhibit apparent convergence to some limiting value
a DA70 asZ→0, and this can be verified by inspection of the
plot. Second, a discrepancy between the analytic and numeri-
cal approaches would result in a nonvanishing value for
DA60

(nu)2DA60
(an) which would appear as an inconsistency be-

tween the trend in the values ofg(1), . . . , andg(4) and the
value ofg(0) @see Eq.~5.10!#.

Among the separate evaluations ofA60 for the ground
state, the result in@15# has the smallest quoted uncertainty.
In Fig. 4 we display a plot ofg(Z) for low nuclear chargeZ.
A value of A60(1S1/2)5A60

(an)(1S1/2)5230.924 15(1)
@4,15,59# is used in Fig. 4. The results indicate very good
agreement between the numerical and analytic approaches to
the Lamb shift in the low-Z region up to the level of a few
Hz in frequency units for the low-lying atomic states~where

FIG. 4. Plot of the functiong(Z) defined in Eq.~5.6! in the
region of low nuclear charge. For the evaluation of the data point at
Z50, a value of A60(1S1/2)5230.924 15(1) is employed
@4,15,59#.
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n is the principal quantum number!. The error bars represent
the numerical uncertainty of the values in Table V, which
correspond to an uncertainty on the level of 1.03Z4 Hz in
frequency units.

Analytic work on the correctionA60 has extended over
three decades@15,34–37#. The complication arises that al-
though the calculations are in general analytic, some remain-
ing one-dimensional integrations could not be evaluated ana-
lytically because of the nature of the integrands@see, e.g.,
Eq. ~6.96! in @15##. Therefore a step-by-step comparison of
the analytic calculations is difficult. An additional difficulty
is the isolation of those analytic terms which contribute in a
given order inZa, i.e., the isolation of only those terms
which contribute toA60. The apparent consistency of the
numerical and analytic data in Fig. 4 represents an indepen-
dent consistency check on the rather involved analytic calcu-
lations.

Our numerical results are not inconsistent with the ana-
lytic result @6# for a higher-order logarithm,

A715p ~ 139
64 2 ln 2!54.65, ~5.13!

although they do not necessarily confirm it. As in@4#, we
obtain as an estimateA7155.5(1.0) ~from the fit to the nu-
merical data for bothS states!. Logarithmic terms corre-
sponding to the~probably! nonvanishingA83 coefficient
should be taken into account for a consistent fit of the cor-
rections toGSE. These highly singular terms are difficult to
handle with a numerical fitting procedure. The termsA83,
A82, andA81 furnish three more free parameters for the nu-
merical fit, where only five data points are available~in ad-
dition to the quantitiesA60, A71, andA70, which may also
be regarded as free parameters for the fitting procedure!. The
determination ofA60 by a fit from the numerical data is much
more stable than the determination of the logarithmic correc-
tion A71. We briefly note that our all-order evaluation essen-
tially eliminates the uncertainty due to the unknown higher-
order analytic terms. Also, it is interesting to note that the
same numerical methods are employed for both theS andP
states in our all-order~in Za) calculation, whereas the ana-
lytic treatment ofS andP states differs@15,16#.

The comparison of numerical and analytic results is much
less problematic forP states, because the functionGSE is less
singular @see Eqs.~2.4! and ~2.6!#. For the 2P states, we
observe that the functionGSE(2Pj ,Za) has the same semi-
analytic expansion aboutZa50 as the functionDGSE(Za)
defined forS states in Eq.~5.2!. We have

GSE~2Pj ,Za!5A60~2Pj !1~Za! A70~2Pj !1~Za!2

3@A82~2Pj ! ln2~Za!221A81~2Pj !

3 ln~Za!221A80~2Pj !1o~Za!#.

~5.14!

Hence, we plot the function

gj~Z!5GSE„2Pj ,~Z11! a…2GSE~2Pj ,Za! ~5.15!

for j 5 1
2 and j 5 3

2 in the region of lowZ, with the notion that
an inconsistent analytic result forA60(2Pj ) would lead to
irregularity atZ50, in analogy with theS states. The nu-
merical data shown in Figs. 5 and 6 appear to be consistent
with the analytic results of

A60~2P1/2!520.998 91~1!

and

A60~2P3/2!520.503 37~1! ~5.16!

obtained in@16#. In this context it may be interesting to note
that analytic results obtained in@16,52# for the higher-order
binding corrections to 2P, 3P, and 4P states have recently

FIG. 5. Comparison of numerical data and analytically evalu-
ated higher-order binding corrections for the 2P1/2 state. We plot
the functiong1/2(Z) defined in Eq.~5.15! in the region of lowZ.
The numerical data obtained in the current investigation appear to
be consistent with the analytic result ofA60(2P1/2)
520.998 91(1) obtained in@16#.

FIG. 6. For the 2P3/2 state, we plot the functiong3/2(Z) defined
in Eq. ~5.15! in the region of lowZ. The numerical data obtained in
the current investigation appear to be consistent with the analytic
result ofA60(2P3/2)520.503 37(1) from@16#.
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been confirmed indirectly@60#. Finally, although it may be
possible to obtain more accurate estimates of some higher-
order analytic corrections, notably theA70 coefficient forP
states andDA70 for the two lowest-lyingS states, we have
not made such an analysis in the current work; we have
restricted the discussion to a check of the consistency with
the available results forA60.

VI. CONCLUSION

There has recently been a rather broad interest in the nu-
merical calculation of relativistic, QED self-energy, and two-
body corrections at lowZ and the comparison of analytic and
numerical results@58,61–72#. Traditionally, the self-energy
correction for hydrogenlike systems has posed a computa-
tional challenge. Here we have described a nonperturbative
evaluation of the one-photon self-energy correction in hydro-
genlike ions with low nuclear charge numbersZ51 to 5.
The general outline of our approach is discussed in Sec. II. In
Sec. III the numerical evaluation of the low-energy part~gen-
erated by virtual photons of low energy! is described. In Sec.
IV we discuss the numerical evaluation of the high-energy
part, which is generated by high-energy virtual photons and
contains the formally infinite contributions, which are re-
moved by the renormalization. Section IV also contains a
brief discussion of the convergence acceleration methods as
employed in the current evaluation. We discuss in Sec. V the
comparison of analytic and numerical data forK- andL-shell

states in the region of lowZ. The main results of this paper
are contained in Table V: numerical data, nonperturbative in
Za, for the scaled self-energy functionF and the self-energy
remainder functionGSE for K- and L-shell states at low
nuclear charge. The numerical accuracy of our data is 1 Hz
or better in frequency units for 1S, 2S, and both 2P states in
atomic hydrogen.

The comparison of analytic and numerical results to the
level of accuracy of the numerical data, which is discussed in
Sec. V, indicates that there is very good agreement for theK-
and L-shell states. The analytic and numerical data are
shown in Figs. 4, 5, and 6. Our all-order evaluation elimi-
nates any uncertainty due to the unknown higher-order ana-
lytic terms; the current numerical uncertainty in the self-
energy is at the level of 1 Hz for atomic hydrogen.
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