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PHYSICAL REVIEW A, VOLUME 63, 042512

Electron self-energy for theK and L shells at low nuclear charge

Ulrich D. Jentschur&?®* Peter J. Moht;" and Gerhard Soff*
INational Institute of Standards and Technology, Mail Stop 8401, Gaithersburg, Maryland 20899-8401
2Institut fir Theoretische Physik, TU Dresden, MommsenstraRe 13, 01062 Dresden, Germany
(Received 22 August 2000; published 21 March 2001

A nonperturbative numerical evaluation of the one-photon electron self-energy f&r #red L-shell states
of hydrogenlike ions with nuclear charge numbgrs 1 to 5 is described. Our calculation for th&}, state
has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and fokL tbleell states (3,,,, 2P, and 2P,
the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is
described in detail. The numerical results are compared to results based on known terms in the expansion of the
self-energy in powers af .

DOI: 10.1103/PhysRevA.63.042512 PACS nuntder31.30.Jv, 12.20.Ds, 06.20.Jr, 31.1p.

I. INTRODUCTION These figures should be compared to the current experi-
mental precision. The most accurately measured transition to
The nonperturbative numerical evaluation of radiativedate is the $-2S frequency in hydrogen; it has been mea-
corrections to bound-state energy levels is interesting for twsured with a relative uncertainty of 1.8 parts in46r 46 Hz
reasons. First, the recent dramatic increase in the accuracy [#]. This experimental progress is due in part to the use of
experiments that measure the transition frequencies in hydrdrequency chains that bridge the range between optical fre-
gen and deuteriurfil—3] necessitates a numerical evaluationquencies and the microwave cesium time standard. The un-
(nonperturbative in the binding Coulomb figldf the radia- certainty of the measurement is likely to be reduced by an
tive corrections to the spectrum of atomic systems with loworder of magnitude in the near futufg,7]. With trapped
nuclear charg&. Second, the numerical calculation serves ashydrogen atoms, it should be feasible to observe 8%
an independent test of analytic evaluations which are baseflequency with an experimental linewidth that approaches
on an expansion in the binding field with an expansion pathe 1.3 Hz natural width of theRlevel[8,9].
rameterZa. The perturbation series iBa is slowly convergent. The
In order to address both issues, a high-precision numericalll-order numerical calculation presented in this paper essen-
evaluation of the self energy of an electron in the groundially eliminates the uncertainty from unevaluated higher-
state in hydrogenlike ions has been perfornideb]. The  order analytic terms, and we obtain results for the self-energy
approach outlined in4] is generalized here to the shell,  remainder functionGsg with a precision of roughly 0.8
and numerical results are obtained for the=(2) states xZ*Hz for the ground state of atomic hydrogen and 1.0
2S5, 2Py, and 2P4,. Results are provided for atomic x z*Hz for the 25 state.
hydrogen, Hé, Li®*, Be**, and B'*. In the evaluation, we take advantage of resummation and
It has been pointed out if4,5] that the nonperturbative convergence acceleration techniques. The resummation tech-
effects(in Z«) can be large even for low nuclear charge andniques provide an efficient method of evaluation of the
exceed the current experimental accuracy for atomic transBirac-Coulomb Green function to a relative uncertainty of
tions. For example, the difference between the sum of tha0 2?4 over a wide parameter rand8]. The convergence
analytically evaluated terms up to the orderefZa)® and  acceleration techniques remove the principal numerical dif-
the final numerical result for the ground state is roughly 27ficulties associated with the singularity of the relativistic
kHz for atomic hydrogen and about 3200 kHz for Hé~or  propagators for nearly equal radial argume.
the 2S state the difference is 3.5 kHz for atomic hydrogen The one-photon self-energy treated in the current investi-
and 412 kHz for He. The large difference between the re- gation is about two orders of magnitude larger than the other
sult obtained by an expansion #xw persists even after the contributions to the Lamb shift in atomic hydrogen. A com-
inclusion of a result recently obtained [i] for the logarith-  prehensive review of the various contributions to the Lamb
mic term of orderx (Za) 'In(Za) 2. For the ground state, the shift in hydrogenlike atoms in the full range of nuclear
difference between the all-order numerical result and the sursharge numberZ=1-110 has been given [11-14.
of the perturbative terms is still 13 kHz for atomic hydrogen  This paper is organized as follows. The method of evalu-
and 1600 kHz for Hé. For the = state, the difference ation is discussed in Sec. Il. The calculation is divided into a
amounts to 1.6 kHz for atomic hydrogen and to 213 kHz forlow-energy part and a high-energy contribution. The low-
He". energy part is treated in Sec. lll, and the high-energy part is
discussed in Sec. IV. Numerical results are compiled in Sec.
V. Also in Sec. V, we compare numerical and analytic re-

*Electronic address: jentschura@physik.tu-dresden.de sults for the Lamb shift in the region of low nuclear charge
"Electronic address: mohr@nist.gov numbers. Of special importance is the consistency check
*Electronic address: soff@physik.tu-dresden.de with available analytic resultsl5,16 for higher-order bind-
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ing corrections to the Lamb shift. We make concluding re-(for the “order” symbolso andO we follow the usual con-
marks in Sec. VI. vention, see, e.g[17,18). For P states, the semianalytic
expansion ofGge reads

II. METHOD OF EVALUATION
GSE(n P] ,Zaf):Aeo(nPj)+(ZC() [A70(nPJ)+O(Za)]

A. Status of analytic calculations (2.6)

The (real part of the energy shiftAEge due to the elec-  The fact thatA,,(nP;) vanishes has been pointed ouf&.
tron self-energy radiative correction is usually written as e list below the analytic coefficients and the Bethe loga-
@ (Za)* rithms relevant to the atomig states under investigat_ion. For
AEgg=————F(nl},Za) MeC2, 2.0 fthe ground state, the c_oefﬁuerAs,l andA,q were obtained
T n in [19-29, the correction termAsy was found in[26—2§,
and the higher-order binding correctioAg, and Ag, were
whereF is a dimensionless quantity. In the following, the evaluated if29—-37,15. The results are
natural unit system with =c=m,=1 ande’=4ma is em-

ployed. Note that=(nl;,Za) is a dimensionless function Au(1S) =1,

which depends for a given atomic state with qguantum num-

bersn, |, andj on only one argumerithe couplingZa). For Ayl 1S12) =% — 5 Inko(1S),

excited states, thenonvanishingimaginary part of the self-

energy is proportional to théspontaneoysdecay width of Ago(1Sy)=4m[B2-11In2],

the state. We will denote here theal part of the self-energy

by AEgg, exclusively. The semianalytic expansion of Ag(1S)=—1,

F(nl;,Za) aboutZa=0 for a general atomic state with

quantum numbers, |, andj gives rise to the semianalytic Agsi(1S1) =2 In2— 2. 2.7
expansion,

The Bethe logarithm IRy(1S) has been evaluated B8] and
F(nlj,Za)=Ayu(nl)) In(Za) 2+ Aufnl)) +(Za) Asnl;)  [39-43 as

+(Za)?[AsAnl)) IN?(Za) "2+ Agy(nl)) Inko(1S)=2.984 128 555 83). (2.9

XIN(Za) "+ Gge(nl} , Za)]. (2.2 For the = state, we have
For particular states, some of the coefficients may vanish. Au(2810) =13,
Notably, this is the case fd? states, which are less singular o
thanSstates at the origifsee Eq(2.4) below]. For thenS,, A4 2S10) =5 — 5 Inko(29),
state (=0,j =1/2), none of the terms in E@2.2) vanishes,
and we have Ago(2S1p) =4[22 —3In2],

F(NSyp,Za)=Au(nSyy) IN(Za) "2+ AsfnSyp) AeA2S1)=—1,
2
T(Za) AsdNSyp) +(Ze) Aex(2Sy,) =¥ In2+ L. 2.9

X[Aga(N IN?(Za) "2+ Agy(n
[AcaNSy) In*(2a) 61N Sy The Bethe logarithm IRy(2S) has been evaluatedee[38—
XIN(Za) %+ Ggd NSy, Za)]. (2.3  43], the results exhibit varying accurgcgs

The A coefficients have two indices, the first of which de- Inko(2S)=2.8117698983). (2.10
notes the power oZ« [including those powers explicitly , ) , ,
shown in Eq.(2.1)], while the second index denotes the !t might be worth noting that the value for kg(2S) given in
power of the logarithm Ir£e) 2. For P states, the coeffi- [44] evidently contains a typographical error. _Our indepen-
cientsA4;, Asy, andAg, vanish, and we have der_lt reevalugn_on conflm_]s thg result given in Ea.lo),.
which was originally obtained ifi38] to the required preci-

F(NPj,Za)=A(nNP))+(Za)2[Ag(NP)) sion. For the P, state we have
XIn(Za) 2+ GsNP; ,Za)].  (2.4) Ay 2P 1) =—5§—3Inko(2P),
For S states, the self-energy remainder functi®ge can be Ae1(2P1) = 15. (211

expanded semianalytically as ) _
Note that a general analytic result for the logarithmic correc-

Ged(NS; /. Za)=Agg(N +(Za) [Aar(n IN(Za) 2 tion Ag; as a function of the bound-state quantum numbers
selNSy2,20) = AedNSy2) + (Z2) [A7i(NSy) In(Zax) I, andj can be inferred from Eq(4.43 of [34,35 upon

+A,(NS;p) +0(Za)] (2.5 subtraction of the vacuum polarization contribution implic-

042512-2
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itly contained in the quoted equation. The Bethe logarithmof the self-energy. The renormalization procedure postulates

for the 2P states readg38,45 that the self-energy is essentially the effect on the bound
electron due to the self-interaction with its own radiation
Inko(2P)=—0.030016 708 €3). (212 field, minus the same effect on a free electron which is ab-

Because the Bethe logarithm is an inherently nonrelativisti sorbed in the mass of the electron and therefore not observ-
9 y ble. The self-energy of the bound electron is the residual

quantity, it is spin-independent and therefore independent q ffect obtained after the subtraction of two large quantities.

tmhengotril re:inglglar\rthmo;entlin:f% a grl:vlert]i Orb't?fli ?nr?tularr Terms associated with renormalization counterterms are of
omentum’. For the 475, State Ine analylic COEtcIents are  qer 1 in theza expansion, whereas the residual effect is of

Auf(2P3) =5 — 4 Inko(2P), order Za)* [see Eq.(2.1)]. This corresponds to a loss of
roughly nine significant digits af=1. Consequently, even
Aci(2P ) = 55 (2.13  the precise evaluation of the one-photon self-energy in a
Coulomb field presented if46] extends only down tdZ
We now consider the limit of the functioGs(Z«) as =5. Among the self-energy corrections in one-loop and

Za—0. The higher-order terms in the potential expansionhigher-loop order, numerical cancellations in absolute terms
(see Fig. 3 beloywand relativistic corrections to the wave are most severe for theneloop problem because of the
function both generate terms of higher ordeZim which are  large size of the effect of the one-loop self-energy correction
manifest in Eq.(2.2) in the form of the nonvanishing func- on the spectrum.

tion Gg(Za), which summarizes the effects of the relativ-  For our high-precision numerical evaluation, we start
istic corrections to the bound electron wave function and ofrom the regularized and renormalized expression for the
higher-order terms in the potential expansion. For very sofpne-loop self-energy of a bound electron,

virtual photons, the potential expansion fails and generates

an infrared divergence which is cut off by the atomic mo- L 2 A

mentum scal& «. This cutoff for theinfrared divergence is AESE_AI'L“OO e ReJCF f (27)3 D (k% A)

one of the mechanisms that leads to the logarithmic terms in

Eq. (2.2). Some of the nonlogarithmic terms of relative order

(Za)? in Eq. (2.2) are generated by the relativistic correc- x<# Y
tions to the wave function. The functidBgg does not van- p—k=1-»V
ish, but approaches a constant in the ligdt— 0. This con-

stant can be determined by analytic or semianalytic = lim [ —je Ref f D, (k%4 A)
calculations; it is referred to as thg,, coefficient, i.e., Ao a

Y

v ¢> —Am

AGO(I’HJ-):GSE(I’HJ-,O). (214)

The evaluation of the coefficiertso(1S,,,) has been histori-
cally problematid15,34—37. For the 2 state, there is cur- (2.18
rently only one precise analytic result availaloief. [15]),

X (| a* ¥ *XG(E,— w) a”e_ik'x|¢>—Am] ,

whereG denotes the Dirac-Coulomb propagator,

Agi(2S;) = —31.840471). (2.19
For the 2P,,, state, the analytically obtained result(Ref. G(2)= @ptBIv—2 (219
[16])

Agy( 2P 1) = —0.998911), (2.16 and Am is the A-dependent(cutoff-dependent one-loop

mass counter term,
and for the P, state, we havéRef.[16])

Ago( 2P5)= —0.503 371). .17 m=—(ZINA%+5)(B). (2.20

The analytic evaluations essentially rely on an expansion ofhe photon propagathW(kz A) in Eq.(2.18 in Feynman

the relativistic Dirac-Coulomb propagator in powers of thegauge reads

binding field, i.e., in powers of Coulomb interactions of the

electron with the nucleus. In numerical evaluations, the bind- Uuv Uuv

ing field is treated nonperturbatively, and no expansion is D, (K A)=— — — — .
kK2+ie K2—A%+ie

performed.

(2.2)

The contourCg in Eg. (2.18 is the Feynman contour,
whereas the contour is depicted in Fig. 1. The contodris

Numerical cancellations are severe for small nucleaemployed for thew integration in the current evaluati¢aee
charges. In order to understand the origin of the numericathe last line of Eq.(2.18]. The energy variable in Eq.
cancellations it is necessary to consider the renormalizatiof2.19 therefore assumes the value

B. Formulation of the numerical problem

042512-3
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Im(w) For the lowZ systems discussed here, all complications that
arise for excited states due to the decay into the ground state

Cn are relevant only for the infrared part. Except for the further
separation into the infrared and the middle-energy part, the
same basic formulation of the self-energy problem d<ifj

CL is used. This leads to the following separation: for the infra-

== et 2m B ed partAER,

CL
we (0,5 E,)*id,

Cu for the middle-energy pakiE,,,

we(5E,,Ep)*id,

FIG. 1. Integration contowt for the integration over the energy
w=E,—z of the virtual photon. The contour consists of the low-
energy contouC, and the high-energy conto@,,. Lines shown
displaced directly below and above the real axis denote branch cuts

”‘?”? th.e photon and_ electron propagator. Crosses denote IOOI‘?ﬁtegration along these contours gives rise to the infrared, the
originating from the discrete spectrum of the electron propagator,

o middle-energy, and the high-energy contributions to the en-
Th It dinth k ds to th ed7n . ' 97
© contour used in this work corresponds fo the one usedd ergy shift. For all of these contributions, lower-order terms

are subtracted in order to obtain the contribution to the self-
energy of order Za)“. We obtain for the infrared part,

and for the high-energy pafE,,

weEyt+i(—o0,+00).

z=E,~ o, (2.22

where E,, is the Dirac energy of the atomic state, awd al 21 43 (Za)*

denotes the complex-valued energy of the virtual photon. It AE.R=; ﬁ<ﬁ>+%<v>+ — Fr(nlj,.Za) |,

is understood that the limit — oo is takenafter all integrals n

in Eq. (2.18 are evaluated. (224
e egraton cortou o he complex alved &09Y Ouerer (o2 s  imensioness furcton farcer one.
ployed in[46—49 and depicted in Fig. 1. The integrations The middle-energy partis recovered as

along the low-energy contou, and the high-energy con- o279 219 (Za)®
tour Cy, in Fig. 1 give rise to the low- and the high-energy  AE,,=— ~—(B)+ (V) + ——Fp(nl ’Za)l'
contributionsAE, andAE,, to the self-energy, respectively. | 200 200 n®

Here, we employ a further separation of the low-energy in- (2.29
tegration contourC, into an infrared contouiCz and a )

middle-energy contou€,, shown in Fig. 2. This separation and the high-energy part reap7,48

gives rise to a separation of the low-energy e, into the

4
infrared partAEz and the middle-energy paE,,, _ @l E _ Z @
IR M AE4=Am+ p 2([3) 6<V)+ o Fu(nlj,Za) |.
AE =AER+AEy. (2.23 (2.26
I \ The infrared part is discussed in Sec. Il A. The middle-
m(w) energy part is divided into a middle-energy subtraction term
Fua and a middle-energy remaindEg,z . The subtraction
Cir . Cm termFy is discussed in Sec. Il B, the remainder tefiyg
—t 0 ' R‘i(w) is treated in Sec. Il C. We recover the middle-energy term
; - as the sum
C C
" M Fu(nlj,Za)=Fya(nl;,Za)+Fyg(nl;,Za). (2.27)

A similar separation is employed for the high-energy part.
FIG. 2. Separation of the low-energy contdlyr into the infra-  The high-energy part is divided into a subtraction téfm,

red partC g and the middle-energy pa@,, . As in Fig. 1, the lines  which is evaluated in Sec. IV A, and the high-energy remain-

directly above and below the real axis denote branch cuts from thder Fz, which is discussed in Sec. IV B. The sum of the

photon and electron propagator. Strictly speaking, the figure is valig¢ubtraction term and the remainder is

only for the ground state. For excited states, some of the crosses,

which denote poles originating from the discrete spectrum of the Fu(nlj,Za)=Fua(nlj,Za) + Fyg(nlj ,Za). (2.28
electron propagator, are positioned to the right of the linewRe
=0. These poles are subtracted in the numerical evaluation. The total energy shift is given as

042512-4
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AESE:AE|R+AEM+EH_Am ( : f i
@ (Za)* =

[F|R(n|j ,Za)

a n3

+Fu(nlj,Za) +Fy(nl;,Za)].  (2.29

The scaled self-energy functiof defined in Eq.(2.1) is
therefore obtained as + +

F(nlj,Za)=Fg(nlj,Za)+ Fy(nl;,Za) +Fy(nl; , Za).
(2.30

Ye---

X X
In analogy to the approach described46,47,49, we define FIG. 3. The exact expansion of the bound electron propagator in
the low-energy part as the sum of the infrared part and thgowers of the binding field leads to a zero-potential, a one-potential,
middle-energy part, and a many-potential term. The dashed lines denote Coulomb pho-
tons; the crosses denote the interaction with (#derna) binding
AEL:AE|R+AEM field.
4
_e §<B>+Z<V>+(Za) Fu(nlj,Za) |, energy problem requiresthreedimensional numerical inte-
™| 2 6 n3 gration. Without this significant improvement, an all-order

(2.31) calculation would be much more difficult at low nuclear
charge, because the lower-order terms would introduce sig-
where nificant further numerical cancellations.
In addition, the special approximate resolvent can be used
Fu(nlj,Za)=Fg(nlj,Za)+Fy(nl;,Za). (2.32 effectively for an efficient subtraction scheme in the middle-
o _ energy part of the calculation. In the infrared part, such a
The limits for the functions=| (nl; ,Za) andFy(nlj,Za) as  gyptraction is not used because it would introduce infrared

Za—0 were obtained |fﬁ5,48—5q divergences_
We now turn to the construction of the special approxi-
C. Treatment of the divergent terms mate resolvent, which will be referred to &s, and will be

used in this calculation to isolate the ultraviolet divergences

in the high-energy partand to provide subtraction terms in
1 the middle-energy partlt is based on an approximation to

S aprp-z (2.33  the first two terms on the right-hand side of E8.34). The

so-called one-potential terfaVF in Eq. (2.34) is approxi-

and the full electron propagat@ defined in Eq(2.19 fulfill ~ mated by an expression in which the potential teivhare

the following identity, which is of particular importance for commuted to the outside:

the validity of the method used in the numerical evaluation

of the all-order binding correction to the Lamb shift, —FVF~-1% {V,Fz}. (2.35

The free-electron propagator

F

G=F-FVF+FVGVF. (2.34 Furthermore, the following identity is used:

This identity leads naturally to a separation of the one- )
photon self-energy into a zero-vertex, a single-vertex, and a 2:( 1 )
many-vertex term. This is represented diagrammatically in a-ptpB—-z
Fig. 3.

gAII ultraviolet divergences which occur in the one-photon - 1 2z(B+2) 2z(a-p)
problem(mass counter term and vertex divergenae gen- CPP+1-22 (PP+1-22)? (pP+1-72)2
erated by the zero-vertex and the single-vertex terms. The
many-vertex term is ultraviolet safe. Of crucial importance is (2.36
the observation that one may additionally simplify the prob-
lem by replacing the one-potential term with an approximatdn 2X2 spinor space, this expression may be divided into a
expression in which the potential is “commuted to the out-diagonal and a nondiagonal part. The diagonal part is
side.” The approximate expression generates all divergences

and all terms of lower order thaa (Za)* present in the 1 22(B+2)
one-vertex term. Unlike the raw one-potential term, it is diag F?)= 5 > 53" (2.37)
amenable to significant further simplification and can be re- p*+1-z= (p*+1-29

duced toonedimensional numerical integrals that can be
evaluated easilya straightforward formulation of the self- The off-diagonal part is given by

042512-5
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2z(a-p) Here, the quantum numbaer is the Dirac angular quantum
number of the intermediate state,

2 i 2\ —
F<—diag F°) Pr1-2)7
k=2(1-]) (j+2), (3.9
We define the resolveris, as
wherel is the orbital angular momentum quantum number
Ga=F—3{V,diagF?)}. (2.39  andj is the total angular momentum of the bound electron.
The functionsf;(x,) (i=1,2) are the radial wave functions
All divergences that occur in the self-energy are generatedefined in Eq(A.4) in [47] for an arbitrary bound stafand
by the simp!ified propagatd, . We define the propagator jp Eq. (A.8) in [47] for the 1S statd. We definel=3—i. The
Gg as the difference o6 andGa, functionsG'! (x,,x1,2) (i,j=1,2) are the radial Green func-
1 . tions, which result from a decomposition of the electron
Gg=G—Ga=3{V,diagF?}-FVF+FVG VF. Green function defined in Eq2.19 into partial waves. The
(2:39 explicit formulas are given in EqA.16) in [47].

Gg does not generate any divergences and leads to the The photon angular functions, (i,j=1,2) are defined in

middle-energy remainder discussed in Sec. IlC and thd=d: (3.19 of Ref. [47] for an arbitrary bound state. In Eq.
high-energy remainde(Sec. IV B. (3.17) in [47], specific formulas are given for theSktate. In

Egs.(2.2), (2.3, and(2.4) of [49], the special cases &,,
P, andP5, states are considered. Further relevant formu-
las for excited states can be found &1]. The photon angu-

A. The infrared part lar functions depend on the energy argumeriut this de-
pendence is usually suppressed. The summation evier
Eq. (3.5 extends over all negative and all positive integers,
excluding zero. We observe that the integral is symmetric

lll. THE LOW-ENERGY PART

The infrared part is given by

do dk
AERr=—i€e’Re —f ——D,,(k? under the interchange of the radial coordinatggndx,, so
C|R277 (277)3 a th
at
X(yl a* e **G(Es—w) a”e” X ]y), (3.1 @B, 2a_(E ® i 2
R=— 7" =P dzj dxq X7
where relevant definitions of the symbols can be found in m10 7 Jenoe, Jo
Egs.(2.18—(2.21), the contoulC g is as shown in Fig. 2, and ‘
the unregularized version of the photon propagator X fo dx, X%MIR(XZ:XLZ)- 3.7
D . k?)=— ZQL (3.2 The following variable substitution:
k“+ie
r=x,/xy, y=ax; (3.8

may be used. The infrared part consists of the following ) ,
integration region for the virtual photon: 'S_m‘a‘d? 33 thate (0,1) andy e (0). The scaling variable
a is defined as

05E,*id
we (035 En) a=2 J1-E2. (3.9
B .
ze (15 En,Ep) i 4. 33 The Jacobian is
Following Secs. 2 and 3 d#7], we write AE| as a three- Xy IXq
dimensional integrd]see, e.g., Eq¢3.4), (3.11), and(3.14) -— —
d(X2,X1) ar - ar y
of [47]] AN . = (3.10
ar.,y) Xy IXq 2
aE, a (E J“‘ ) gy ay
AEg=—-—=——P dz| dx;x
R 710 7 Jonoe, Jo - F . N
The functionSpk is given by
xf dX2X§M|R(X2,Xl,Z), (34) 2r2y5 ry y
° Sr(r,y,z)=— 6 MIR(?:EvZ
a

where P is the principal value and where

2r2y® 2 2 r
L 52 5, 2
MlR(X2,X1,2)=E E f1(x2) G (X2,%1,2) ar Iu=1 =zl 1J=1
kK i,j=1
= ij(. Yy 2 AN A
X 5(x0) Al (X Xy). (35 XG5 fia Al a
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2r2y% 2
== ae I%l TIR,|K\(r1y=Z)1

where in the last line we define implicitly the terrig |

(3.1)

for [x|=1,... = as
2 ry ry y
T ry.z)= fil—| G| —. 2.z
R, (FY:2) K;i:\,q i,j§=:1 {a fla‘a
Y pilY Y
Xfia Adl 33 (3.12

Using the definition(3.11), we obtain forAEg,

aE, «
AE|R:__+_P

En 1 s
~107 5 dzJodrj0 dy Sg(r,y,z).

(9110)E,,
(3.13

The specification of the principal valu®) is necessary for

PHYSICAL REVIEW A 63 042512

ry
oY

[which occurs in Eq(3.11)] depends on the radial arguments
approximately as

X fi g) for arbitrary1,j e {1,2

e Yxexds(1-r)y] (forlargey).
Note that the main dependence as given by the term
exp(—y) is exactly the weight factor of the Gauss-Laguerre
integration quadrature formula. The deviation from the exact
exp(—y)-type behavior becomes smallerras: 1. This is fa-
vorable because the region nea+1 gives a large contribu-
tion to the integral in Eq(3.13.

The sum ovef«| in Eq. (3.1)) is carried out locally, i.e.,
for each set of argumentsy,z. The sum ovetx| is abso-
lutely convergent. Fd|— o, the convergence of the sum is
governed by the asymptotic behavior of the Bessel functions
that occur in the photon functions! (i,j=1,2) [see Egs.
(3.195 and (3.16 in [47]]. The photon functions contain

the excited states of tHeshell because of the poles along the products of two Bessel functions of the fotffi(p,/1), where
integration contour which correspond to the spontaneous de% stands for eithef, or j| , and the index is in the range
cay into the ground state. Here we are exclusively concernelds {| x| — 1,/ «|,| x| +1}. The argument is eithep,=(E,

with the real part of the energy shift, as specified in Bql),

—2) X, or p1=(E,—2) x4. The asymptotic behavior of the

which is equivalent to the specification of the principal valuetwo relevant Bessel functions for larg¢and therefore large

in Eq. (3.13. Evaluation of the integral over is facilitated

by the subtraction of those terms that generate the singulari-

ties along the integration contodfior higher excited states,
there can be numerous bound-state poles, as pointed out in
[51,52). For the & and 2P, states, only the pole contri-

bution from the ground state must be subtracted. For thand

2P, state, pole contributions originating from thé&,1the

2S, and the P4, states must be taken into account. The
numerical evaluation of the subtracted integrand proceeds
along ideas outlined 49,51 and is not discussed here in

any further detail.
The scaling parametex for the integration ovey is cho-

|]) is
y I X 1
HOO=3 G| 110 T) (3.15
X 1
“(X)_—(2|+1)!! 1+o(|—> . (3.1

This implies that when mip,,p}=p,<I, the function
Ji(p2) vanishes with increasingl approximately as

sen to simplify the exponential dependence of the funcBon (e p,/21)'. This rapidly converging asymptotic behavior sets
defined in Eq.(3.11). The main exponential dependence isin as soon as~|«|>p,=r wy/a [see Egs.(2.22 and

given by the relativistic radial wave functiorispper and
lower componenys Both componentd f;(x) and f,(x)]
vary approximately agneglecting relatively slowly varying
factor9

exp(—ax/2) (for largex).

The scaling variabl@, expanded in powers &a, is

a=21-E2
(Za)? ’
=2 \/1_(1_ o2 +0[(Za)?*]
Za
=2—+0[(Za)°]. (3.14

Therefore,a is just twice theinverse of the Bohr radius
n/(Zea) in the nonrelativistic limit. The product

(3.12]. Due to the rapid convergence foe] > p,, the maxi-
mum angular-momentum quantum numbet in the nu-
merical calculation of the infrared part is less than 3000.

Note that becausee (35 E,,E,) in the infrared part,w
<iE,.

The integration scheme is based on a crude estimate of the
dependence of the integrafgk(r,y,z) defined in Eq(3.1))
on the integration variablesy, andz. The main contribution
to the integral is given by the region where the arguments of
the Whittaker functions as they occur in the Green function
[see Eq.(A.16) in [47]] are much larger than the Dirac an-
gular momentum,

2CX>|K|
a

(see also p. 56 di48]). We assume the asymptotic form of
the Green function given in E@A.3) in [48] applies, and we
attribute a factor

042512-7
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TABLE I. Infrared part for theK- and L-shell statesFg(1S;,,Z«), Fr(2S,,2a), Fir(2P5,Za),

and F r(2P3,,Za), evaluated for lonZ hydrogenlike ions. The calculations were performed with the nu-

merical value ofa~'=137.036 for the fine-structure constant.

z Fir(1Sy2,Za) Fir(2Sy2,Za) Fir(2P12,Za) Fir(2P3;2,Za)

1 7.236623736@) 7.479 764 18(1) 0.085 327 85@1) 0.082 736 497)
2. 5.539002 119(1) 5.782 025 637) 0.086 073 6641) 0.083 279 461)
3 4598 1558218) 4.840923 96¢1) 0.087 16251(Q1) 0.084 091 83(1)
4 3.963124140@) 4.205501 796L) 0.088 543 188L) 0.085 140 788L)
5 3.4932533194) 3.735114 9581) 0.090 180 834L) 0.086 403 1781)

exd —(1-r)cyla] B. The middle-energy subtraction term

i The middle-ener artis given b
to the radial Green functior8! as they occur in Eq.3.11). e g y
Note that relatively slowly varying factors are replaced by
unity. The products of the radial wave functiofisand f7,

) do [ d3k
AEM=—I82J Z_J D,uv(kz)
according to the discussion following E(.14), behave as Cu ™

(2m)®
X (Y| a* e G(E,—w) a” e X[ y),
(3.20

e Vexdz (1-r)y]

for largey. The photon functionss\i,j in Eq. (3.1 give rise
to an approximate factor where relevant definitions of the symbols can be found in
. Egs.(2.18—(2.21) and Eq.(3.2), and the contouC, is as
sif(1-r) (Ea—2) y/a]. (3.17  Shown in Fig. 2. The middle-energy part consists of the fol-
(1-r) lowing integration region for the virtual photon:

Therefore[see also Eq2.12) in [48]], we base our choice of

the integration routine on the approximation we (35 En,En) =i 8

2e (0,3 E,)*i 6. (3.20)

B c 1 sif(1-r)(E,—2)y/a]
y JE _
e ex;{ (a 2)(1 ryy|x a-n

The numerical evaluation of the middle-energy part is sim-

plified considerably by the decomposition of the relativistic
for Sg. The three-dimensional integral in E@3.13 is  Dirac-Coulomb Green functiof as
evaluated by successive Gaussian quadrature. Details of the
integration procedure can be found[.

In order to check the numerical stability of the results, the
calculations are repeated with three different values of the
fine-structure constant, whereG, is defined in Eq(2.38 and represents the sum of
an approximation to the so-called zero- and one-potential
terms generated by the expansion of the Dirac-Coulomb
Green functiorG in powers of the binding fieltf. We define
the middle-energy subtraction terfy,, as the expression
obtained upon substitution of the propaga®y for G in Eq.
(3.20. The propagato6g is simply calculated as the differ-
ence of G and G, [see EQ.(2.39]. A substitution of the
propagatoGg for G in Eq. (3.20 leads to the middle-energy

These values are close to the 1998 CODATA recommendefgmainderryg which is discussed in Sec. Ill C. We provide
value ofa~1=137.035 999 76(50)53]. The calculation was here the explicit expressions

parallelized using the message passing interfatel) and
carried out on a cluster of Silicon Graphics workstations and
on an IBM 9276 SP/2 multiprocessor syst¢s#]. The re-
sults for the infrared parF g, defined in Eq.(2.24), are
given in Table | for a value ofv *=a, '=137.036. This
value of @ will be used exclusively in the numerical evalu-

G:GA+GB, (323

a-=1/137.036 0005,
ay=1/137.036 0000, (3.19
and

a-=1/137.0359995.

do [ dk
AEMA=—ie2f —wf—DW(kz)
CM277 (277)3

X (| a* e X GA(En—w) a”e” X|y)

ations presented here. For numerical results obtained by em- (3.23
ploying the values ofr. and«-. [see Eq(3.19] we refer to
[5]. and

042512-8
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d3k
(2m)?
X (¢ a* e *Gg(Ep—w) a” e X |y).
(3.29

) dw
AEMB:_|e2 fC E D/.Lv(kz)
M

PHYSICAL REVIEW A 63 042512

al| 279 219 (Za)?
ABwa=— ﬁ<ﬂ>+2_00<v>+?FMA(nljaza) -
(3.29

The three-dimensional integral in E(R.28 is evaluated by
successive Gaussian quadrature. Details of the integration

Note that the decomposition of the Dirac-Coulomb GreerProcedure can be found ifb]. The numerical resuilts are

function as in Eq(3.22) is not applicable in the infrared part
because of numerical problems for ultrasoft phot@na-
red divergences Rewriting Eq.(3.23 appropriately into a
three-dimensional integrgb,47,48, we have

AE _a9E 2«a (9/10)End J“”d 2
MAT 1050 T T o z o X1 X1

X
Xf 1dX2 X5 Mua(X2,X1,2). (3.29
0

The function Mya(X2,X1,2) is defined in analogy to the
function Mg(X,,X;,2) defined in Eq.(3.5) for the infrared
part. Also, we define a functioya(X»,X1,2) in analogy to
the functionSg(X,,X4,2) given in Eq.(3.11) for the infrared
part, which will be used in Eq.3.28 below. We have

2 r2y5
SMA(r-yaZ):_TMMA

ry
a

y
v o2
a

2r

25 ~ 2
y D ry
= — f —_—
a6 [k]=1 k==|k| i,j=1 T( a

r r
xGlf |22z %X Al Y
! a a a a’'a
2r2ys 2
- 26 I;;tl Tma, «(T,Y2)- (3.26

The expansion of the propagat@, into partial waves is
given in Eqgs.(5.4) and(A.20) in [47] and in Eqs(D.37) and
(D.42) in [5]. This expansion leads to the component func-
tions GJ .. The termsTy, |, in the last line of Eq(3.26
read

2
ry
Tua (1Y, 2)= 2 2 f{—
k==*|k| i,j=1 a

of?

ry
a

GH ,g,z

y K

Al Y

K

. (3.27

summarized in Table II.

C. The middle-energy remainder

The remainder term in the middle-energy part involves
the propagatorGg defined in Eq.(2.39, Gg=G—G,,
where G is defined in Eq.(2.19 and G, is given in Eq.
(2.38. In analogy to the middle-energy subtraction term, the
middle-energy remainder can be rewritten as a three-
dimensional integral,

a [(910)E, 1 o
AEMB:;fO dzfodr fo dy Sus(r,y,2),

(3.30
where
2r2y> 2 {ry
Sws(r,y,z)=— f1—
s (Y,2) 26 ‘%1 K=ilk‘i;1 "\
o L
xal [, fix pi[ YY)
<\ a’'a a a'a
(3.3)

The functionsGiEj;YK are obtained as the difference of the ex-
pansion of the full propagat@ and the simplified propaga-
tor G, into angular momenta,

G4,=Gl-Gli,, (3.32

where theG] are listed in Eq.(A.16) in [47] and in Eq.
(D.43)in [5], and theG{ , have already been defined in Egs.
(5.4 and(A.20) in [47] and in Egs(D.37) and(D.42) in [5].
There are no lower-order terms to subtract, and therefore

a(Za)?
AEMB:TFMB(nlj,Za). (333

v

The three-dimensional integréd.30 is evaluated by succes-
sive Gaussian quadrature. Details of the integration proce-
dure are provided if5]. Numerical results for the middle-
energy remaindef g are summarized in Table Il for the-
andL-shell states.

With these definitions, the middle-energy subtraction term  gq; the middle-energy part, the separation into a subtrac-

AE\a can be written as

a 9 a ((910)E,
AEMA:; _En+ —f

% 1
0 dzf0 dyfodrSMA(r,y,z).

(3.28

0

The subtracted lower-order terms yield

tion and a remainder term has considerable computational
advantages that become obvious upon inspection of Egs.
(3.29 and (3.33. The subtraction involves a propagator
whose angular components can be evaluated by recursion
[5,48], which is not computationally time consuming. Be-
cause the subtraction term involves lower-order components
[see EQ.(2.29], it has to be evaluated to high precision
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TABLE II. Numerical results for the middle-energy subtraction tdy, , the middle-energy remainder
termFyg, and the middle-energy terf, . The middle-energy terrf, is given as the surfy(nl;,Za)
=Fua(nl;,Za)+Fyg(nl;,Za) [see also Eq92.25, (3.29, and(3.33)].

z Fua(1Sy,,Za) Fua(2S8y2,2a) Fua(2P1p,Za) Fua(2P3p,Za)

1 2.699379904H) 2.720878 3181) 0.083 207 314) 0.701 705 24Q1)

2 2.659561381) 2.681 820 66(Q1) 0.084 208 831) 0.701 850 0241)

3 2.623779453Q) 2.647 262 568L) 0.085 831 6581) 0.702 091 14{n)

4 2.591151010() 2.616 2904302 0.088 040 764L) 0.702 426 85Q1L)

5 2.561 096 522(1) 2.588 297 638l) 0.090 803 408L) 0.702 854 46(1)

z Fue(1Sy2,Za) Fume(2Sy,,Za) Fus(2P12,Za) Fume(2P3p,Za)

1 1.685993923@) 1.784 756 708) 0.771787 7712) —0.094 272 681(2)
2 1.626 842 2943) 1.725583 79@) 0.770 778 39®) —0.094612071(2)
3 1.571 406 090(@) 1.670 086 99¢2) 0.769 153 31®) —0.095 165 248(2)
4 1.519082 768@) 1.617 650 00@) 0.766 954 43R) —0.095 922 506(2)
5 1.469482409@) 1.567 873 14(2) 0.764 220 14@) —0.096 874 556(2)
z Fu(1Sy,Za) Fum(2Sy2,Za) Fm(2Py2,Za) Fm(2Pgp,Za)

1 4.385373827(@) 4,505 635 02@) 0.854 995 0882) 0.607 432 55@)

2 4.286 403 675@) 4.407 404 45@) 0.854 987 22@) 0.607 237 95@)

3 4.195185543@) 4,317 349 56@) 0.854 984 97Q2) 0.606 925 89@)

4 4.110233778@) 4,233 940 43@) 0.854 995 19Q) 0.606 504 34®@)

5 4.030578931() 4,156 170 77Q@) 0.855 023 55R) 0.605 979 908)

numerically(in a typical case, a relative uncertainty of 18
is required. This high precision requires in turn a large num-[see also Eq(2.27)]. Numerical results are summarized in
ber of integration points for the Gaussian quadratures, whicltaple Il for theK- andL-shell states. The low-energy pé#t

is possible only if the numerical evaluation of the integrandis defined as the sum of the infrared contributp and the

is not computationally time consuming. For the remaindemmiddle-energy contributiofr, [see Eq.(2.32)]. The results
term, no lower-order terms have to be subtracted, and thgyr F| are provided in Table IlI for th&- andL-shell states.
relative precision required of the integrals is in the range ofrhe limits for the low-energy part as a function of the bound-
10~**--10"°. A numerical evaluation to this lower level of state quantum numbers can be found in &80 of [5];

precision is feasible, although the calculation of the Green

traction termFy, and the middle-energy remaindé,g

function Gg is computationally more time consuming than 4 , 4 11\ 1
that of G [5,47,48. The separation of the high-energy part FL(Nlj.Za) =38 oIn(Za)*= ZInke(n,1) +| In2— 75 ]
into a subtraction term and a remainder term, which is dis-
cussed in Sec. IV, is motivated by analogous considerations 16\ 1 3 7
as for the middle-energy part. In the high-energy part, this +{2In2— 1_5)2 x1 " Elnz_ Z)
separation is even more important than in the middle-energy
part because of the occurrence of infinite terms that need to % 1 - §In oy 9|1
be subtracted analytically before a numerical evaluation can k(21+1) 2 4/ x|
proceed see Eq.(4.8) belowl.

We now summarize the results for the middle-energy part. I iln o E S+l in2— ?) n-21-1
The middle-energy part is the sum of the middle-energy sub- 3 30 6/n(21+1)

TABLE lll. Low-energy part F_ for the K- and L-shell statesF,(1S;,,Za), F (2Si,,Za),
FL(2Py,,Za), andF (2P35,Za), evaluated for lowZ hydrogenlike ions.

z FL(1S,,Za) FL(2S12,2a) FL(2Py3,Z2a) FL(2Pgp,Za)

1 11.621 997 5643) 11.985 399 20@) 0.940 322 93R) 0.690 169 0562)
2 9.825 405 794(2) 10.189 430 09&) 0.941 060 8982) 0.690517 41®@)
3 8.793 341 365@) 9.158 273 52@) 0.942 147 48@) 0.691 017 72@)
4 8.0733579194) 8.439 442 23®@) 0.943538 38®) 0.691 645 13R)
5 7.523832250@) 7.891 285 73@) 0.945 204 392) 0.692 383 08R@)
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+0(Za). (3.39 and
The limits for the states under investigation in this paper are

AEg=—ie J(K?)
FL(1Sy,Za)=(4/3) In(Za) 2—1.554642-O(Za), " fCH J(Z ) G
FL(2Sy2,Za)=(413) In(Za) 2—1.191 497 O(Za), X(¢] a* € *Gp(Ey—w) a”e™ ¥ |y).

(4.4)

FL(2Py,,Za)=0.940022-O(Za), o )
The contributionAE,, corresponding tdG, can be sepa-

FL(2P3,Za)=0.690 022 O(Za). (3.35 rated further into a term E(Hl,{, which contains all divergent
contributions, and a termE{2), which contains contribu-

These limits are consistent with the numerical data in Tablejons of lower order thanZa)*, but is convergent as
lll. For S states, the low-energy contributidh diverges . This separation is described in detail [#h7,50. We
logarithmically asZa—0, whereas forP states,F ap- have
proaches a constant @&x—0. The leading logarithm is a
consequence of an infrared divergence cut off by the atomic AE A =AEQ+AE®). (4.5
momentum scale. It is a nonrelativistic effect which is gen-
erated by the nonvanishing probability densitySoivaves at  We obtain forAE{}, which contains a logarithmic diver-
the origin in the nonrelativistic limit. The presence of the gence as\ — o,
logarithmic behavior forS states[nonvanishingA,; coeffi-

cient, see Eq92.2) and(2.3)] and its absence fd? states is a_ (3 , 9
reproduced consistently by the data in Table Ill. AEHA_; ZInA 8 (B)+ In 2_ 12 <V>
IV. THE HIGH-ENERGY PART (Za)*
+———F(nl},Za) |. (4.6)
A. The high-energy subtraction term n®

The high-energy part is given by For the contributiorF{{), an explicit analytic result is given

in Eq. (4.195 in [47]. This contribution is therefore not dis-
AEy=—limi eZJ J -D,(K2A) cussed in any further detail here. The contributib&(Z)
cy 2m) (2m) contains lower-order terms,

A—»

X (Y] a* e **XG(Ep—w) a’e” X[y, (4.1

o (Zoz)4 5
- _ A=— ——In2+ (V)+ FiA(M;,Za) |.

where relevant definitions of the symbols can be found in ™
Egs.(2.18—(2.21), and the contou€, is as shown in Fig. 1. 4.7
The high-energy part consists of the following integration
region for the virtual photon: Altogether we have

we (Ep—i o, Ep+ioe) AEpa=AEGR+AER

Ze(—io,iw), (4.2

2| Fmar-3) g v
The separation of the high-energy part into a subtraction w4 8 6
term and a remainder is accomplished as in the middle- 4
energy part[see Eq.(3.22] by writing the full Dirac- +(Za) Fua(nli Za)
Coulomb Green functio [Eq.(2.19] asG=G,+ Gg. We n3 AV '
define the high-energy subtraction teffp, as the expres-
sion obtained upon substitution of the propagdgqrfor G~ The scaled functiofrya(nlj,Za) is given by
in Eq. (4.1), and a substitution of the propagat®g for G in ) @)
Eq. (4.1) leads to the high-energy remaindef,z which is Fra(nlj,Za)=Fpi(nlj,Za)+FEi(nlj,Za). (4.9
discussed in Sec. IV B. The subtraction te¢imcluding all @ . .
divergent contributionsis generated b, , the high-energy The termAE};; falls naturally into a sum of four contribu-

4.9

remainder term corresponds @;. We have tions [47],
de ( d% AE@ =T+ T+ T4+Ty, (4.10
ABm= _A“Lnoci ¢ JCHEJ WD’”(kZ’A) where
X (¢ a* e ¥ GA(Ep—w) a”e” X [y) 1 (Za)*

4.3 1= oM+ — 5 . 2a),
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TABLE IV. Numerical results for the high-energy subtraction tefq, and the high-energy remainder
termFg. The high-energy terrfy, is the sumFy(nlj,Za) =Fua(nl;,Za)+Fyg(nl;,Za).

z Fua(1Sy2,Za) Fra(2Sy2,Za) Fra(2Py2,Za) Fra(2P32,Za)

1 —1.216846 66G (1) —1.420293291(1) —1.081 265 954(1) —0.524 359 802(1)
2 —1.214322530(1) —1.417 829 864(1) —1.081451269(1) —0.524 385 053(1)
3 —1.212026714(1) —1.415635310(1) —1.081760224(1) —0.524 427 051(1)
4 —1.209942 8474(1) —1.413693422(1) —1.082192995(1) —0.524485727(1)
5 —1.20805903%(1) —1.411992480(1) —1.082749845(1) —0.524561017(1)
z Fua(1Sy2,Za) Fus(2Sy2,Za) Fre(2P12,Za) Fue(2P32,Za)

1 —0.088 357 254(1) —0.018280727(5) 0.014 546 641) —0.04231069(1)
2 —0.082 758 206(1) —0.01272999(1) 0.014 574 pn) —0.042296 81(1)
3 —0.076811229(1) —0.00686102(1) 0.014 620 &N —0.04227358(1)
4 —0.070590991(1) —0.00074640(1) 0.014 68581 —0.04224092(1)
5 —0.064 146 139(1) 0.005 567 (16 0.014770521) —0.04219876(1)
z Fu(1Sy,,Za) Fu(2Sy,,Za) Fu(2P1,Za) Fu(2Pg,Za)

1 —1.305203915(1) —1.438574018(5) —1.06671931(1) —0.56667050(1)
2 —1.297080743(1) —1.43055985(1) —1.066 877 06(1) —0.566 681 86(1)
3 —1.288837943(1) —1.422 496 33(1) —1.06713972(1) —0.566 700 63(1)
4 —1.280533839(1) —1.41443982(1) —1.067 507 18(1) —0.566 726 65(1)
5 —1.272205173(1) —1.406 42532(1) —1.06797933(1) —0.566 759 78(1)

®Result obtained with a greater number of integration nodes than are used for theZigiseits.

7 1 (Za)*
o= 35 22| 00+ o, 2,

(Za)*

T3:
n3

ha(nl;,Za),

(Za)*

n3

T4: h4(n|J ,Za). (41])

The functionsh; (i=1,2,3,4) are defined in Eqs4.18),
(4.19, and (4.2)) in [47] (see also Eq(3.6) in [49]). The

hi(nlj,Ze) (i=1,2,3,4) aZa—0 are given as a function of
the atomic state quantum numbers in E88) in [49]. For
the scaled high-energy subtraction teff, , the limits read
[see Eq(3.9 in [49]]

F IZ—11I21162I21
ma(nlj,Za)=| 75=IN2 || 75=2In2 |57
+1I21—1 +3I291
22 gz n T2 )
+0(Za). (4.14

evaluation of the high-energy subtraction term proceeds agnerefore, the explicit forms of the limits for the states under

improved calculational methods in intermediate steps of the

calculation in order to overcome the severe numerical can-

2)

cellations in the lowZ region. We rec:ovelaf4A as the sum

FE(nl;,Za)=hy(nlj,Za)+hy(nl; , Za)+hs(nl;, Za)
(4.12

The scaled functiorFy5(nlj,Za) [see also Eqs2.26) and
(2.28] is given by

+h4(n|j Za).

Fra(nlj,Za)=F{(nl;,Za)+FE(nl; , Za).
(4.13

The limits of the contributions Fﬁ,i(nlj,Za) and

FiZ(nl;,Za) as Za)—0 have been investigated in
[47,49,50. For the contributior{(nl;,0), the result can be
found in Eqg. (3.5 in [49]. The limits of the functions

Fua(1S1,,Za)=—1.219628 O(Za),

Fua(2Sy,Za) = —1.423054 O(Za),

(4.15
Fua(2P1)p,Za) = —1.081 204 O(Za),

FHA(2P3/2,ZCY) =—0.524 354 O(Za)

Numerical results foF 5 , which are presented in Table 1V,
exhibit consistency with the limits in Eq4.15).

B. The high-energy remainder

The remainder term in the high-energy part involves the
propagatoiGg defined in Eq(2.39, Gg=G—G,, whereG
is defined in Eq(2.19 and G, is given in Eq.(2.38. The
energy shift is
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ia (ie °° ! 2
AEHB=—7 . dz delx1 . dx, X5 The (1Y, D=

X{Myg(X2,X1,2)+c.C}, (4.1

where c.c. denotes the complex conjugate. The photon en-
ergy integration is evaluated with the aid of the substitution

(4.19

With these definitions, the high-energy remainder can be re-

_ 1/1
z—iu where u=—(——t)- (4.17) written as

2\t

o 1 1 oo
AEHB:;JO dtjodr Jo dy Syg(r,y,t). (4.20

In analogy with the middle-energy subtraction and remainder

terms discussed in Secs. Il B and llI[Gee especially Egs.
(3.26 and (3.3D)], the functions Myg(X,,X;,z) and  There are no lower-order terms to subtract, and therefore

Sye(r,y,z) and the termJ g || are defined implicitly in the a (Za)
following: AEpg=———=—Fug(nlj . Za). (4.21
T n
1\ r2ys . For the high-energy remaindét, g, the limits asZa—0
Sua(r,y, )= 1+ = Y RG{MHB _y,X,i u read[see Eq(4.15 in [49]]
t2 as a a
F l.,Z ! L 4I 2] 3 2In2 !
) 2 . [ _— —_— J—
1) r2y® ry we(Nlj Za) =517 || 18~ 312 Aot |3 —2In2)
= l+—2 6 4 R fi -
t a’ |«|=1 k==« i,j=1 a 5 a1
i r +|g—In2 +0(Za). (422
XGiBjYK —y,x,iu fJ X .AK _y,X
aa a aa For the atomic states under investigation, this leads to
_fiﬂ ai [ Yy Fus(1S,Za)=—0.09345% O(Za),
a *la'a
Xf{x [y Fus(2Sy/2,Za)=—0.023364-O(Za),
/\laj” " a’a Fus(2P12,Za)=0.014538 O(Za),
1\ r2y® &
= l+_2 5 2 THB‘KI(r,y,t)_ (418 FHB(2P3/2,ZCY):_O042315"0(20() (423
te) a° [«[=1 '

The integration procedure for the high-energy part is adapted
to the problem at hand. To this end, a crude estimate is found
The only substantial difference from the treatment of thefor the dependence of the functiGg defined in Eq(4.18
middle-energy remainder lies in the prefactor generated b@" its arguments. The cons[derayons leading to thls_estlmate
the parametrization of the complex photon energy given i€ analogous tq those outllngd in Sec. Il A for the infrared
Eq. (4.17. The photon angular functiond, and A"} (i,j part. The result is the approximate expression
=1,2) for the high-energy partire defined in Eq(5.8) of ;{
e Yexg —

Ref.[47] and in Eq.(4.3) in [49] for an arbitrary bound state. i 2 (1-ry
Special formulas for the ground state can be found in Eq.
(5.9 of Ref.[47]. The functions4, and.A" arenotidentical for S.. This leads naturally to the definition
to the photon angular functions for the infrared and middle-

energy partsA! (i,j=1,2) which are used for the low-

energy part of the calculation in Sec. Ill. It might be worth Que=1+
mentioning that i46—-49 both the functionsA!! and A"

are denoted by the symbéli,j . It is clear from the context so that the(approximatg dependence o8,z on the radial

(4.29

1 1
E_E) (1—r), (4.2@

which of the functions is employed in each case. variable at largey is exp(~QgugY). Note thatq,g may as-
In the last line of Eq.(4.18, we implicitly define the sume large valuesf{1) ast— O0; this is unlike the analogous
termsTyg |, as quantity
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c 1 .
1+(5—§)(1—r) AJ:IZO 2ok (1)1 (4.29

in the infrared and the middle-energy part, whel@  We then accelerate the convergence of the alternating series
=|J1-2%|<1 becauseze (0E,). Having identified the = o(—1)' Aj by applying the nonlinear delta transform

leading exponential asymptotic behavior of the integrandﬁ(O)(lso) which is discussed extensively [57]. The ex-
Syg, it is rather straightforward to evaluate the three- ¢ >’

dimensional integral in Eq(4.20 by Gauss-Laguerre and plicit formula for this transformation is given by defining
Gauss-Legendre quadraturg] [the scaling parametex is n
defined in Egs(3.9) and(3.14)]. The numerical results for S,= E (—1) A (4.30
the high-energy remainder functidfyg are found in Table =0

IV. These results are consistent with the limits in E423. . .
We now turn to a brief discussion of the convergenceas thenth partial sum of the Van Wijngaarden transformed

acceleration techniques used in the evaluation of the functioftPUt Series. The transform readsee Eq(8.4-4) of [57]],

Syg defined in Eq(4.18. The angular momentum decompo- n 14 S
sition of S gives rise to a sum over the terrigg |, [see S (-1 n (1+in-1 S
the last line of Eq(4.18], where|«| represents the modulus =0 J/(1+n)q-1 By
i | 51,89 = 43
of the Dirac angular momentum quantum number of the vir- n (1.S0) =" n\ (1+])) ' (4.3
tual intermediate state. In shorthand notation, and suppress- (—1) ( , )—”‘1 i
ing the arguments, we have =0 J/(1+n)n-1 Bja
o where
o T . 4.2 :

S %1 HB. [ ] (4.29 Bi=(—1)A,. (4.32

The radial Green functio®g=Gg(ry/a,y/a,z) in coordi- The convergence acceleration proceeds by calculating a se-

nate space needs to be evaluated at the radial argumerstgence of transforméﬁo) in increasing transformation order
ry/a andy/a (where 0<r<1), and at the energy argument n. It is observed that the transforms converge much faster
z=E,—w=i/2(t"1—t) [see Eq.(4.18]. A crucial role is than the partial sums, defined in Eq.(4.30. The upper
played by the ratio of the two radial arguments. Indeed, for index zero in Eq(4.31) indicates that the transformation is
| k| —oc, we have[see Eq.(4.7) in [48]] started with the first term\,.
The combined transformatiofcombination of the con-
1 densation transformation and the Weniger transformation
m) ) (420 was found to be applicable to a wide range of slowly con-
vergent monotone serig¢series whose terms have the same
where “const” is independent df«| and depends only on sign), and many examples for its application were given in
y, andt. The series in Eq(4.26) is slowly convergent for Ref. [10]. For the numerical treatment of radiative correc-
close to one, and the region near 1 is known to be prob-
lematic in numerical evaluations. Additionally, note that the
region atr=1 is more important at lowZ than at highZ

tions in lowZ systems, the transformation has the advantage
This is because the functidyg, for constanty, depends on

of removing the principal numerical difficulties associated
with the slow convergence of angular momentum decompo-
r roughly as exp-y(1-r)/(at)] [see Eq.(4.24)], wherea
=2 (Za)In+0O[(Za)®]. For small Z, the Bohr radius

sitions of the propagators near their singularity for equal ra-
1/(Z«) of the hydrogenlike system is large compared to

dial arguments.
high-Z systems, which emphasizes the region neaf. In

r.2 | x|
constt O

THB,|K\: |K|

In a typical case, sufficient precision (18) in the con-
vergence of the sum in Eq4.26) is reached in a transfor-
mation order n<100 for the nonlinear transformation
this region the series in E¢4.26) is very slowly convergent. 5%0)(1'_80)' aregion in which the nonlinear sequence trans-
We have found that the convergence of this series near formation & is numerically stable. Although thé transfor-
—1 can be accelerated very efficiently using the combinednation exh_lblts considerable _numencal stability in higher
nonlinear-condensation transformatid®] applied to the se- ansformation orderg10,57, inevitable round-off errors
ries 37_ oty wheret,=Tpg 1 [See Eqs(4.26 and (4.27)]. start tq accumulate S|gn|f|c§mtly inan excessively high 'grans-
We first transform this series into an alternating series ch'eraltlon. order' ofn§500 in a typical cas§5], and this
- pituation is avoided in the current evaluation because the
transforms exhibit apparent convergence to the required ac-
curacy before numerical round-off errors accumulate. Note
® that evaluation of the condensed sewgsin Eq. (4.29 en-
S =D (—1)1 A, (429 tails sampling of termsTyg |, for rather large| x|, while
k=0 j=0 eliminating the necessity of evaluatiag termsTyg || Up to
the maximum index. The highest angular momentunen-
where countered in the present calculation is in excess of 4 000 000.
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TABLE V. Numerical results for the scaled self-energy functioand the self-energy remainder function

GSE.
Z F(lSl/Z,Za/) F(2$1/2,Za) F(2P1,2,Za/) F(2P3/2,ZC¥)
1 10.316 793 65Q) 10.546 825 186) —0.126 396 371) 0.123 498 561)
2 8.528 325 05@) 8.758 870 261) —0.12581616(1) 0.12383568
3 7.504 503 42Q1) 7.735777 201) —0.124 992 24(1) 0.124 317 (10
4 6.792 824 08(1) 7.025002 411) —0.12396879(1) 0.124918 48
5 6.251 627 078) 6.484 860 421) —0.12277494(1) 0.125623 8D
z Gse(1Sy2,2a) Gse(2Sy2,Z@) Gse(2Pyp,Za) Gse(2P3p,Za)
1 —30.290 24(2) —31.18515(9) —0.9735(2) —0.4865(2)
2 —29.770967(5) —30.644 66(5) —0.949 40(5) —0.47094(5)
3 —29.299170(2) —30.15193(2) —0.926 37(2) —0.456 65(2)
4 —28.859222(1) —29.69127(1) —0.90412(1) —0.44313(1)
5 —28.443 372’3(8)a —29.255033(8) —0.882478(8) —0.430244(8)

&The result for this entry given if4] contains a typographical error.

However, even in extreme cases less than 3000 evaluations Fu(2Sy,,Za)=—1.446418-O(Za),

of particular terms of the original series are required. The

computer time for the evaluation of the slowly convergent

angular-momentum expansion near the singularity is reduced

by roughly three orders of magnitude by the use of the con-

vergence acceleration methods. Fu(2P35,Za)=—0.566 6674 O(Z«). (4.39
In certain parameter regiors.g., for large energy of the

virtual photod, a number of terms of the input seriﬁ@ave _ Numerical results for the high-energy part

to be skipped before the convergence acceleration algorithm

defined in Eqs.(4.28—-(4.32 can be appliedin order to

avoid transient behavior of the first few terms in the sum

over k). In this case, the input data for the combined

nonlinear-condensation transformation are the tertps are also summarized in Table IV. Note the apparent consis-

=Tkt 1+ xy wherek, denotes the number of terms that are tency of the numericgl .res'ults in Table IV with their analyti-

directly summed before the transformation is applied. Thes&2!ly obtained lowZ limits in Eq. (4.34).

issues and further details regarding the application of the

convergence acceleration method to QED calculations can be v, COMPARISON TO ANALYTIC CALCULATIONS

found in Appendix H.2 of5].

Fu(2Py.Za)=—1.066 667 O(Za),

Fu(nlj,Za)=Fpa(nlj,Za)+ Fug(nlj,Za) (435

The numerical results for the scaled self-energy function
F(nlj,Za) defined in Eq.(2.1) are given in Table V, to-
gether with the results for the nonperturbative self-energy

The limit of the functionFy asZa—0 can be derived remainder functiotSsg(nl;,Za), which is implicitly defined
easily from Eqs(4.14) and(4.22) as a function of the bound- in Eq. (2.2). Results are provided fdf- and L-shell states.

C. Results for the high-energy part

state quantum numbers. FBy; the limit is The results here &=5 are consistent with and much more
1 1 /16 1 precise than the best previous calqulaﬁéﬁ]. The n.umeri-
Funl,Za)=|—=-In2|=+|—=—2In2|=——— cal results for the self-energy remaindegg are obtained by
. 10 n 115 21+1 subtracting the analytic lower-order terms listed in E2j2)
3 5 3 9\ 1 from the complete numerical result for the scaled self-energy
=2+ | — 4 Zin2- _)_ function F(nl;,Za). No additional fitting is performed.
2 4/k(21+1) 12 4/ x| Analytic and numerical results at loi& can be compared
17 4 5 n—21-1 by considering the self-energy remainder funci@®g:. Note
+|l=—=In2|8o+|=—In 2>— that an inconsistency in any of the analytically obtained
18 3 T 16 n(zl+1) lower-order terms would be likely to manifest itself in a

+0(Za). (4.33 grossly inconsistent dependence ®@§g(nl;,Z«) on its ar-
gumentZ«; this is not observed. Fd3 states, the following

For the atomic states investigated here, this expression yiel@halytic model fotGsg is commonly assumed, which is mo-

the numerical values tivated in part by a renormalization-group analy$8] and
is constructed in analogy with the pattern of the analytic
Fu(1Sy,Za)=—1.313085 O(Za), coefficientsA;; in Egs.(2.2) and (2.3,
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Gse(NSyz.Za)=Ag(NSyp) +(Za) [A71(NSyp) IN(Zar) 2 0.0220 1 '
+Az0(NSp) 1+ (Za)*[Agy(NSy) I
XIn3(Za) 2+ AgANnSy)) IN?(Za) 2 0.0215 | I 1
+Agi(NSy) IN(Zar) "2+ Ag(NSy2) 1. I I
(5.7 N R ]
S, 00210 T ]
The (probably nonvanishingAg; coefficient, which intro-
duces a triple logarithmic singularity &a=0, hinders an i + 1
accurate comparison of numerical and analytic dat&fgy. 0.0205 .
A somewhat less singular behavior is expected of the differ- I =
ence
AGse(Za)=Gse(2Sy,Za) ~ Gsd 1S12,Za), (5.2 0.0200 — 1' > 3 4
because the leading logarithmic coefficients in any given or- z
der of Z« are generally assumed to be equal fordftates, FIG. 4. Plot of the functiong(Z) defined in Eq.(5.6) in the
which would mean in particular region of low nuclear charge. For the evaluation of the data point at
Z=0, a value of Agy1lS;»=—-30.92415(1) is employed

A71(1Sy0) =A71(2Sy) [4,15,59.

and AGee2a) =AAMY+ a [2AAp+0(a)], (5.9

Agx(1Sy)0) = Agx(2Sy). (5.3

Now we defineAA,, as the difference of the values of the
analytic coefficients for the two lowe& states

etc. Hence foiZz=0, we have
9(0)=AGgga) —AGgg0)

=AADY— AA@Y L o [AAg+0(Za)]. (5.1
APy =A(2S1) ~ Au(1S10). 5.4 o~ g+ @At o(Za)l. (510
For Z=1, the value ofg is determined solely by numerical

The functionAGgg defined in Eq.(5.2 can be assumed to data

have the following semi-analytic expansion abdut=0:
AGge(Za)=AAgy+ (Za) AAsg+ (Za)?[AAg, IN*(Za) 2 9(1)=AGse(2a) ~ AGse @) =a[ Aot O(Za)](’5 11

+ “24 + : :
AfgiIn(Za) Algot0(Za)] 6.9 and forZ=2, we have

In order to detect possible inconsistencies in the numerical

and analytic data foGgg, we difference the data fakGgg,

i.e., we consider the following finite difference approxima-

tion to the derivative of the functioA Ggg:

(5.12

Analogous equations hold fé2>2. The analytic data and
_ . the numerical data from Table V lead to the five values
9(2)=AGs(Z11) @)~ AGsZa). (5.6 g(0), g(1), g(2), g(3), andg(4). A plot of the function

We denote the analytic and numerical limits’oBs(Za) as ~ 9(£) serves two purposes: First, the valgd), . .. g(4)
Za—0 asAAEY and AAQY | respectively, and leave open should exhibit apparent convergence to some limiting value

the possibility of an inconsistency between numerical and® AAzasZ—0, gnd this can be verified by inspgction of the .
analytic data by keepingAg’E,”) and AAg%n) as distinct vari- plot. Second, a discrepancy between the analytic and numeri-

ables. In order to illustrate how a discrepancy could be degal(i?proa??n()as WOUId result in a nonva_mshmg value for
tected by investigating the functioy(Z), we consider spe- AAgy —AAgo W_h'Ch would appear as an inconsistency be-
cial cases of the function Ge(Za) andg(Z). We have for ~Ween the trend in the values g{1), ..., andg(4) and the

Z=0, which is determined exclusively by analytic results, value ofg(0) [see Eq(5.10] )
Among the separate evaluations Af, for the ground

AGSE(0)=AA§3%”), (5.7) state, the result ifil15] has the smallest quoted uncertainty.
In Fig. 4 we display a plot ofi(Z) for low nuclear charg&.

whereas foZ=1, which is determined by numerical data, A value of Ag(1S;,) =A% (1Sy,)=—30.92415(1)
[4,15,59 is used in Fig. 4. The results indicate very good

AGgg a)zAAg’(‘)“)+ a[AAto(a)], (5.8 agreement between the numerical and analytic approaches to
the Lamb shift in the lowZ region up to the level of a few
and forz=2, Hz in frequency units for the low-lying atomic stat@ghere
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n is the principal quantum numbefThe error bars represent 0.028 |
the numerical uncertainty of the values in Table V, which
correspond to an uncertainty on the level of 42f Hz in 0.027 - I
frequency units. 0.026 I i
Analytic work on the correctiorAgy, has extended over 1
three decadefl5,34—-37. The complication arises that al- 0.025 |- .
though the calculations are in general analytic, some remain- N
ing one-dimensional integrations could not be evaluated ana- ~x 9024 - i 7
lytically because of the nature of the integrardse, e.g., © 0.023 I - |
Eqg. (6.96 in [15]]. Therefore a step-by-step comparison of ’
the analytic calculations is difficult. An additional difficulty 0.022 | - 4
is the isolation of those analytic terms which contribute in a -
given order inZa, i.e., the isolation of only those terms 0.021 - T
which contribute toAgy. The apparent consistency of the | | | | |
numerical and analytic data in Fig. 4 represents an indepen- 0.020 0 1 2 3 4
dent consistency check on the rather involved analytic calcu- z
lations.
Our numerical results are not inconsistent with the ana- FIG. 5. Comparison of numerical data and analytically evalu-
lytic result[6] for a higher-order logarithm, ated higher-order binding corrections for the2 state. We plot

the functiongy,(Z) defined in Eq.(5.15 in the region of lowZ.
139 The numerical data obtained in the current investigation appear to
A =7 (55 —In2)=4.65, (5.13 be consistent with the analytic result ofAg(2P4)
=-—0.99891(1) obtained ifil6].
although they do not necessarily confirm it. As[il], we
obtain as an estimat&,;=5.5(1.0) (from the fit to the nu-  for j=z andj=3 in the region of lowZ, with the notion that
merical data for bothS state. Logarithmic terms corre- an inconsistent analytic result faxs(2P;) would lead to
sponding to the(probably nonvanishingAg; coefficient  irregularity atZ=0, in analogy with theS states. The nu-
should be taken into account for a consistent fit of the cormerical data shown in Figs. 5 and 6 appear to be consistent
rections toGsg. These highly singular terms are difficult to With the analytic results of
handle with a numerical fitting procedure. The terfs, _
Ago, andAg; furnish three more free parameters for the nu- A 2P12) = —0.998911)
merical fit, where only five data points are availatiiead-  5nq
dition to the quantitie\gy, A;1, andA;y, which may also
be regarded as free parameters for the fitting proceduine Ago(2P3)=—0.503371) (5.16
determination ofAg, by a fit from the numerical data is much
more stable than the determination of the logarithmic correcobtained in(16]. In this context it may be interesting to note
tion A;;. We briefly note that our all-order evaluation essen-that analytic results obtained [116,52 for the higher-order
tially eliminates the uncertainty due to the unknown higher-binding corrections to B, 3P, and 4 states have recently
order analytic terms. Also, it is interesting to note that the

same numerical methods are employed for bothSlaed P 0.020 '
states in our all-ordefin Za) calculation, whereas the ana-
lytic treatment ofS and P states differ§15,16]. 0.018 I |
The comparison of numerical and analytic results is much
less problematic foP states, because the functiGgg is less T
singular[see Egs.2.4) and (2.6)]. For the 2P states, we 0.016 - .
observe that the functio@sg(2P;,Za) has the same semi- ) i
analytic expansion abota=0 as the functiom Ggg(Z«) t;)‘% -
defined forS states in Eq(5.2). We have 0.014 - . 7
Gse(2P;,Za)=Ago( 2P)) +(Za) A7 2P)) +(Za)? 0012 L |
X[AgA2P;) IN*(Zar) 2+ Agy(2P))
XIn(Za) 2+ Ag(2P)) +0(Za)]. 0.010 (') 1' é :'3 "‘
(5.14 Z

FIG. 6. For the P, state, we plot the functiogs,(Z) defined
in Eq. (5.15 in the region of lowZ. The numerical data obtained in
the current investigation appear to be consistent with the analytic
g;(2)= G2 P;,(Z+1) a)— Gse 2P}, Za) (5.19 result of Ago(2P3») = —0.503 37(1) fron{16].

Hence, we plot the function
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been confirmed indirectly60]. Finally, although it may be states in the region of lo. The main results of this paper
possible to obtain more accurate estimates of some higheare contained in Table V: numerical data, nonperturbative in
order analytic corrections, notably tife, coefficient forP  Ze, for the scaled self-energy functidhand the self-energy
states and\ A, for the two lowest-lyingS states, we have remainder functionGge for K- and L-shell states at low
not made such an analysis in the current work; we haveuclear charge. The numerical accuracy of our data is 1 Hz
restricted the discussion to a check of the consistency witlor better in frequency units forg, 2S, and both P states in

the available results folgg. atomic hydrogen.
The comparison of analytic and numerical results to the
VI. CONCLUSION level of accuracy of the numerical data, which is discussed in

) ] Sec. V, indicates that there is very good agreement foKthe
There has recently been a rather broad interest in the Nyg |-shell states. The analytic and numerical data are
merical calculation of relativistic, QED self-energy, and two- shown in Figs. 4, 5, and 6. Our all-order evaluation elimi-
body corrections at lov and the comparison of analytic and nates any uncertainty due to the unknown higher-order ana-
numerical result$58,61-72. Traditionally, the self-energy |ytic terms; the current numerical uncertainty in the self-

correction for hydrogenlike systems has posed a computasnergy is at the level of 1 Hz for atomic hydrogen.
tional challenge. Here we have described a nonperturbative

evaluation of the one-photon self-energy correction in hydro-
genlike ions with low nuclear charge numbets-1 to 5.
The general outline of our approach is discussed in Sec. Il. In
Sec. lll the numerical evaluation of the low-energy fgen- U. D. J. thanks the National Institute of Standards and
erated by virtual photons of low enengg described. In Sec. Technology for kind hospitality during a number of extended
IV we discuss the numerical evaluation of the high-energyresearch appointments. He would also like to acknowledge
part, which is generated by high-energy virtual photons andgupport from the Deutscher Akademischer Austauschdienst
contains the formally infinite contributions, which are re- (DAAD). The authors would like to acknowledge helpful
moved by the renormalization. Section IV also contains adiscussions with K. Pachucki, S. Karshenboim, and J. Sims.
brief discussion of the convergence acceleration methods & J. M. acknowledges the Alexander von Humboldt Foun-
employed in the current evaluation. We discuss in Sec. V théation for continued support. The authors wish to acknowl-
comparison of analytic and numerical data KerandL-shell ~ edge support from BMBF, DFG, and from GSI.
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