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Evidence for Hot, Diffuse Gas in the Local Supercluster

Stephen P. Boughn

Department of Astronomy, Haverford College, Haverford, PA 19041 sboughn@haverford.edu

ABSTRACT

The HEAO1 A2 full sky, 2−10 keV X-ray map was searched for emission correlated

with the plane of the local supercluster of galaxies. After removing strong point and

moderately extended sources (e.g. the core of the Virgo cluster), there remained a

statistically signficant component of “diffuse” X-rays in the plane of the supercluster.

Fitting this diffuse component with a simple “pillbox” model of the local supercluster

implies a volume X-ray emissivity of εx = 3.0±0.3×1039 (RSC/20 Mpc)−1erg s−1Mpc−3

where RSC is the radius of the supercluster and the error is photon counting noise

only. If one considers fluctuations in the X-ray background as an additional component

of noise then the significance of the detection is reduced to 2 to 3σ. This is consistent

with fits of the model to data sets obtained by rotating the original data. The

distribution of these rotated fits indicates that the detection is signficant at the

99% confidence level. If the source of the X-ray emission is Bremsstrahlung from a

uniformly distributed plasma with temperature Te then the implied electron number

density is Ne = 2.5 × 10−6 (RSC/20 Mpc)−
1

2 (kTe/10 keV )−
1

4 cm−3. This value is

about an order of magnitude larger than the average baryon number density implied

by nucleosynthesis and is consistent with a collapse factor of 10. A search for similar

structure in the COBE 53 GHz microwave background map yielded a marginal

detection with an amplitude of ∼ −17±5 µK (statistical error only) which is consistent

with the Sunyaev-Zel’dovich (SZ) effect expected from 10 keV gas. This latter value

is comparable to the amplitude of intrinsic large-scale fluctuations in the microwave

background and should be considered to be a 1σ result at best.

Subject headings: diffuse radiation − large-scale structure of the universe − X-rays:

galaxies − X-rays: general

1. Introduction

The largest known structures in the clustering heirarchy of galaxies are flattened distributions

known as “superclusters” (SCs). The local supercluster (LSC), the supercluster of which the

Galaxy is a member, was initially discussed by de Vaucouleurs (1953). Since then catalogues

http://arxiv.org/abs/astro-ph/9807308v1
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containing hundreds of SCs have been compiled (Bahcall & Soneira 1984; Batuski & Burns 1985;

Einasto et al. 1997). Although it seems likely that many, if not most, SCs are gravitationally

bound structures, they are far from virialized. Never-the-less, Small et al. (1998) have recently

used virial type arguments to place a lower limit on the mass of the Corona Borealis SC. The

fact that SCs are only marginally over-dense, i.e. δρ/ρ ∼ 10, further complicates studies of their

structures. While the study of SCs is in its infancy, these objects promise to provide important

information about the formation of large-scale structure in the Universe.

If little is known about the dynamics of SCs, even less know about the intra-supercluster

(ISC) medium. Assuming SCs have baryon-to-light ratios comparable to rich clusters of galaxies,

then one expects a substantial amount of ISC gas. Furthermore, the virial temperatures of SCs

are ∼ 108 K so it would not be surprising to find “hard” (> 1 keV ) X-ray emission from the

ISC medium as is the case for the intergalactic medium in rich clusters of galaxies. Most models

of structure formation predict the presence of a hot ISC, whether it is primoridal, created from

winds from an early population of stars, or tidally stripped from merging structures (Molnar &

Birkinshaw 1998 and references cited therein). Estimated temperatures range from 106 K to

108 K (Klypin & Kates 1991; Rephaeli & Persic 1992; Metzler & Evrard 1994; Anninos & Norman

1996). It is straightforward to show that the cooling time for such gas at the expected densities

(< 10−3 cm−3) is much longer than a Hubble time (Rephaeli & Persic 1992) so it would remain

hot today.

There have been several searches for diffuse X-ray emission from SCs. Although Murray et al.

(1978) claimed that UHURU data showed evidence for ISC emission, subsequent observations and

analyses have not supported this claim (Pravdo et al. 1979; Persic, Rephaeli, & Boldt 1988; Persic

et al. 1990). Using ROSAT PSPC data Bardelli et al. (1996) reported the detection of diffuse

emission in the region between two clusters in the Shapley supercluster. On the other hand, Day

et al. (1991) and Molnar & Birkinshaw (1998) have placed relatively strong upper limits on the

2 − 10 keV diffuse emission in this supercluster. While the current upper limits are interesting,

they still leave room for a substantial amount of hot ISC matter and more sensitive searches are

underway.

Particularly intriguing is the result from the cross-correlation analysis of the ROSAT All-Sky

Survey with the Abell catalog. Soltan et al. (1996) found that Abell clusters seemed to be

associated with diffuse X-ray emission with an extent of ∼ 20Mpc. It is tempting to associate this

emssion with hot ISC gas; although, there is as yet no direct evidence for this.

Hot ISC gas can also leave its signature on the Cosmic Microwave Background (CMB) via the

Sunyaev-Ze’dovich (SZ) effect. Hogan (1992) suggested that the SZ effect in superclusters might

account for the fluctuations in the CMB observed by the COBE satellite; however, subsequent

analyses have shown that this is not the case (Boughn & Jahoda 1993; Bennett et al. 1993).

Molnar and Birkinshaw (1998) used the lack of an SZ effect in the COBE DMR data to place an

additional constraint on the ISC gas in the Shapley supercluster while Banday et al. (1996) found
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no evidence for the SZ effect in superclusters using a statistical cross-correlation analysis. Because

of the large intrinsic fluctuations in the CMB, searches for the SZ effect in SCs will undoubtedly

result in upper limits until the next generation of CMB satellites provide adequate frequency

coverage to resolve the two effects.

Searches for ISC gas in the local supercluster (LSC) have the advantage of much higher

integrated signal, however, are frustrated by the presence of other large-scale structure in the

X-ray sky. Shafer (1983) and Boldt (1987) reported evidence for large-scale structure in the

HEAO 1 A2 2 − 10 keV data which is roughly consistent with either the Compton-Getting

dipole expected from the Earth’s motion with respect to the CMB or general emission from the

direction of the center of the LSC. Subsequent analyses (Shafer & Fabian 1983) demonstrated that

Compton-Getting dipole adequately accounts for this large-scale structure; however, the direction

of the dipole was determined to be in a somewhat different direction than that of the CMB

dipole. Jahoda and Mushotzky (1989) found evidence for enhanced 2 − 10 keV emission from the

direction of the Great Attractor which is in the same general direction as the Compton-Getting

dipole. In addition, Jahoda (1993) has found evidence for high lattitude 2− 10 keV emission from

the Galaxy as well as emission associated with the Superglactic plane (the plane of the LSC), the

latter of which is particularly relevant to the analysis presented in the this paper.

In the following sections we present evidence that there is enhanced emission in the

Supergalactic plane and that this emission is distinct from the other large-scale structures

indicated above. To the extent that this is true, we will argue that the emission is diffuse and not

associated with galaxies or other compact X-ray sources in the plane. It is, of course, possible

that the emission is due to still larger scale structure of the type discussed by Miyaji & Boldt

(1990) and Lahav, Piran, & Treyer (1997) or even to the chance allignment of fluctuations in the

X-ray background (XRB); although, we argue that the latter is unlikely. These possibilites will be

discussed in more detail below.

2. HEAO1 A2 2 − 10 keV X-ray Map

The HEAO1 A2 experiment measured the surface brightness of the X-ray background in the

0.1 − 60 keV band (Boldt 1987). The present data set was constructed from the output of two

medium energy detectors (MED) with different fields of view (3◦ × 3◦ and 3◦ × 1.5◦) and two high

energy detectors (HED3) with these same fields of view. The data were collected during the six

month period beginning on day 322 of 1977. Counts from the four detectors were combined and

binned in 24,576 1.3◦ × 1.3◦ pixels in an equatorial quadrilateralized spherical cube projection on

the sky (White & Stemwedel 1992). The combined map has a spectral resolution of approximately

2 − 10 keV (Jahoda & Mushotzky 1989) and is shown in Galactic coordinates in Figure 1.

The effective point spread function (PSF) of the map was determined by averaging the PSFs
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SSSSUTSSSSSTSSSSSSTTUTRRRSSSSSSTTSSTSRRQRSSSTTTTTTTTSSSSSTUTUUUWVVUTTTUTSSSSSSSSRSUUUTSTSUTSSRRRSSSTTTRTTUUUTTTSSSRSSRRSSSSTUTTTTTTSSTT

UTSSSUSSSSSRTRRTTTTTUUUUVWWVUTTRRRRRRRSRRRTTVWUSTTTSSSSSSSTVVVVTTUUTSQQRRRQRSTUUVV][YWSRSSSRRRRRTUUVVUTUUTTTTTTTTTUTTTTUUUTTTTT
USSSSTSRQRRSSTTTUUUUVVYYXYVVTTTSSRRRSUUUVXVUUUUUUTTTSSTTTUSSTTSRPQRSTTTWXXXZYYXUSRRSSSSSUUUUUUVUUUUUUUTTTTUUUTSSTTUUU

TSRQRRTRRRTSSTTTTUUVVXYWWWTTSSSSTTSSTSTTUUUTUVUUSRQSTSSRSSRPQSSSTTUUUUUUUTTTTTRSSSRRRSTTTTTTUUTTSSSTTUUUTSS
TRRRTSSTTTTTUUTTTTTUUUSSSSRRSSRRSSTTUUUTTTSSRRSTTSRQPQRSSSTTUUUUTTTSSSSRRRRTUUUUUTTTTTTUTTSSSTT

TTTTUUTTTTTUUUSSSSRRSSRRSSTTUUUTTTSSRRSTTSRQPQRSSSTTUUUUTTTSSSSRRRRTUUUUUTTTTTT
TTTTUUTTTTTTTTUTTTUVWWWVVVUVVUVUUTTTSTWTTRRRSQRSSSSSSSSSRSSSTTTSTTTTTTUUUTTTTTT

TTTTTTUTTTUVWSTTTTVVVVVUTTSSSSSSSRSSSTTTTTTTTTSSSSSSTTTSTTTTTT
STTTTVVVVVUTTSSSSSSSRSSSTTTTTTTTTSSSS

Fig. 1.— 2− 10 keV HEAO I A2 map in Galactic coordinates (Jahoda & Mushotzky 1989). The

units are TOT cts/sec/4.5 deg2 (see text).

of 75 HEAO1 point sources (Piccinotti et al. 1982). The composite PSF is well fitted by a gaussian

with a full width, half maximum of 2.96◦. This value will be important in estimating the effective

noise in the maximum liklihood fits of §3.4. Because of the pixelization, the PSF varies somewhat

with location on the sky; however, this has little effect on noise estimates so we assume a constant

PSF.

In order to remove the effects of both points source and large-scale structure, more than

half the map was flagged and not included in the fits described in §3. The dominant feature in

the HEAO map is the Galaxy (see Figure 1) so all data within 20◦ of the Galactic plane and,

in addition, within 30◦ of the Galactic center were cut from the map. In addition, 10◦ diameter

regions around 90 discrete X-ray sources with 2− 10 keV fluxes larger than 3× 10−11erg s−1cm−2

(Piccinotti et al. 1982) were removed. The resulting “cleaned” map covered about 50% the
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sky. In order to identify additional point sources, the map itself was searched for “sources” that

exceeded the nearby background by a specified amount. This was accomplished by first averaging

each pixel with its 8 neighbors (note that the quadrilaterized cube format lays out the pixels

on an approximately square array) and then comparing this value with the median value of the

next nearest 16 pixels. Pixels within the flagged Galactic region are ignored. If the average flux

associated with a given pixel exceeds the median flux of the background, then all 25 pixels are

flagged and removed from further consideration. These flagged regions correspond approximately

to a 6.5◦ × 6.5◦ patch. This proceedure is not done iteratively, i.e. each comparison is made on

the basis of the original map with only the Galaxy flagged. Cuts were made at several levels

corresponding to average fluxes of from 3 to 7 × 10−12 erg s−1cm−2. The most extreme cut

corresponds to an equivalent point source flux of 3 × 10−11 erg s−1cm−2 and results in 75% of

the sky being flagged. At this level, most of the “sources” cut are either noise fluctuations or

fluctuations in the X-ray background. In any case, the results of §3.5 are largely insensitive to

these cuts.

Only one large-scale correction to the map, the Compton-Getting dipole, was made apriori.

If the dipole moment of the cosmic microwave background is a kinematic effect, as it has been

widely interpreted (Bennett et al. 1996), then the X-ray background should possess a similar

dipole structure (Compton-Getting effect) with an amplitude of 4.3 × 10−3. As discuseed in §1,
evidence for this structure is found in the HEAO map (Shafer 1983; Shafer & Fabian 1983; Lahav,

Piran, & Treyer 1997). The cleaned map was corrected for this effect; however, the results of §3.5
are the same even if the amplitude and direction of the dipole are fit from the data.

The presence of three other sources of large-scale structure in the X-ray map has been noted.

A linear time drift in detector sensivity (Jahoda 1993) results in effective large-scale structure of

known form but unknown amplitude. In addition, the 2 − 10 keV background shows evidence

of high latitude Galactic emission as well as emission associated with the Supergalactic plane

(Jahoda 1993). Models for all three of these contributions are simultaneously fit to the data as is

discussed in §3.4.

Because of the ecliptic longitude scan pattern of the HEAO satellite, sky coverage and,

therefore, photon shot noise are not uniform. However, the mean variance of the cleaned, corrected

map, 2.0 × 10−2(TOT cts/sec)2, is considerably larger than the mean variance of photon shot

noise, 0.67× 10−2(TOT cts/sec)2, where 1 TOT ct/sec ≈ 2.1× 10−11erg s−1cm−2 (Allen, Jahoda,

& Whitlock 1994). This implies that the X-ray map is dominated by “real” structure (not photon

shot noise). For this reason, we chose to weight the pixels equally in all subsequent analyses.

3. Modelling the Large-Scale Structure

3.1. Instrument Drift
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At least one of the A-2 detectors changed sensivity by ∼ 1% in the six month interval of the

current data set (Jahoda 1993). Because of the ecliptic scan pattern of the HEAO satellite, this

results in a large-scale pattern in the sky which varies with ecliptic longitude with a period of 180◦.

If the drift is assumed to be linear, the form of the resulting large-scale structure in the map is

completely determined. A linear drift of unkown amplitude is taken into account by constructing

a sky map with the appropriate structure and then fitting for the amplitude simultaneously with

the other parameters. We investigated the possibility of non-linear drift by considering quadratic

and cubic terms as well; however, the results of §3.5 were insensitive to this refinement.

3.2. The Galaxy

The X-ray background has a diffuse (or unresolved) Galactic component which varies strongly

with Galactic latitude (Iwan et al. 1982). This emission is still significant at high Galactic

latitude (bII > 20◦) and extrapolates to ∼ 1% at the Galactic poles. We modeled this emission

in two ways. The first model consisted of a linear combination of a secant law Galaxy with the

Haslam 408 GHz full sky map (Haslam et al. 1982). The latter was included to take into account

X-rays generated by inverse Compton scattering of CMB photons from high energy electrons in

the Galactic halo, the source of much of the synchtron emission in the Haslam map. We find only

marginal evidence for such emission (§3.5). As an alternative Galaxy model we also considered

the two disk, exponentially truncated model of Iwan et al. (1982). The analysis of §3.5 shows

signficant X-ray emission corrlelated with either of these models.

3.3. The Local Supercluster

The level of emission from the plane of the LSC reported in this paper is barely above the

noise (S/N ∼ 3). Therefore, detailed models of LSC emission are not particularly useful. We chose

a simple “pillbox” model, i.e uniform X-ray emissivity, εx, within a circular disk of radius RSC

and height (thickness), HSC . The X-ray intensity in a particular direction is then proportional to

the pathlength, L, through the LSC disk, i.e., Ix = εxL/4π. The nominal location of the LSC disk

was chosen to be in the Supergalactic plane (Tully 1982) with a nominal center in the direction

of the Virgo cluster (M87); however, these positions were allowed to vary from their fiducial

locations. The radial position of the Galaxy was assumed to be 0.8 RSC from the center of the

LSC, i.e., near the edge. The value of RSC is left as a scale parameter in the final results; however,

the dependence on the diameter of the LSC was investigated by varying the radial position of

the Galaxy within the LSC disk (see §4.5). The thickness to diameter ratio, HSC/2RSC , was

also varied; however, we considered the nominal value to be 1/8 which is consistent with the
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distribution of galaxies in the LSC (Tully 1982). In any case, as is true for the Galaxy model, the

results of §3.5 are not overly sensitive to these model parameters.

3.4. Analysis

Combining the three above models with a uniform X-ray background we arrive at the

following 5 parameter expression for the “diffuse” X-ray intensity, Xi, in the ith sky pixel,

Xi = a1 + a2 × Pi + a3 × Ti + a4 × Si + a5 × Hi (3-1)

where the first term represents the intensity of the uniform X-ray background, Pi represents the

intensity due to the LSC “pillbox” normalized to a pathlength of 1 RSC , Ti is the pattern on the

sky caused by a linear drift in detector sensitivity, Si is emission proportional to the cosecant of

Galactic latitude normalized to the Galactic pole, Hi is the antenna temperature (in ◦K) of the

408 MHz Haslam map, and ak are the 5 free parameters. Pi, Si, and Hi are convolved with the

PSF of the observed map. Since, as discussed above, each pixel was weighted equally, the least

squares fit to the 5 parameters is obtained by minimizing an effective χ2,

χ2 =
∑

i

(xi −
∑

m

amXm,i)
2 (3-2)

where xi is the observed X-ray intensity in the ith pixel, Xm,i is the ith pixel of the mth parameter

map (i.e., X1,i = 1, X2,i = Pi, X3,i = Ti, X4,i = Si, and X5,i = Hi), and am is the mth fit

parameter. The sum,
∑

i, is over all unflagged pixels in the cleaned HEAO map.

The errors in the fit due to uncorrelated shot noise are easily computed by (see for example

Press et al. 1986)

σk
2 =

∑

m,n

Ck,mCk,n

∑

i

σi
2Xm,iXn,i (3-3)

where 1 ≤ k,m, n ≤ 5 indicate the 5 fit parameters and σi indicates the photon shot noise in the

ith pixel. Cm,n is the inverse of the matrix Am,n which is defined as Am,n =
∑

i Xm,iXn,i.

The intrinsic fluctuations in the X-ray background (XRB) can be thought of as an additional

source of noise. The errors in the fit parameters induced by this noise are more problematic since

XRB fluctuations exhibit pixel to pixel correlations due to the finite PSF of the detectors and

the clustering of X-ray sources. In addition, these fluctuations may not be uniform on the sky.

If Ri,i′ = 〈δIx,iδIx,i′〉 represents the auto-correlation function (ACF) of the intensity of the XRB

then it is straightforward to show that the corresponding errors in the fit parameters are given by

σ′

k
2

=
∑

m,n

Ck,mCk,n

∑

i,i′

Ri,i′Xm,iXn,i′ (3-4)
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As an estimate of these errors we will, in the analysis to follow, assume that the fluctuations

are uniform. Figure 2 is the ACF of the X-ray map (map#2 - see §3.5) corrected for large-scale

structure (i.e., a uniform X-ray background, the Compton-Getting dipole, Galaxy and LSC

emission, and instrumental drift). The point at θ = 0 has been corrected for photon shot noise. If

correlated structure on small angular scales is entirely due to a gaussian PSF, i.e., PSF ∝ e−θ2/2σ2
p ,

it is straightforward to show that the ACF has the form, Ri,i′ = R◦e
−θ2

i,i′
/4σ2

p where θi,i′ is the

angle between the ith and the i′th pixels. The dashed curve in Figure 2 is this functional form.

Note that σp is not a fit parameter but is determined by the profiles of point sources (see §2).
While this curve is a good fit to the data for θ < 4◦, the data for 4◦ <∼ θ <∼ 10◦ lie somewhat above

the curve. Whether or not this is due to clustering of the X-ray background or to an improperly

modeled PSF is not clear; however, it seems unlikely that the PSF extends out to 10◦. In any

case, we have also modelled the ACF as the sum of an exponential and a term proportional to

(θ2 + θ2
o)

−1 to account for the possibility of large-scale clustering. The solid curve in Figure 2

represents this four parameter fit.

Fig. 2.— The autocorrelation function (normalized to unity) of Map#2 (see §3.5) corrected for

large-scale structure. The dashed curve is that expected for the Gaussian PSF of the map. The

solid curve is a fit to the data to account for the tail of the ACF (see text).
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Since the photon shot noise and sky fluctuations are uncorrelated, the two sources of errors

should be added in quadrature, i.e., σ2
tot = σ2 + σ′2.

3.5. Results

The results of the analysis described in §3.4 for two different cleaning windows of the map

are given in Table 1. Map#1 is minimally windowed, i.e. the Galaxy pixels are flagged as well as

the regions around the Piccinotti sources (see §2). In addition, 20 “sources”, i.e., isolated regions

of high flux, were flagged (see §2); however, these comprised only 0.21 sr, i.e. 1.6% of full sky.

This cleaned map contains 11637 pixels which corresponds to a 47% sky coverage. Map#2 was

subjected to more aggressive “source” cleaning and contains 8153 pixels, i.e. 33% sky coverage.

The three errors listed in Table 1 are for photon shot noise only and for shot noise plus the

estimated noise for fluctuations in the XRB according to the two models of Figure 2 (see §3.4). For

shot noise alone, χ2
ν is quite large which is simply an indication of the importance of fluctuations

in the XRB. When these fluctuations are included χ2
ν drops considerably. The fact that in the

latter case χ2
ν ∼ 1 is not particularly signficant since fluctuations in the XRB were esimated from

excess noise in the map. The effective number of degrees of freedom is considerably less (by about

a factor of 10) than the number of pixels since the largest component of the noise is correlated.

It is clear from Table 1 that the parameters from the two fits are consistent with each other

and indicate (with the possible expection of a5) that all parameters are significantly different from

zero. From Table 2 we see that fit parameters are not strongly correlated with each other. Of

particular significance to this paper is that the flux associated with the supercluster is positive

by ∼ 3σ even when the fluctuations in the XRB are taken into account. A test for the statistical

significance for this result is discussed in §4.4. Taken at face value, the fits in Table 1 indicate

that diffuse X-ray emission from the local supercluster has been detected. However, a great many

checks must be made on robustness of this result: e.g., whether or not the signal comes from a

few strong point sources located near the supergalactic plane; whether or not the signal is due

X-ray emitting galaxies distributed in the LSC; whether or not the signal arises from a chance

allignment of fluctuations in the X-ray background; whether or not the result is sensitive to the

pillbox model parameters; etc. The next section contains a detailed discussion of these issues.

4. Systematics

4.1. The Galaxy
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Map#1 Map#2

k ak σa σb σc k ak σa σb σc

1 328.17 0.36 1.30 1.49 1 329.06 0.42 1.49 1.73

2 3.38 0.29 1.06 1.18 2 3.16 0.34 1.21 1.37

3 6.38 0.29 0.99 1.06 3 6.26 0.34 1.15 1.30

4 3.23 0.18 0.64 0.70 4 2.25 0.21 0.74 0.84

5 0.10 0.01 0.05 0.05 5 0.06 0.02 0.05 0.06

χ2
ν 3.57 0.99 0.99 χ2

ν 2.96 1.00 1.00

Table 1: Fit parameters for Maps#1 and #2. The units are 0.01 TOT cts/sec/4.5 deg2 ≈
1.54 × 10−10 erg s−1cm−2sr−1. The parameter a1 corresponds to the intensity of the XRB, a2

is emission from the LSC, a3 is detector drift, a4 is Galactic secant law emission, and a5 is emission

proportional to the Haslam map (in units of 0.01 TOT cts/sec/4.5 deg2/K). σa is the error in

the fit for photon counting noise only, σb includes fluctuations in the XRB modeled as the dashed

curve in Figure 2, and σc includes fluctuations modeled as the solid curve of Figure 2.

a1 a2 a3 a4 a5

a1 1.0 -0.4 -0.1 -0.5 -0.5

a2 -0.4 1.0 0.0 0.2 0.0

a3 -0.1 0.0 1.0 -0.3 0.0

a4 -0.5 0.2 -0.3 1.0 -0.3

a5 -0.5 0.0 0.0 -0.3 1.0

Table 2: Correlation coefficients for the fit parameters for Map#1 in Table 1. The fit parameters,

ak, are defined as in Table 1. The coefficients for Map#2 are similar.

Even though the plane of the Galaxy, a strong source of X-ray emission, was removed from

the map (see §2), high Galactic latitude emission is large enough to be a potential source of

error. However, the planes of the Galaxy and the LSC are nearly perpendicular and the center of

the LSC is nearly at the Galactic pole. It is these fortuitous circumstances that result in nearly

uncorrelated Galaxy and LSC fit parameters (see Table 2). As a consequence, one expects that

the fit to LSC emission will be nearly independent of Galactic emission. As an alternative Galaxy

model we considered the two disk, exponentially truncated model of Iwan et al. (1982). The

χ2 for the fits with this model were slightly worse while the LSC fit parameters were essentially

unchanged (δa2
<∼ 3%). Even if the Galaxy model is left out of the fit entirely, the resulting LSC

emission changes by only ∼ 25%; however, the χ2 is signficantly worse. Therefore, we consider it

unlikely that the supercluster emission found above is due to Galaxy contamination.
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4.2. Compton-Getting Dipole

As discussed in §2 , the X-ray map was corrected for the Earth’s motion relative to the

average rest frame of the distant Universe as defined by the CMB dipole. This is justified since the

bulk of the X-ray background arises from sources at high redshift (z >∼ 1). The amplitude of the

X-ray dipole is easily computed from the CMB dipole and the spectrum of the X-ray background,

i.e., δIx/Ix = 4.3 × 10−3 which is ∼ 3.4 times larger than the CMB dipole. In addition, it is

likely that X-rays trace the asymmetric mass distribution which created our peculiar velocity,

and one would expect an intrinsic dipole moment in the XRB which is more or less alligned with

the Compton-Getting dipole. However, it seems unlikely that the former will be as large as the

latter. From unified models of the XRB (e.g. Comastri et al. 1995), less than 0.2% of the XRB

background arises from sources within 50 Mpc and with fluxes < 3 × 10−11ergs−1cm−2. Lahav,

Piran, and Treyer (1997) demonstrated that the large-scale structure dipole can be comparable to

the Compton-Getting dipole if one assumes, contrary to observations, unevolving X-ray luminosity

and no upper limit on source flux. It is unlikely that their calculation is relevant to our analysis;

never-the-less, we considered the possibility that the dipole correction made to the data is in error.

If a dipole term is included in the fit, it is also not strongly correlated with the “pillbox” term

and the resulting LSC emission changes by only ∼ 15% for Map#1 and by ∼ 5% for Map#2. The

χ2’s were only marginally better if these terms are included. It is interesting that the resulting

fit dipoles for the two maps agree within errors with that predicted for the Compton-Getting

dipole. For Map#2, the fit dipole amplitude is δIx/Ix = 5.3 ± 1.8 × 10−3 while the direction is

∼ 19◦ from the CMB dipole which is well within the directional error. For Map#1 these values

are δIx/Ix = 2.7 ± 1.8 × 10−3 and ∼ 35◦ also consistent with the Compton-Getting dipole. We

find the results of the dipole fits signficant in that they indicate that large-scale structure can be

detected at this level. If the dipole term is excluded altogether from the fit, the values of LSC

emission for the two maps increase by about 30%.

4.3. Timedrift

The timedrift fit parameter in Table 1 corresponds to somewhat less than 2% of the XRB

during the six month interval of the observations and, therefore, is also of potential concern.

However, from Table 2 it is evident that the this fit parameter is essentially uncorrelated with the

LSC parameter indicating that our estimate of LSC emission is also not very sensitive to drift of

detector sensitivity. In the case that the linear timedrift model is removed from the fit, the LSC

parameter changes by < 5% while the χ2’s are significantly worse. In order to test the limitations

of the linear timedrift model we included cubic and quadratic terms as well. The solutions and

χ2’s were essentially unchanged. We conclude that detector drift cannot account for the observed

emission from the LSC.
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The Galaxy, the dipole, and the effects of timedrift are all more or less orthogonal to the LSC.

In fact, if we remove all three of these items from the analysis the fit to LSC emission changes by

only 4% for Map#2 and by 20% for Map#1.

4.4. The XRB

It is now generally accepted that the X-ray background is composed of discrete sources

(Hasinger et al. 1993; Georgantopoulos et al. 1997). Source confusion due to the finite resolution

of the map along with inherent clustering of sources result in fluctuations in the XRB with an

angular scale of about 3◦ and an amplitude of about 3% of the background. On the other hand,

the implied LSC emission is about 1% of the XRB so it is important to consider whether or not

chance allignments of these fluctuation could account for it.

To the extent that fluctuations in the XRB can be modelled as in §3.5, the above analysis

indicates that the fit to LSC emission is signficant at the ∼ 3σ level. As an independent check

we repeated the fits for 5000 pillbox models with a uniform distibution of orientations in the sky.

Because of the extensive windowing of the Galactic plane, models lying within 30◦ of the Galactic

plane were disregarded. Also because of the “detected” LSC emission, models lying within 30◦ of

the LSC plane were also excluded. For Map#1, the amplitude of LSC emission in Table 1 exceeds

those of 97% of the trials while 93% of the χ2s of the trial fits exceed the value in the table.

Only 2.6% of the trials have LSC emission greater and χ2s less than those listed in Table 1. The

results for Map#2 are even stronger. The LSC emission exceeds the fits of 99% of the trials while

the χ2 is exceeded by 97% of the χ2s of the trials. Only 0.7% of the trials have LSC emission

greater and χ2s less that the values listed in Table 1. If one includes the models that lie within

30◦ of the plane of the LSC, the results for Map#2 are essentially the same while for Map#1 4.6%

of the trials have LSC emission greater and χ2s less that those listed in Table 1. Since Map#1

has significantly more “hot spots” than the more heavily windowed Map#2, it is perhaps not

surprising that the former is more susceptible to chance allignments of these “sources” resulting

in spuriously large amplitudes of emission accociated with several pillbox models. We conclude

that at the ∼ 99% confidence level fluctuations in the XRB are not responsible for the observed

signal. This corresonds to a 2σ to 3σ effect and is roughly consistent with the estimates of the

errors indicated in Table 1.

4.5. Pillbox Model

The pillbox model for the LSC is highly simplistic; however, more refined models seem

umwarranted considering the relatively low signal to noise (<∼ 3σ) indicated in Table 1. Never-

the-less, several important checks of the model can be made. The checks illustrated in the figures
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below are for the more extensively windowed Map#2; however, the conclusions are essentially the

same for both maps.

Figure 3 is a plot of the LSC emission fit for a series of pillbox models lying in the supergalactic

plane but with centers rotated by angles in steps of 30◦ from the nominal center of the LSC in

Virgo. It is clear that the largest emission signals occur when the model center is near the nominal

direction. In addition, the χ2s of the fits are signficantly worse for models rotated by angles ≥ 60◦.

The lowest χ2 occurs (for both windowed maps) at an angle of −23◦ for which the LSC emission

is somewhat larger; however, the differences from the Virgo centered model are not significant.

Fig. 3.— LSC emission fit to Map#2 for pillbox models lying in the supergalactic plane with

centers rotated by angles in steps of 30◦ from the nominal center of the LSC in Virgo. The error

bars are statistical only and are highly correlated.

The dependence of the results on the vertical position of the Galaxy within the disk of the

LSC is illustrated in Figure 4. The vertical position is expressed in terms of the disk thickness,

HSC , so ±0.5 represents the top and bottom of the disk. Again the nominal central position yields
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the largest LSC emission with the χ2s of the fits increasing signficantly at the extremes.

Fig. 4.— LSC emission fit to Map#2 for pillbox models with central planes offset from the Galaxy.

Vertical position is expressed in terms of the thickness of the pillbox. The error bars are statistical

only and are highly correlated.

Figure 5 illustrates the dependence of results on the radial position of the Galaxy in the LSC.

Position is expressed in units of the supercluster radius. The nominal value is 0.8. It is clear

from the figure that the largest LSC emission is found for models with the Galaxy near the edge

of the LSC (note: negative values indicate models with centers in the direction opposite Virgo).

The model with the nominal radial position has the smallest value of χ2 while models with radial

positions ≤ 0.5 have significantly larger χ2s. For this test the results for Map#1 differ somewhat

in that models with radial positions ≥ 0.2 have reasonable χ2s; however, the fit LSC emission was

comparable for all these models.

In order to test specifically whether or not a few isolated “hot spots” in the supergalactic

plane are responsible for the signal, the data is binned according to that emission predicted from
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Fig. 5.— LSC emission fit to Map#2 for pillbox models with centers displaced from the Galaxy.

Radial position is expressed in units of the supercluster radius. The nominal value is 0.8. Negative

values indicate models with centers in the direction opposite Virgo. The error bars are statistical

only and are highly correlated.

the pillbox model and then plotted in Figure 6 as a function of emission predicted from the model.

The scale of the predicted emission is taken from Table 1 and the data is corrected for all fit

large-scale structure except for LSC emission. If the signal is due to hot spots in the direction of

the center of the LSC, the extreme right hand data point would fall well above the unity slope

curve while other points would fall well below the curve. Within the limitations of signal to noise,

it appears that this is not the case. Of course, the disposition of the data is sensitive to the

binning. While finer scale binning does show a great deal of scatter, the linear trend is clear. The

data from Map#1 shows the same trend with a bit more scatter.

Finally we investigate how sensitive the results are to varying the thickness to diameter ratio

of the pillbox model. The answer is “not very”. For Map#1, only for ratios HSC/DSC less than
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Fig. 6.— Average 2− 10 keV flux of Map#2 binned according to level of emission predicted from

the pillbox model. The predicted emission is taken from Table 1 and the map is corrected for all

fit large-scale structure except for LSC emission. The error bars are statistical only.

1/12 and greater than 1/4 are the χ2s of the fits signficantly worse. For Map#2 these values are

1/16 and 1/2. The values of LSC emission decrease somewhat as HSC/DSC increases; however,

the statistical signficance of detection is roughly the same for all models in this range. One can

only deduce a very rough value of the thickness to diameter ratio from the data and must rely on

the optical structure of the LSC (Tully 1982). Clearly, the more important aspect of the models is

that the emission is enhanced in the general direction of Virgo.

4.6. Windowing
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As discussed in §2 pixels of the X-ray map were flagged if they were: 1) too close to the

plane of the Galaxy; 2) if they were near a strong X-ray source; or 3) if they were near a positive

fluctuation in the XRB. Failing to remove the strong X-ray sources results in a very poor fit,

χ2
ν > 30; therefore, these cuts are absolutely necessary. On the other hand, the results of §3.5 are

relatively insensitive to the other two cuts. The level of LCS emission changes by less than 30%

if the Galactic plane cut is varied between 20◦ and 50◦ (the smallest fit value of LSC emission is

only 5% less than that of Table 1). Similarly, the fit LSC emission does not change significantly

from the minimally windowed Map#1 to a map with only 20% full sky coverage.

4.7. X-ray Auto-Correlation Function

As a check on how well the modelled structure matches the X-ray sky, the auto-correlation

function (ACF) of the map was compared with that predicted by the model. One might expect

that the unity values of the χ2’s of Table 1 indicate that the fit is quite good. However, recall that

this value was forced by assuming that all the excess variance was due to fluctuations in the XRB.

If, on the other hand, the excess were due to unmodelled large-scale structure then the modelled

ACF would not fit the data. Figure 7 shows that the ACF is well modelled and that there appears

to be little other large-scale structure in the map. The solid curve of Figure 2 was taken as the

model of the small-scale fluctuations in the XRB. For θ > 10◦ the data is binned in 13◦ bins to

reduce scatter.

4.8. Point Sources

Even if the above arguments indicate that there is X-ray emission associated with the plane

of the LSC, it is not at all clear that this emission originates from diffuse gas. After all, there

are a great many galaxies and several clusters in this plane and all of these emit X-rays at some

level. However, there are several indications that it is not the case that faint sources contribute

significantly to the X-ray emission in the LSC plane. At a distance of 20 Mpc the cutoff flux

of the present map (3 × 10−11 ergs s−1 cm−2) corresponds to a luminosity of ∼ 1042 erg s−1;

therefore, only relatively weak (compared to AGN) sources could contribute. The observed

upper limit of the average 2 − 10 keV emissivity of such sources in the local (z <∼ 0.1) universe

is 4 × 1038h erg s−1Mpc−3 (Miyaji et al. 1994) where h is the Hubble constant in units of

100 km s−1 Mpc−1. On the other hand the pillbox model of the LSC and the amplitude of the X-

ray flux in Table 1 imply an average X-ray emissivity of 3.0× 1039 (RSC/20 Mpc)−1erg s−1Mpc−3

(see §6). Thus for a Hubble constant of 60 km s−1 Mpc−1 the ratio of the observed LSC emissivity
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Fig. 7.— The autocorrelation function (normalized to unity) of Map#2. For θ > 10◦ the data

is binned in 13◦ bins to reduce scatter. The solid curve is the ACF for the model including all fit

large-scale structure plus the fit of Figure 2 for the small-scale (< 10◦) structure.

to the average emissivity of weak sources is >∼ 12. For an LSC collapse factor is ∼ 10, the observed

emissivity could be due to weak sources without seriously violating this constraint.

However, unified models of the XRB indicate that it is unlikely that weak sources make a

signficant contribution to the average X-ray emissivity. For example, the model of Comastri et

al. (1995) imply an average, local 2 − 10 keV emissivity of 7.6 × 1038h erg s−1Mpc−3 which is

consistent with the observed value (8.6 ± 2.4 × 1038h erg s−1Mpc−3) derived by Miyaji et al.

(1994) from a cross-correlation analysis of the HEAO-1 A2 map with galaxies from the IRAS

survey. The Comastri model (by design) accounts for the entire XRB. According to this model,

weak sources make a small contribution to the local emissivity, i.e. < 7.6 × 1037h erg s−1 Mpc−3.

For h = 0.6 this is a factor of ∼ 65 less than inferred for the LSC. If weak sources account for the

LSC emissivity, then either Comastri et al. (1995) seriously underestimate their numbers or the
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LSC collapse factor is much larger than observed for visible galaxies. While the above argument

is suggestive, it is based on a unfied AGN model which is by no means certain. In fact, there

is some spectulation that weak sources do make a significant contribution to the XRB (Yi &

Boughn 1998; Di Matteo & Fabian 1997). Stronger constraints on the point source contribution to

LSC emissivity come from the consideration of two source catalogs, the Nearby Galaxies Catalog

(NBG) (Tully 1988) and the ROSAT All-Sky Survey Bright Source Catalog (Voges et al. 1996).

There are 2367 galaxies in the NBG catalog which consists of all galaxies with known

velocities ≤ 3000 km s−1. This catalog is dominated by two data sets: the Shapely-Ampes sample

and the all-sky survey of neutral hydrogen. Although the catalog has severe incompleteness

problems at velocities above 2000 km s−1 the coverage is homogeneous across the unobscured

part of the sky (Tully 1988). In any case, if point X-ray sources associated with galaxies in the

LSC are an important source of X-ray emissivity it seems reasonable that much of the emission

would be associated with the galaxies in this catalog. To check this possibility, the X-ray map

was further cleaned by removing ∼ 15 square degree regions (somewhat larger than the PSF of

the map) at the location of all of catalog galaxies. Many of these regions lie in already windowed

sections of the map. After the additional cuts the sky coverage was reduced to 26% for Map#1

and 18% for Map#2. The reduced coverage results in an increase in noise; however, the levels of

LSC emission are still marginally significant (2 σ and 1.5 σ for Map#1 and Map#2 respectively)

and are somewhat larger than but consistent with the values in Table 1.

Another check of the level of contribution of galaxies from the NBG catalog was made by

fitting the LSC pillbox plus a monopole to the 15 deg2 regions surrounding the galaxies but with

the appropriate windowing of Maps#1 and #2. Before the fits the maps were corrected for a

dipole, the Galaxy and instrumental drift. The sky coverage for these fits was only 21% and

15%; however, if these regions dominate LSC emission then the amplitude of the fit should be

considerably larger than in Table 1. This was not the case. In fact, the fit amplitudes of LSC

emission are essentially the same as those in Table 1. Although the above tests are consistent with

diffuse LSC emission, the Tully galaxies (smoothed by the PSF) occupy a great deal of the LSC

plane and so this conclusion must be tempered.

One final check on the galaxy contribution was to generate a map by assigning an X-ray

flux to each galaxy, convolve the resulting map with the PSF, and then apply the windowing

appropriate for Maps#1 and #2. The X-ray flux of the galaxies was obtained by cross-correlating

the X-ray map with an appropriately smoothed map of galaxy number density. This was done in

four different distance bins (0 − 10; 10 − 20; 20 − 30; and 30 − 50 Mpc) in order to account for

distance dependence of flux. Only for the first bin was the correlation statistically significant. The

X-ray emission from galaxies was determined using the 1 σ upper limits of the cross-correlation

for the appropriate distance bin. The linear regression applied to the resulting maps yields upper

limits to LSC emission which are a factor of 3 below the levels of Table 1. This result is another

indication that X-ray emission from galaxies is not the major component of X-ray emission from

the LSC plane.
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A more direct indication of the contribution of point sources is the ROSAT All-Sky Survey

(RASS) Bright Source Catalog (Voges et al. 1996). There are 18,811 sources in this catalog

down to a 0.1 − 2.4 keV flux limit of 0.05 cts/s (3 × 10−13 erg s−1 cm−2 for a photon spectral

index of α = −2 where dN/dE ∝ Eα). At a brightness limit of 0.1 cts/s (8,547 sources) the

catalogue represents a sky coverage of 92%. Two hardness ratios, HR1 and HR2, are defined by

HR1 = (B − A)/(B + A) and HR2 = (D − C)/(D + C) where A, B, C, and D are the count

rates in passbands that correspond roughly to 0.1 − 0.4 keV , 0.5 − 2.0 keV , 0.5 − 0.9 keV , and

0.9 − 2.0 keV (Snowden et al. 1995). The average HR2 hardness ratio of the sources corresponds

to a photon spectral index of α ∼ −2; although, there are certainly sources that are much harder as

well as sources that are much softer than this spectrum. For α = −2, the catalog limit corresponds

to a 2 − 10 keV flux of 2 × 10−13 erg s−1 cm−2 which is about two orders of magnitude below

the Piccinotti et al. (1982) sources (see §2). If there is a signficant population of relatively faint

(3 × 10−13 to 3 × 10−11 erg s−1 cm−2) sources in the LSC, then a large fraction of these should

show up in the Bright Source Survey. Even though the completeness level is not entirely uniform,

the catalog can still be used to give an indication of the level contamination by point sources.

There are too many RASS sources to simply window them from the HEAO map (3◦ cuts around

each source would window the entire map); however, there are several ways of testing for the

effects of RASS point sources.

To check the contamination due to relatively bright sources or clusters of sources we

constructed a B-band (0.5− 2.0 keV ) map of RASS sources convolved with the HEAO PSF. If the

resulting B-band flux in any pixel was greater than 0.1 ct/sec (for α = −2 this corresponds to a

flux of 1× 10−12 erg s−1 cm−2) then a 15 deg2 region about the pixel was windowed from the two

previously windowed HEAO maps, i.e., Maps#1 and #2. Note that a single source with a flux

of 0.9 ct/sec is at the cutoff flux after smoothing with the PSF. The resulting heavily windowed

maps, Map#1′ and Map#2′, had sky coverages of 22% and 17% respectively. When the linear

regression of §3.4 was performed on these two maps the fits to LSC emission were somewhat larger

but not significantly different than the fits of Table 1. The errors in the fits were about 50% larger

due to the reduced sky coverage. Similar results were obtained when the RASS cutoff flux level

was varied as well as for windowing individual sources (i.e. not convolved with the PSF) with

B-band fluxes above a cutoff level. These results indicate that the LSC emission indicated in Table

1 is not due to the brighter of the RASS sources.

As another check on contaimination, every source in the RASS catalog was assigned a

2 − 10 keV flux from its B-band flux by assuming a spectral index of −1 < α < −3 which was

deduced from HR2 hardness ratio. For faint sources the quantity HR2 is quite noisy and the

computed value of α might be either larger than -1 or smaller than -3. For these sources α was

simply forced to be -1 or -3 which we consider to the limits of the range for nearly all X-ray

sources. The B-band fluxes were corrected for Galactic extinction using HI column density maps

(Stark et al. 1992; Dickey & Lockman 1990) and the absorption coefficients of Morrison and

McCammon (1983). These corrections made little difference and, in any case, are probably less
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important than internal extinction in the sources themselves. The resulting 2 − 10 keV flux map

was then convolved with the HEAO PSF and subtracted from the HEAO maps, Map#1 and

Map#2. The linear regressions applied to these corrected maps implied LSC emission somewhat

larger than but not significantly different from the values in Table 1.

As an upper limit to the contamination by RASS sources we applied the above map correction

assuming that every source has a very hard spectrum, i.e. α = −1. The linear regression fit to

Map#2 was essentially unchanged while the LSC emission fit to Map#1 was reduced by about

40%. Assuming every source has the average spectral index, i.e. α = −2, yields results that are

virtually indistinguishable from those of Table 1.

At the catalog limit, 0.05 cts/sec, the coverage is probably less uniform than at a limit of 0.1

cts/sec; therefore, we repeated the above corrections for the brightest 8547 RASS sources (> 0.1

cts/sec). The results were virtually unchanged.

Because of the effects of non-uniform coverage and imperfect knowledge of the spectra of

individual sources, the above source corrections to the 2 − 10 keV flux are not particularly

accurate. On the other hand, they do indicate that the emissivity of weak X-ray sources in the

LSC is about an order of magnitude less that those implied in Table 1 and we conclude that those

results are not contaminated by point sources.

4.9. Clusters of Galaxies and the Great Attractor

It is well known that rich clusters of galaxies are strong X-ray emitters and, therefore, are a

potential source of contamination. Distant clusters are indistinguishible from the point sources

discussed above. In addition, 30 bright, nearby clusters including Virgo, Coma and Centarus

are among the Picinnotti et al. (1982) sources and have already been windowed from the map.

However, extended emission associated with nearby less compact clusters of galaxies might be

considered a possible source of contamination.

Ebeling et al. (1997) used the ROSAT Brightest Cluster sample to fit a Schecter luminosity

function to clusters and obtained a 2−10 keV L∗ of 1.2×1045 erg s−1 and a power law exponent of

-1.51. Using these values, the implied total 2− 10 keV emissivity is εx = 1.3× 1038 erg s−1 Mpc−3

which is a factor of 25 less than that implied by the values of Table 1 (see §6). On the other

hand, the luminosity of the Virgo cluster is ∼ 1.4 × 1043 erg s−1 and sources this bright

would be cut from the windowed data if they were within 60 Mpc. Again using the fit of

Ebeling et al. (1997), the total emissivity of clusters less luminous than the Virgo cluster is

εx = 1.6× 1037 erg s−1 cm−2 Mpc−3 or a factor of 200 less than the implied LSC emissivity. Even

if this flux is increased by the collapse factor of 10, it is still considerably less than that inferred

for the LSC (see §6).
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As a further check on possible contamination by extended emission from galaxy clusters we

extended the windowing of the X-ray map to include 15◦ diameter regions around the Virgo,

Centarus, Coma, Fornax, and Ursa Major clusters as well as around the most dense regions of

the Hydra, Pavo, Perseus, and Ophiuchus galaxy clouds (Tully 1988). Finally the diffuse emission

found by Jahoda & Mushozky (1989) was eliminated by windowing a 40◦ diameter region about

the Great Attractor. Fits of the LSC emission to these further windowed maps were only ∼ 15%

less that those of Table 1 while the errors in the fit were, of course, somewhat larger. Therefore,

there is no indication that the fits of Table 1 are contaminated by either the cores of clusters of

galaxies or by diffuse emission from the Great Attractor.

The windowing of more extensive regions of galaxy clouds in the LSC would not be possible

without cutting most of the plane of the LSC and, in any case, it is not clear one should distinguish

such emission with diffuse emission in the LSC. This point is essentially the same as asking

whether or not LSC emission is smooth or somewhat clumpy and will be addressed in §6 below;

however, the bottom line is that the signal to noise is simply not high enough to be able to give a

clear answer.

5. Sunyaev-Zel’dovich Effect in the LSC

If the diffuse X-ray emission in the LSC is due to Bremsstrahlung from a hot, ionized

intergalactic medium then one might expect its signature to be imprinted upon the Cosmic

Microwave Background (CMB) via inverse Compton scattering, i.e. the Sunyaev-Zel’dovich (SZ)

effect (Sunyaev & Zel’dovich 1980). If the gas were uniformly distributed, the profile in the CMB

would be the same as in the X-ray except with a negative amplitude for observations on the

Rayleigh-Jeans side of the blackbody spectrum. The CMB temperature decrement for radiation

passing through a gas cloud of uniform electron density Ne, thickness L, and temperature Te is

given by (e.g. Hogan 1992)

(δT/T )CMB ≈ 4.0 × 10−6 β l ne te (5-1)

where l = L/10Mpc, ne = Ne/10
−5cm−3, te = kTe/10 keV , β = (x ex+1

ex−1
− 4), and x = hν/kTCMB .

For L = 20 Mpc, Ne = 2.5 × 10−6, and kTe = 10 keV , the Rayleigh-Jeans decrement in the CMB

is |δT/T | ∼ 4 × 10−6. This value is somewhat smaller than the 10◦ scale fluctuations observed by

the COBE DMR experiment, comparable to other large-scale structure in the microwave sky, e.g.

high latitude Galactic emission and the expected intrinsic CMB quadrupole, and only marginally

larger than the instrument noise in the DMR data (Bennett et al. 1996). Never-the-less, we

performed the same type of analysis as for the X-ray background described in §3 above.

The four year 53 GHz DMR map was obtained from the COBE data archive in 2.6◦ × 2.6◦,

ecliptic, quadrilaterized spherical cube projection format (Bennett et al. 1996). This map was
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deemed more appropriate than the 31 GHz or 90 GHz maps because of a combination of low

instrument noise, low Galaxy background, and moderately large β (see eq. 5-1). An 11 parameter

linear regression similar to that of §3.4 was performed on the map after flagging all pixels within

20◦ of the Galactic plane and within 30◦ of the Galactic center. The fit parameters were a

monopole, a dipole, a quadrupole, a secant law Galaxy model, and the amplitude of the canonical

pillbox model of the LSC. As with the HEAO X-ray map, the sky coverage for the DMR maps

and, hence, instrument noise are not uniform across the sky. In this case the instrument noise per

pixel is larger than the intrinsic sky fluctuations so the contribution to χ2 (see eq. 3-2) of each

pixel is weighted inversely with noise variance of the pixel. However, the results did not change

significantly when the analysis was repeated with equally weighted pixels. The formal fit to the

pillbox amplitude (normalized to 1 RSC) is

δTCMB = −17 ± 5 µK (5-2)

where the uncertainty is statistical only and assumes uncorrelated instrument noise.

As mentioned above, this level is comparable to other systematic structure in the map and,

therefore, should by no means be considered as a 3σ detection. As an estimate of the significance

of the result, the analysis was repeated for 5000 model pillboxes with a uniform distribution of

orientations in the sky. As in §4.4 models lying within 30◦ of the Galactic and Supergalactic

planes were disregarded. The amplitude of the SZ effect of eq. 5-2 is more negative than 82%

of the rotated models indicating a significance of ∼ 1 σ. On the other hand, 80% of the χ2s of

the trial fits exceed that of the fit of eq. 5-2 and 9% of the trials have more negative SZ fits and

smaller χ2s than the LSC model. If one includes models that lie within 30◦ of the plane of the

LSC these results do not change significantly. Nor are they changed for analyses in which the

pixels are weighted equally.

Because of the low level of the signal only a few checks for systematics were made. The

method of §4.5 was used to exclude the possibility that a single “hot” or “cold” source accounted

for the signal. The LMC, SMC, and Orion Nebula were explicity excluded with no significant

change in the fit. Finally the three DMR maps (31, 53, & 90 GHz) were combined according to

the prescriptions suggested by Hinshaw et al. (1996) to minimize the effect of the Galaxy. These

combinations have larger effective noise and so result in larger statistical errors for the fits of

the pillbox amplitude. The fit amplitudes varied from −5 µK to −22 µK. While it is clear the

SZ effect due to hot gas in the LSC is not significantly detected, we note that the upper limit is

consistent with the amount of hot, diffuse gas required to account for the diffuse X-ray emission

discussed in §6. We do find it intriguing that the fits correspond to a decrement in the CMB as

predicted by the SZ effect.

6. Discussion
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If one takes seriously the hypothesis that hot, diffuse gas in the LSC is responsible for the

diffuse X-ray emission claimed in §3, then the strength of the emission can be used to constrain

the density and temperature of the gas. For simplicity assume a uniform, isothermal gas with

electron temperature Te and electron density Ne. Then the 2 − 10 keV X-ray intensity due to

Bremsstrahlung is given by (e.g. Rybicki & Lightman 1979)

Ix = εxL/4π = 4.0 × 10−9 n2
et

1/2
e l erg s−1cm−2sr−1 (6-1)

where L is the thickness of the emitting region, l = L/10 Mpc, ne = Ne/10
−5cm−3, and

te = kTe/10 keV . Primordial element abundances are assumed; however, the coefficient in eq. 6-1

only increases by a factor of 1.14 for solar abundance. From Table 1, the amplitude of the LSC

emission normalized to 1 Rsc is ∼ 3.3 × 10−2 TOT cts/s/4.5 deg2 which corresponds for a 10 keV

Bremsstrahlung spectrum to

Ix = 5.0 × 10−10 erg s−1 cm−2 sr−1. (6-2)

From eqs. 6-1 and 6-2 (with L = RSC)

Ne = 2.5 × 10−6 (RSC/20 Mpc)−1/2(kTe/10 keV )−1/4 cm−3. (6-3)

The implied gas density is only weakly dependent on RSC and Te. Moreover, it is reasonable to

assume that RSC ∼ 20 Mpc (roughly the distance to the Virgo cluster) and that kTe ∼ 10 keV .

A temperature much greater than 10 keV would exceed the virial temperature of the LSC while

a temperature much less than 10 keV would have rendered the gas undetectable by HEAO.

As a rough consistency check, the X-ray data were split into “soft” (2-5 keV) and “hard”

(5-10 keV) components (Allen, Jahoda, & Whitlock 1994) and the “pillbox” fits of §3 repeated

on the subdivided data sets. The ratio of the fit amplitudes (in cts/s) in these two bands is

Ṅsoft/Ṅhard
<∼ 1. Although the uncertainty in this ratio is considerable, it is consistent with

an electron temperature of >∼ 10 keV but inconsistent with temperatures < 3keV . Therefore, it

seems unlikely that the implied electron number density could be much different than Ne ∼ 2 to

3 × 10−6. It is interesting to note that this value is roughly an order of magnitude larger than

the mean number density of baryons in the universe and is consistent with a collapse factor of 10

which is roughly the aspect ratio of the LSC.

If this hot gas were distributed uniformly within a 40 Mpc diameter by 5 Mpc thickness

supercluster, the implied total mass is ∼ 4 × 1014 M⊙. From dynamical considerations, Shaya,

Peebles, & Tully (1995) have estimated the total mass within a distance of 40 Mpc (about 40

times the volume of the LSC) is about 7× 1015 M⊙. On the other hand, total mass in stars in the

same volume is about 1 × 1014 M⊙, which is an order of magnitude too small to account for the

baryonic matter which should be present. While the mass of the hypothetical hot gas in the LSC

is insufficient to account for the dynamical mass in the local universe it may well make up the

bulk of the baryonic matter.

These estimates rely on the gas being uniformly distributed. Since Bremsstrahlung is

proportional to N2
e , the emission is enhanced if there is any clumping of the gas. For example, if
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the gas is contained in 50% of the volume of the disk of the LSC, i.e. a clumping factor of 2, then

the implied mean density decreases by a factor of 1/
√

2.

As discussed in §5 above, the presence of hot, ionized gas is imprinted via the SZ effect on the

cosmic microwave background. For 10 keV gas with a density of 2.5 × 10−6 cm−3 and a thickness

of 20 Mpc, the expected decrement in the CMB is ∼ −11 µK for a Rayleigh-Jeans spectrum.

While the fit of a pillbox LSC to the 53 GHz COBE map is consistent with this prediction, the

systematic structure in the map is large and the agreement should be considered at best a 1 σ

confirmation.

If superclusters (SCs) with hot gas are common in the universe then their combined SZ effects

would result in fluctuations in the CMB which might be confused with intrinsic CMB fluctuations

(Hogan 1992). This has been demonstrated not to be the case for the COBE results (Boughn

& Jahoda 1993; Bennett et al. 1993). To see how many SCs are allowed by this constraint

suppose that a fraction f of all bayonic matter is contained in SCs with diameters of 40 Mpc and

thicknesses 5 Mpc. Then the number density of SCs is nSC = f/bVSC where VSC is the volume

of an SC and b is the collapse factor. If each results in a temperature decrement of δTCMB ∼ 2

to 3 µK (for a path length equal to the thickness of the SC) then the rms fluctuations of a

distribution of SCs should be ∼ 2.5 ×
√

NSC µK where NSC ≈ πR2
scnSCr is the number of SCs

along the line of sight out to a distance r. To compare with the COBE DMR data for which

δTrms ∼ 35 µK we set r ∼ 400Mpc at which a 40 Mpc SC would subtend an angle about equal to

the COBE beam size. Even if f = 1, i.e. all the baryons in the universe are in the form of hot,

diffuse gas in SCs, the fluctuations caused by the SZ effect would be ∼ 7 µK or about 1/5 the

level of the CMB fluctuations. In all likelihood, the fraction f is much smaller than unity. From

the supercluster (SC) catalog of Batuski and Burns (1985), Rephaeli (1993) estimated the local

density of SCs to be 5× 10−8 h3 Mpc−3. If these SC’s have volumes and densities of that inferred

for the LSC, then only about 0.001 of the baryonic matter in the universe is contained in SCs, i.e.

f = 0.001. Then the SZ fluctuations would be quite small, <∼ 1 µK. In any case, the spectrum of

SZ fluctuations differs significantly from those intrinsic to the CMB.

Another way to detect the presence of the SZ effect is via a spectral distortion of the CMB

which is quantified by the Compton y parameter, y =
∫
(kTe/mec

2)NeσT dl where Te is electron

temperature, me is the electron mass, Ne is electron density, σT is the Thompson scattering

cross-section, and l is path length (e.g. Rephaeli 1993). Assuming an isothermal gas this becomes

y = (kTe/mec
2)σT

∫
Nedl. A rough approximation of the integral is f times the mean baryon

density times the Hubble radius, i.e., fnbcH0. Then for kTe = 10 keV , y ∼ 4 × 10−5 f . The

limit on y from the COBE data is (Fixsen et al. 1996) y <∼ 10−5 which implies that f <∼ 1/4. If

f ∼ 0.001 as inferred from the local density of SCs, then the presence of hot gas in these SCs is

consistent with the upper limit to the spectral distortion of the CMB.
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7. Conclusions

Evidence is presented in this paper for X-ray emission associated with the plane of the local

supercluster (LSC). While this has been suggested previously (Jahoda 1993), we argue that the

emission is unlikely to be produced by individual sources but rather is diffuse in nature. This

implies that there is a great deal of hot (∼ 10 keV ), diffuse (∼ 2.5 × 10−6 cm−3) gas in the LSC

and that the gas may account for the bulk of baryonic matter in the local universe. The presence of

such gas would be imprinted on the cosmic microwave background (CMB) as a Sunyaev-Zel’dovich

temperature decrement of ∼ −10 µK. While the COBE 53 GHz map is consistent with such

structure, other systematics preclude the positive identification of this component. Even if

superclusters are relatively plentiful in the universe and hot gas in them is common, the resulting

fluctuations in the CMB would be small relative to the those found in the COBE data and,

therefore, unlikely to compromise the cosmological implications of those fluctuations.

It should be emphasized that the existence of hot, diffuse gas in the LSC is by no means

firmly established. The results presented here constitute only a 2 to 3 σ effect and 3 σ results

have a history of disappearing. Also the source of the X-ray emission may not be diffuse, hot

gas; although, we argue that point sources probably do not account for it. None-the-less, the

results are tantalizing and are consistent with the density and temperature of gas that might be

expected to inhabit the intergalactic medium. It is unlikely that more detailed analyses of the

HEAO and COBE data will shed more light on the situation. The signals to noise of these maps

are simply not good enough. However, the next generation of X-ray satellites with higher angular

resolution, better frequency resolution, and higher sensitivities will likely be able to either confirm

or refute the suggestions made in this paper as well as be able to detect diffuse emission in other

relatively nearby superclusters. Finally the new CMB satellites scheduled for launch in the next

few years (i.e. MAP and PLANCK) should have the angular and frequency resolution required to

distinguish an SZ effect in the LSC from intrinsic CMB fluctuations if the level of the effect is that

suggested by this paper.
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