
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2004

A Generic OO Architecture Language for Semantics Analysis of A Generic OO Architecture Language for Semantics Analysis of

OO Specification OO Specification

Xiaoqing Frank Liu
Missouri University of Science and Technology, fliu@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
X. F. Liu, "A Generic OO Architecture Language for Semantics Analysis of OO Specification," Proceedings
of the 28th Annual International Computer Software and Applications Conference, 2004, Institute of
Electrical and Electronics Engineers (IEEE), Jan 2004.
The definitive version is available at https://doi.org/10.1109/CMPSAC.2004.1342653

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229137635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/CMPSAC.2004.1342653
mailto:scholarsmine@mst.edu

A Generic OO Architecture Language for Semantics Analysis of OO Specification

Franck Xia
Computer Science Dept., University of Missouri-Rolla, Rolla, MO 65409; xiaf@umr.edu

1. Introduction
Formal specification enables a rigorous analysis and
model checking for ensuring the correctness of
specification. However, most formal OO specification
methods are of mathematical nature and the semantics of
specification is purposely defined such that it is not
related to the semantics of code. Yet when a specification
is not semantically connected to its implementation, the
correctness of the specification could be easily lost when
it is converted to code in an artist and error-prone way
[1]. This broken semantics link is a major obstacle which
prevents a wide adoption of rigorous methods in
engineering practice. Exceptions do exist. In [2], the
semantics of class and collaboration diagrams in UML is
decorated based on Eiffel. Yet using a programming
language with implementation details for specification
risks to lose abstraction. Alloy is a language designed
with a precise and implementation independent semantics
for analyzing the structural properties of OO specification
[3]. Alloy ignores the dynamic interaction between
objects and hence is not general enough for specification.
We propose a new language which will lay a common
semantics ground for both specification and code.

2. A Generic OO Architecture Language
Existing programming languages have many features
based on implementation concerns such as variables vs.
pointer, array vs. linked list, parameter passing mode, etc.
As these features are irrelevant for specification, we
propose a Generic Object-Oriented Architecture
Language (GOOAL), free of any implementation
concerns and being able to capture the essence of OO
programming such as encapsulation, information hading,
and inheritance. The elementary statement in GOOAL is
method call but not basic statement. Hence GOOAL is
intrinsically abstract and suitable for describing the
architecture of OO systems. GOOAL has a relatively
simple semantics, a subset of the semantics of OO
programming languages, thus it lays a semantic ground
for both specification and coding.

3. Syntax of GOOAL
The syntax of GOOAL can be easily defined using BNF.
Here we provide an informal description of it. In GOOAL,
attributes and methods can only be defined within classes.
A method named main is the first method to be executed
in an application. In the executive body of a method, the
basic statement is method call, in combination with
selection and looping. Classed may include invariants and
method bodies contain pre and post conditions.

4. Semantics of GOOAL
4.1 Semantics Aspects
There are various semantics theories for programming
languages, be axiomatic, operational or denotational.
Overall, different aspects of program semantics such as
data, control constructs, and subprograms are fairly well
understood. The dynamic semantics of GOOAL can be
simply defined using the known operational semantics
which will be easy to interpret. The static semantics of
any data can be fully described by a sextuple <name, type,
value, address, scope, lifetime>. For data in specifications,
address is irrelevant, so we only consider a quintuple for
any data d = <name, type, value, scope, lifetime>. The
semantics properties of name and lifetime are well known
in the compiler literature. Type systems developed for
OO programs is valid for OO specification [4]. In fact,
only a subset of OO programs’ type systems is needed for
GOOAL. In the following, we propose three innovative
ideas for defining the semantics of GOOAL:
axiomatization of OO principles, scope theory, and
architectural pipelining axioms.

4.2 Axiomatization of OO Principles
Interestingly, principles of encapsulation, information
hiding, and inheritance mainly limit the scope of objects
and methods. We propose to axiomatize the OO
principles. The following shows two of them:

 Axiom of Encapsulation: m (x m x.op).

Axiom of Information Hiding: a A.at (a. visibility
= Private a. visibility = Protected); m,

a m.obj_ref, x m.op_ref (access(a, m)
evoke(x, m)) a.visibility = Public.

Here, A.at and A.op denote the set of attributes and
methods of A, respectively. The Boolean predicate access
(o,m) stands for whether or not o is accessible in m;
reference(o,m) for object o is referenced in m; and
evoke(x,y) for method x can be evoked in y.

4.3 Scope Theory
In OO specifications, what is crucial at the architectural
level is to know, for any method, what are the objects that
can be accessed and what are the methods that can be
evoked so that all objects of a system can interact with
each other and the control flow can pass through a series
of methods in an appropriate order. Because of
encapsulation, information hiding, and inheritance, this
task is much more complex in large OO software than in
procedural programs. In procedural programs, we reason
about it based on the notion of referencing environments,

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

i.e. all the variables accessible in a statement. As there is
no statement in specifications, the equivalent notion does
not exists in the OO specification literature. So we
propose several sets of innovative scope attributes that
generalize the notion of referencing environments. As
examples, the direct object references of method m
(denoted as m.dir_obj_ref) of class A is the set of all the
objects referenced in m without calling any method. It
includes all the attributes of class A and all the input
parameter objects of m. The indirect object reference of m
(m.ind_obj_ref) is the set of all the objects referenced in
m through calling method(s). The object reference of m
(m.obj_ref) is the set of all the objects referenced in m. In
parallel, the direct operational references (m.dir_op_ref)
and the indirect operational references of m are defined
as the set of all the methods that are directly and
indirectly called in m, respectively, and their union is the
operational references of m.

4.4 Architectural Pipelining Axioms
Hoare’s axiomatic semantics focuses on effect of
statements on the value attribute of data. The
pre-condition of a statement is not defined but calculated
from its post-condition. An implicit assumption with
Hoare Logic is that the post-condition of any statement is
always equal to the pre-condition of its following
statement. This assumption, however, is no longer valid
for specification and design, since we usually define both
pre- and post-condition for each component. Thus a
critical issue is to determine, at the architectural level,
how different components can interface correctly. We use
a pipeline network metaphor to illustrate a fundamental
requirement for software architecture: Consider the whole
architecture as a network of pipes with flux passing
through, diverging and merging in it, from the entry
through the entire pipeline network and leaving it without
any leaking. As each method in GOOAL is specified with
a pre- and post-condition, which can be interpreted as two
joints of a pipe in the network, the post condition of one
method x and the pre-condition of method y following x
must guarantee that all data coming out of x completely
enter y for processing. The following illustrates some of
architectural pipelining axioms we propose:

}{();();}{

}{();}{}{();}{

2211

21222111

QmmP

PQQmPQmP ,

}(){())}(){(

}{();}{}{();}{

212121

222111

QQmCmPCPC

QmPQmP ,

});{();(}{

}();{}{}();{}{

ninn

niiniiinnn

QmmP

QQPPQmPQmP .

Note that stands for if C then X else Y. YCX

5. Application of GOOAL to UML
A set of scope and lifetime properties of OO specification
can be proven illustrating the usefulness of GOOAL for
ensuring the consistency of UML diagrams. For example,

mi-1 NM, (life(mi-1,ri) (ri mi-1.dir_obj_ref
ri mi-1.ind_obj_ref_acc) (mi ri.op (x ri.op | x AC
 mi x.op_ref_acc)) (x mi.sig, life(mi-1,x)

(x mi-1.dir_obj_ref x mi-1.ind_dir_obj_ref_acc)).

s
j
:B s

i
:S r

i
:R

m
i-1

()
m

i
()

s
j
:B s

i
:S r

i
:R

m
i-1

()

m
i
()

:X

y()

 (a) (b)

Here NM denotes the set of nested methods, and life(x,y)
means that object x is within its lifetime in method y. For
UML interaction diagrams, we require that accessors, i.e.
methods with only one return statement, should not be
shown in the diagrams to keep the diagrams abstract. The
theorem has four parts: 1) life(mi-1,ri) and life(mi-1,x)
ensure that all the objects involved in the call, i.e. target
object ri and actual parameter objects of the called method
mi (x mi.sig), are within their lifetime when mi is
evoked; 2) (ri mi-1.dir_obj_ref ri mi-1.ind_obj_ref_acc)
states that the target object ri of message mi() must be
either directly referenced in mi-1, which immediately
precedes mi() (mi-1.dir_obj_ref), or indirectly referenced
from mi-1 only via a sequence of calls of accessors
(mi-1.ind_obj_ref_acc). Because if mi() can only be evoked
through an intermediate method, say y() of class X, and y()
is not an accessor, then the calling sequence would be mi-1()
{ y(); … } and y() { ri.mi(); … }. Hence the equivalent
sequence diagram cannot be (a) but (b), for non accessor
y() must be shown but it is not in (a); 3) likewise,
(mi ri.op (x ri.op | x AC mi x.op_ref_acc)) states
that mi() must be either a method of target ri (ri.op) or can
be evoked only through a sequence of calls of accessors
before evoking mi(); 4)
(x mi.sig,(x mi-1.dir_obj_ref x mi-1.ind_obj_ref_acc))
is about the accessibility of actual parameter objects of
method mi, mi.sig standing for the signature of mi.

Our class experience shows an immediate benefit of our
approach: As the semantics properties derived based on
GOOAL are valid for both specification and code and no
additional formal notation is needed, even undergraduate
students with an ordinary mathematics background can
learn and apply them for UML consistency checking.

Reference:
1. Bunse C., Atkinson C., The normal object form: bridge the
gap from models to code, UML’99, 691-705
2. Paige R., Ostroff J., Brooke P.J., Checking the consistency of
collaboration and class diagrams using PVS, ROOM’2002
3. Jackson D., Alloy: A lightweight object-oriented modeling
notation, ACM T-SEM, 11(2), 2002, 256-290
4. Abadi M. & Leino K.R.M., A Logic of object-oriented
programs, LNCS 1214, 1997

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	A Generic OO Architecture Language for Semantics Analysis of OO Specification
	Recommended Citation

	A generic OO architecture language for semantics analysis of OO specification

