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A Generic OO Architecture Language for Semantics Analysis of OO Specification 

Franck Xia 
Computer Science Dept., University of Missouri-Rolla, Rolla, MO 65409; xiaf@umr.edu 

1. Introduction 
Formal specification enables a rigorous analysis and 
model checking for ensuring the correctness of 
specification. However, most formal OO specification 
methods are of mathematical nature and the semantics of 
specification is purposely defined such that it is not 
related to the semantics of code. Yet when a specification 
is not semantically connected to its implementation, the 
correctness of the specification could be easily lost when 
it is converted to code in an artist and error-prone way 
[1]. This broken semantics link is a major obstacle which 
prevents a wide adoption of rigorous methods in 
engineering practice. Exceptions do exist. In [2], the 
semantics of class and collaboration diagrams in UML is 
decorated based on Eiffel. Yet using a programming 
language with implementation details for specification 
risks to lose abstraction. Alloy is a language designed 
with a precise and implementation independent semantics 
for analyzing the structural properties of OO specification 
[3]. Alloy ignores the dynamic interaction between 
objects and hence is not general enough for specification. 
We propose a new language which will lay a common 
semantics ground for both specification and code. 

2. A Generic OO Architecture Language 
Existing programming languages have many features 
based on implementation concerns such as variables vs. 
pointer, array vs. linked list, parameter passing mode, etc. 
As these features are irrelevant for specification, we 
propose a Generic Object-Oriented Architecture 
Language (GOOAL), free of any implementation 
concerns and being able to capture the essence of OO 
programming such as encapsulation, information hading, 
and inheritance. The elementary statement in GOOAL is 
method call but not basic statement. Hence GOOAL is 
intrinsically abstract and suitable for describing the 
architecture of OO systems. GOOAL has a relatively 
simple semantics, a subset of the semantics of OO 
programming languages, thus it lays a semantic ground 
for both specification and coding. 

3. Syntax of GOOAL 
The syntax of GOOAL can be easily defined using BNF. 
Here we provide an informal description of it. In GOOAL, 
attributes and methods can only be defined within classes. 
A method named main is the first method to be executed 
in an application. In the executive body of a method, the 
basic statement is method call, in combination with 
selection and looping. Classed may include invariants and 
method bodies contain pre and post conditions. 

4. Semantics of GOOAL 
4.1 Semantics Aspects 
There are various semantics theories for programming 
languages, be axiomatic, operational or denotational. 
Overall, different aspects of program semantics such as 
data, control constructs, and subprograms are fairly well 
understood. The dynamic semantics of GOOAL can be 
simply defined using the known operational semantics 
which will be easy to interpret. The static semantics of 
any data can be fully described by a sextuple <name, type, 
value, address, scope, lifetime>. For data in specifications, 
address is irrelevant, so we only consider a quintuple for 
any data d = <name, type, value, scope, lifetime>. The 
semantics properties of name and lifetime are well known 
in the compiler literature. Type systems developed for 
OO programs is valid for OO specification [4]. In fact, 
only a subset of OO programs’ type systems is needed for 
GOOAL. In the following, we propose three innovative 
ideas for defining the semantics of GOOAL: 
axiomatization of OO principles, scope theory, and 
architectural pipelining axioms. 

4.2 Axiomatization of OO Principles 
Interestingly, principles of encapsulation, information 
hiding, and inheritance mainly limit the scope of objects 
and methods. We propose to axiomatize the OO 
principles. The following shows two of them: 

 Axiom of Encapsulation: m ( x  m x.op).

Axiom of Information Hiding: a A.at  (a. visibility 
= Private  a. visibility = Protected); m, 

a m.obj_ref, x m.op_ref  (access(a, m) 
evoke(x, m))  a.visibility = Public. 

Here, A.at and A.op denote the set of attributes and 
methods of A, respectively. The Boolean predicate access 
(o,m) stands for whether or not o is accessible in m; 
reference(o,m) for object o is referenced in m; and 
evoke(x,y) for method x can be evoked in y.  

4.3 Scope Theory 
In OO specifications, what is crucial at the architectural 
level is to know, for any method, what are the objects that 
can be accessed and what are the methods that can be 
evoked so that all objects of a system can interact with 
each other and the control flow can pass through a series 
of methods in an appropriate order. Because of 
encapsulation, information hiding, and inheritance, this 
task is much more complex in large OO software than in 
procedural programs. In procedural programs, we reason 
about it based on the notion of referencing environments, 
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i.e. all the variables accessible in a statement. As there is
no statement in specifications, the equivalent notion does
not exists in the OO specification literature. So we 
propose several sets of innovative scope attributes that
generalize the notion of referencing environments. As
examples, the direct object references of method m
(denoted as m.dir_obj_ref) of class A is the set of all the
objects referenced in m without calling any method. It
includes all the attributes of class A and all the input
parameter objects of m. The indirect object reference of m
(m.ind_obj_ref) is the set of all the objects referenced in
m through calling method(s). The object reference of m 
(m.obj_ref) is the set of all the objects referenced in m. In 
parallel, the direct operational references (m.dir_op_ref)
and the indirect operational references of m are defined
as the set of all the methods that are directly and
indirectly called in m, respectively, and their union is the
operational references of m.

4.4 Architectural Pipelining Axioms
Hoare’s axiomatic semantics focuses on effect of 
statements on the value attribute of data. The
pre-condition of a statement is not defined but calculated
from its post-condition. An implicit assumption with
Hoare Logic is that the post-condition of any statement is 
always equal to the pre-condition of its following
statement. This assumption, however, is no longer valid
for specification and design, since we usually define both
pre- and post-condition for each component. Thus a
critical issue is to determine, at the architectural level,
how different components can interface correctly. We use
a pipeline network metaphor to illustrate a fundamental
requirement for software architecture: Consider the whole
architecture as a network of pipes with flux passing
through, diverging and merging in it, from the entry
through the entire pipeline network and leaving it without
any leaking. As each method in GOOAL is specified with
a pre- and post-condition, which can be interpreted as two
joints of a pipe in the network, the post condition of one
method x and the pre-condition of method y following x
must guarantee that all data coming out of x completely
enter y for processing. The following illustrates some of
architectural pipelining axioms we propose:

}{();();}{

}{();}{}{();}{

2211

21222111

QmmP

PQQmPQmP ,

}(){())}(){(

}{();}{}{();}{

212121

222111

QQmCmPCPC

QmPQmP ,

});{();(}{

}();{}{}();{}{

ninn

niiniiinnn

QmmP

QQPPQmPQmP .

Note that stands for if C then X else Y. YCX

5. Application of GOOAL to UML 
A set of scope and lifetime properties of OO specification
can be proven illustrating the usefulness of GOOAL for
ensuring the consistency of UML diagrams. For example,

mi-1 NM, ( life(mi-1,ri)  (ri mi-1.dir_obj_ref
ri mi-1.ind_obj_ref_acc )  ( mi ri.op  ( x ri.op | x AC
 mi x.op_ref_acc))  ( x mi.sig, life(mi-1,x)

(x mi-1.dir_obj_ref  x mi-1.ind_dir_obj_ref_acc ) ). 
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  (a)                                (b)

Here NM denotes the set of nested methods, and life(x,y)
means that object x is within its lifetime in method y. For
UML interaction diagrams, we require that accessors, i.e.
methods with only one return statement, should not be
shown in the diagrams to keep the diagrams abstract. The
theorem has four parts: 1) life(mi-1,ri) and life(mi-1,x)
ensure that all the objects involved in the call, i.e. target
object ri and actual parameter objects of the called method
mi ( x mi.sig), are within their lifetime when mi is
evoked; 2) (ri mi-1.dir_obj_ref  ri mi-1.ind_obj_ref_acc)
states that the target object ri of message mi() must be
either directly referenced in mi-1, which immediately 
precedes mi() (mi-1.dir_obj_ref), or indirectly referenced
from mi-1 only via a sequence of calls of accessors
(mi-1.ind_obj_ref_acc). Because if mi() can only be evoked 
through an intermediate method, say y() of class X, and y()
is not an accessor, then the calling sequence would be mi-1()
{ y(); … } and y() { ri.mi(); … }. Hence the equivalent
sequence diagram cannot be (a) but (b), for non accessor 
y() must be shown but it is not in (a); 3) likewise,
(mi ri.op  ( x ri.op | x AC  mi x.op_ref_acc)) states
that mi() must be either a method of target ri (ri.op) or can 
be evoked only through a sequence of calls of accessors
before evoking mi(); 4)
( x mi.sig,(x mi-1.dir_obj_ref x mi-1.ind_obj_ref_acc))
is about the accessibility of actual parameter objects of
method mi, mi.sig standing for the signature of mi.

Our class experience shows an immediate benefit of our
approach: As the semantics properties derived based on
GOOAL are valid for both specification and code and no 
additional formal notation is needed, even undergraduate
students with an ordinary mathematics background can
learn and apply them for UML consistency checking.
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